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Abstract

Let G be a commutative group, Y a real Banach space and f : G→ Y . We prove the Ulam–Hyers stability
theorem for the cyclic functional equation

1
|H|

∑
h∈H

f (x + h · y) = f (x) + f (y)

for all x, y ∈ Ω, where H is a finite cyclic subgroup of Aut(G) and Ω ⊂G ×G satisfies a certain condition.
As a consequence, we consider a measure zero stability problem of the functional equation

1
N

N∑
k=1

f (z + ωkζ) = f (z) + f (ζ)

for all (z, ζ) ∈ Ω, where f : C→ Y, ω = e2πi/N and Ω ⊂ C2 has four-dimensional Lebesgue measure 0.
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1. Introduction

Throughout this paper, let G, X and Y be a commutative group, a real normed space
and a real Banach space, respectively, and H be a finite cyclic subgroup of Aut(G) (the
automorphism group of G). Denote the order of H by |H|. A function f : G→ Y is
said to be a quadratic mapping if f satisfies the equation

f (x + y) + f (x − y) = 2 f (x) + 2 f (y) (1.1)

for all x, y ∈ G. In [16] Skof proved the Ulam–Hyers stability of the quadratic
functional equation (1.1). (See also [8, 9] and [10, pages 175–179] for the history
and further results on the Ulam–Hyers stability of functional equations.)
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Theorem 1.1 [16]. Let δ ≥ 0. Suppose that f : G→ Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − 2 f (y)‖ ≤ δ

for all x, y ∈ G. Then there exists a unique quadratic mapping q : G→ Y such that

‖ f (x) − q(x)‖ ≤ 1
2δ

for all x ∈ G.

Generalising the above result, Sibaha et al. [14] proved the Ulam–Hyers stability of
the functional equation

1
|H|

∑
h∈H

f (x + h · y) = f (x) + f (y) (1.2)

for all x, y ∈ G. We call f : G→ Y satisfying (1.2) an H-cyclic mapping. (See [5] for
more general results.)

Theorem 1.2 [14]. Let δ ≥ 0. Suppose that f : G→ Y satisfies the inequality∥∥∥∥∥ 1
|H|

∑
h∈H

f (x + h · y) − f (x) − f (y)
∥∥∥∥∥ ≤ δ (1.3)

for all x, y ∈ G. Then there exists a unique H-cyclic mapping q : G→ C such that

‖ f (x) − q(x)‖ ≤ δ

for all x ∈ G.

Remark 1.3. In particular, if H = {I, −I}, where I : G → G is the identity, then
Theorem 1.2 implies Theorem 1.1 and, if H = {I}, Theorem 1.2 implies the well-known
Ulam–Hyers stability of the Cauchy functional equation [8].

It is a very interesting subject to consider functional equations or inequalities
satisfied on restricted domains or satisfied under restricted conditions [1–4, 6, 11, 15].
Among the results, Jung and Rassias proved the Ulam–Hyers stability of the quadratic
functional equations in a restricted domain [9, 13].

Theorem 1.4. Let d > 0. Suppose that f : X → Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − 2 f (y)‖ ≤ δ (1.4)

for all x, y ∈ D := {(x, y) ∈ X2 : ‖x‖ + ‖y‖ ≥ d}. Then there exists a unique quadratic
mapping q : X → Y such that

‖ f (x) − q(x)‖ ≤ 7
2δ (1.5)

for all x ∈ X.
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It is very natural to ask if the restricted domain D in Theorem 1.4 can be replaced by
a smaller subset Ω ⊂ D (for example a subset of measure 0 if X is a measure space). In
[7], the stability of (1.4) is considered in a set Ω ⊂ {(x, y) ∈ R2 : |x| + |y| ≥ d} of measure
m(Ω) = 0 when f : R→ Y . As a result, it is proved that if f : R→ Y satisfies (1.4) for
all (x, y) ∈ Ω, then there exists a unique quadratic mapping q : R→ Y satisfying (1.5).
As a consequence, it is also proved that if f satisfies the asymptotic condition

‖ f (x + y) + f (x − y) − 2 f (x) − 2 f (y)‖ → 0

as |x| + |y| → ∞ in Ω, then f is a quadratic mapping.
In this paper, generalising the results in [7, 9, 13, 14], we consider the Ulam–Hyers

stability of the functional equation (1.2) in restricted domains. Firstly, we assume that
Ω ⊂ G ×G satisfies the following condition: for given x, y ∈ G there exists t ∈ G such
that

{(x + h · y, t), (x + h · t, y), (x, t) : h ∈ H} ⊂ Ω. (1.6)

As an abstract approach, we first prove that if f : G→ Y satisfies (1.3) for all (x, y) ∈ Ω,
then there exists a unique H-cyclic mapping q such that

‖ f (x) − q(x)‖ ≤ 3δ

for all x ∈G. In particular, if G = X and d ≥ 0, then Ω = {(x, y) ∈ X × X : ‖x‖ + ‖y‖ ≥ d}
satisfies (1.6).

Secondly, when G = C, by constructing a subset Ω ⊂ C2 of measure 0 satisfying
(1.6), we consider a measure zero stability problem of (1.2): that is, we consider the
inequality ∥∥∥∥∥ 1

N

N∑
k=1

f (z + ωkζ) − f (z) − f (ζ)
∥∥∥∥∥ ≤ δ

for all (z, ζ) ∈ Ω, where ω = e2πi/N . Finally, we refine the results in [7, 9, 13] and prove
that if f satisfies (1.4) for all (x, y) ∈ Ω, then there exists a unique quadratic mapping
q : R→ Y such that

‖ f (x) − q(x)‖ ≤ 3
2δ

for all x ∈ R, where Ω ⊂ R2 has two-dimensional Lebesgue measure 0.

2. Stability of the equation in restricted domains

Throughout this section we assume that Ω ⊂ G ×G satisfies (1.6). We prove the
Ulam–Hyers stability of (1.2) in Ω.

Theorem 2.1. Let H be a finite cyclic subgroup of the group of automorphisms of G
and δ ≥ 0. Suppose that f : G→ Y satisfies the inequality∥∥∥∥∥ 1

|H|

∑
h∈H

f (x + h · y) − f (x) − f (y)
∥∥∥∥∥ ≤ δ (2.1)
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for all (x, y) ∈ Ω. Then there exists a unique H-cyclic mapping q : G→ Y such that

‖ f (x) − q(x)‖ ≤ 3δ

for all x ∈ G.

Proof. Let
Q( f )(x, y) =

1
|H|

∑
h∈H

f (x + h · y) − f (x) − f (y).

Then∑
k∈H

Q( f )(x + k · y, t) =
1
|H|

∑
k∈H

∑
h∈H

f (x + k · y + h · t) −
∑
k∈H

f (x + k · y) − |H| f (t) (2.2)

and∑
k∈H

Q( f )(x + k · t, y) =
1
|H|

∑
k∈H

∑
h∈H

f (x + k · t + h · y) −
∑
k∈H

f (x + k · t) − |H| f (y). (2.3)

From (2.2) and (2.3)∑
k∈H

Q( f )(x + k · t, y) −
∑
k∈H

Q( f )(x + k · y, t) (2.4)

=
∑
k∈H

f (x + k · y) + |H| f (t) −
∑
k∈H

f (x + k · t) − |H| f (y)

= |H|Q( f )(x, y) − |H|Q( f )(x, t).

Thus, from (2.4)

Q( f )(x, y) =
1
|H|

∑
k∈H

Q( f )(x + k · t, y) −
1
|H|

∑
k∈H

Q( f )(x + k · y, t) + Q( f )(x, t). (2.5)

In view of (1.6) and (2.1), for given x, y ∈ G we can choose t ∈ G such that

‖Q( f )(x + k · t, y)‖ ≤ δ, ‖Q( f )(x + k · y, t)‖ ≤ δ and ‖Q( f )(x, t)‖ ≤ δ (2.6)

for all k ∈ H. Now, it follows from (2.5) and (2.6) that

‖Q( f )(x, y)‖ ≤
1
|H|

∑
k∈H

‖Q( f )(x + k · t, y)‖

+
1
|H|

∑
k∈H

‖Q( f )(x + k · y, t)‖ + ‖Q( f )(x, t)‖ ≤ 3δ

for all x, y ∈ G. Thus, by Theorem 1.2, there exists a unique H-cyclic mapping
q : G→ Y such that

‖ f (x) − q(x)‖ ≤ 3δ

for all x ∈ G. This completes the proof. �

https://doi.org/10.1017/S0004972715001185 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001185


276 J. Chung and J. M. Rassias [5]

Now, let G be a real normed space with norm ‖ · ‖ and Ω = {(x, y) : ‖x‖ + ‖y‖ ≥ d}
with d > 0. Then Ω satisfies (1.6). Thus, as a direct consequence of Theorem 2.1 we
obtain the following corollary.

Corollary 2.2. Let d, δ ≥ 0. Suppose that f : X → Y satisfies the inequality∥∥∥∥∥ 1
|H|

∑
h∈H

f (x + h · y) − f (x) − f (y)
∥∥∥∥∥ ≤ δ

for all x, y ∈ X such that ‖x‖ + ‖y‖ ≥ d. Then there exists a unique H-cyclic mapping
q : X → Y such that

| f (x) − q(x)| ≤ 3δ

for all x ∈ X.

As a consequence of the Corollary 2.2, we obtain the asymptotic behaviour of f
satisfying ∥∥∥∥∥ 1

|H|

∑
h∈H

f (x + h · y) − f (x) − f (y)
∥∥∥∥∥→ 0 (2.7)

as ‖x‖ + ‖y‖ → ∞. We need the following lemma.

Lemma 2.3. Let f : X → Y be a bounded H-cyclic mapping. Then f = 0.

Proof. Assume that ‖ f (x)‖ ≤ M for all x ∈ X with M > 0. Letting y = x in (1.2) and
using the triangle inequality we have

‖2 f (x)‖ =

∥∥∥∥∥ 1
|H|

∑
h∈H

f (x + h · x)
∥∥∥∥∥ ≤ 1
|H|

∑
h∈H

‖ f (x + h · x)‖ ≤ M

for all x ∈ X. Thus, we have ‖ f (x)‖ ≤ 1
2 M for all x ∈ X. Continuing this process we

obtain ‖ f (x)‖ ≤ 2−nM for all x ∈ X and n ∈ N, which implies that f (x) = 0 for all x ∈ X.
This completes the proof. �

Corollary 2.4. Suppose that f : X→ Y satisfies (2.7). Then f is an H-cyclic mapping.

Proof. The condition (2.7) implies that for each n ∈ N, there exists dn > 0 such that∥∥∥∥∥ 1
|H|

∑
h∈H

f (x + h · y) − f (x) − f (y)
∥∥∥∥∥ ≤ 1

n

for all (x, y) ∈ X2 such that ‖x‖ + ‖y‖ ≥ dn. By Corollary 2.2, there exists a unique
H-cyclic mapping qn : X → Y such that

| f (x) − qn(x)| ≤
3
n

(2.8)

for all x ∈ X. Replacing n by m in (2.8) and using the triangle inequality,

|qm(x) − qn(x)| ≤
3
n

+
3
m
≤ 6 (2.9)
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for all x ∈ X. Let qm,n(x) = qm(x) − qn(x) for all x ∈ X. Then, by (2.9), qm,n is a bounded
H-cyclic mapping. By Lemma 2.3 we have qm,n = 0 and hence qm = qn := q for all
m, n ∈ N. Letting n→∞ in (2.8) we have f (x) = q(x) for all x ∈ X. This completes the
proof. �

As an interesting example, let G = C, f : C→ Y and H = {ωk : k = 1, 2, . . . , N}
for a fixed positive integer N, where ω = e2πi/N . Then, as a direct consequence of
Theorem 2.1, we obtain the following stability result for the functional equation

1
N

N∑
k=1

p(z + ωkζ) = p(z) + p(ζ) (2.10)

for all z, ζ ∈ C.

Corollary 2.5. Let d, δ ≥ 0. Suppose that f : C→ Y satisfies the inequality∥∥∥∥∥ 1
N

N∑
k=1

f (z + ωkζ) − f (z) − f (ζ)
∥∥∥∥∥ ≤ δ

for all z, ζ ∈ C such that |z| + |ζ | ≥ d. Then there exists a unique mapping q : C→ Y
satisfying (2.10) such that

‖ f (z) − p(z)‖ ≤ 3δ

for all z ∈ C.

Remark 2.6. Let An : Cn → Y be an n-additive function: that is, for each 1 ≤ i ≤ n,

A(z1, . . . , zi + ηi, . . . , zn) = A(z1, . . . , zi, . . . , zn) + A(z1, . . . , ηi, . . . , zn)

for all z1, . . . , zn, ηi ∈ C. Then it is easy to see that

p(z) = An(z, . . . , z) (2.11)

is a solution of (2.10). Is it true that all general solutions of (2.10) are given by (2.11)?

Let I : G→ G be the identity mapping and H = {I,−I}. Then (1.6) is reduced to the
following: for given x, y ∈ G there exists t ∈ G such that

{(x + y, t), (x − y, t), (x + t, y), (x − t, y), (x, t)} ⊂ Ω.

As a direct consequence of Theorem 2.1 we obtain the following corollary.

Corollary 2.7. Let d, δ ≥ 0. Suppose that f : G→ Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − 2 f (y)‖ ≤ δ

for all x, y ∈ Ω. Then there exists a unique quadratic mapping q : G→ Y such that

‖ f (x) − q(x)‖ ≤ 3
2δ

for all x ∈ G.
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In particular, if G is a real normed space, as a direct consequence of Corollary 2.7,
we obtain the following, which refines Theorem 1.4.

Corollary 2.8. Let d, δ ≥ 0. Suppose that f : X → Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − 2 f (y)‖ ≤ δ

for all x, y ∈ X such that ‖x‖ + ‖y‖ ≥ d. Then there exists a unique quadratic mapping
q : X → Y such that

‖ f (x) − q(x)‖ ≤ 3
2δ

for all x ∈ X.

In particular, letting H = {I} we obtain the following as a direct consequence of
Corollary 2.2.

Corollary 2.9. Let d, δ ≥ 0. Suppose that f : X → Y satisfies the inequality

‖ f (x + y) − f (x) − f (y)‖ ≤ δ

for all x, y ∈ X such that ‖x‖ + ‖y‖ ≥ d. Then there exists a unique mapping a : X → Y
satisfying

a(x + y) = a(x) + a(y)

such that
‖ f (x) − a(x)‖ ≤ 3δ

for all x ∈ X.

3. The Ulam–Hyers stability in a set of Lebesgue measure zero

In this section, we consider the functional inequality∥∥∥∥∥ 1
N

N∑
k=1

f (z + ωkζ) − f (z) − f (ζ)
∥∥∥∥∥ ≤ δ (3.1)

for all (z, ζ) ∈ Ω, where f : C→ Y and Ω ⊂ C2 is of four-dimensional Lebesgue
measure zero, and the quadratic functional inequality

‖ f (x + y) + f (x − y) − 2 f (x) − 2 f (y)‖ ≤ δ (3.2)

for all (x, y) ∈ Ω ⊂ R2, where f : R → Y and Ω is of two-dimensional Lebesgue
measure zero, which refines the result in [7].

We first consider (3.1). As we see in the Corollary 2.5, the inequality (3.1) is a
particular case of (2.1) when G = C and H = {ωk : k = 1, 2, . . . ,N} for a fixed positive
integer N, where ω = e2πki/N . Now, (1.6) reduces to the following: for given z, ζ ∈ C
there exists η ∈ C such that

{(z + ωkζ, η), (z + ωkη, ζ), (z, η)} ⊂ Ω (3.3)
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for all k = 1, 2, . . . ,N. By virtue of Theorem 2.1 it suffices to construct a set Ω ⊂ C2 of
measure zero satisfying (3.3).

It is known from [12, Theorem 1.6] that there exists a set K ⊂ R of Lebesgue
measure 0 such that R \ K is of first Baire category: that is, R \ K is a countable
union of nowhere dense subsets of R.

Lemma 3.1 [7, Lemma 2.4]. Let K be a subset of R of measure 0 such that R \ K is of
first Baire category. Then, for any countable subsets U ⊂ R, V ⊂ R \ {0} and M > 0,
there exists λ ≥ M such that

U + λV = {u + λv : u ∈ U, v ∈ V} ⊂ K. (3.4)

From now on we identify C with R2.

Theorem 3.2. Let K be the set defined in Lemma 3.1, R be the rotation

R =



√
2

2
0 −

√
2

2
0

0

√
2

2
0 −

√
2

2√
2

2
0

√
2

2
0

0

√
2

2
0

√
2

2


and Ω = R−1(K × K × K × K). Then Ω satisfies (3.3) and has four-dimensional
Lebesgue measure 0.

Proof. Let z = x + iy, ζ = u + iv, η = t + is ∈ C, k = 1, 2, . . . ,N, and let

Pz,ζ,η,k =

{(
x + u cos

2πk
N
− v sin

2πk
N
, y + u sin

2πk
N

+ v cos
2πk
N
, t, s

)}
∪

{(
x + t cos

2πk
N
− s sin

2πk
N
, y + t sin

2πk
N

+ s cos
2πk
N
, u, v

)
, (x, y, t, s)

}
.

Then Ω satisfies (3.3) if and only if, for every z = x + iy, ζ = u + iv ∈ C, there exists
η = t + is ∈ C such that

R
( N⋃

k=1

Pz,ζ,η,k

)
⊂ K × K × K × K. (3.5)

The inclusion (3.5) is equivalent to

S z,ζ,η :=
N⋃

k=1

{ √2
2

(p1 ± p3),

√
2

2
(p2 ± p4) : (p1, p2, p3, p4) ∈ Pz,ζ,η,k

}
⊂ K.
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Now, we can choose α ∈ R (α , 0) such that

cos
2πk
N
− α sin

2πk
N
, 0, sin

2πk
N

+ α cos
2πk
N
, 0

for all k = 1, 2, . . . ,N. Then it is easy to check that the set S z,ζ,t+αti is contained in the
set of form U + tV , where

U =

N⋃
k=1


√

2
2

(
x + u cos

2πk
N
− v sin

2πk
N

)
,

√
2

2

(
y + u sin

2πk
N

+ v cos
2πk
N

)
∪


√

2
2

(x − u),

√
2

2
(y − v),

√
2

2
(x + u),

√
2

2
(y + v),

√
2x
2

,

√
2y
2

 ,
V =

N⋃
k=1

±
√

2
2
, ±

√
2α
2

,

√
2

2

(
cos

2πk
N
− α sin

2πk
N

)
,

√
2

2

(
sin

2πk
N

+ α cos
2πk
N

) .
By (3.4) in Lemma 3.1, for given z = x + iy, ζ = u + iv ∈ C and M > 0 there exists
t ≥ M such that

S z,ζ,t+αti ⊂ U + tV ⊂ K.

Thus, Ω satisfies (3.3). This completes the proof. �

Theorem 3.3. There exists a set Ω ⊂ R4 of Lebesgue measure zero such that if f : R4→

Y satisfies the inequality∥∥∥∥∥ 1
N

N∑
k=1

f (z + ωkζ) − f (z) − f (ζ)
∥∥∥∥∥ ≤ δ

for all (z, ζ) ∈ Ω, then there exists a unique mapping q : R4 → Y satisfying

1
N

N∑
k=1

q(z + ωkζ) = q(z) + q(ζ)

for all z, ζ ∈ C such that
‖ f (z) − q(z)‖ ≤ 3δ

for all z ∈ C.

Remark 3.4. It is easy to see that the set Ωd := {(z, ζ) ∈ Ω : |z| + |ζ | ≥ d} also
satisfies (3.3). Thus, the result of Theorem 3.3 holds true when Ω is replaced by Ωd.
Thus, as a consequence of Theorem 3.3 with the above remark, we obtain the strong
version of asymptotic behaviour of f satisfying∥∥∥∥∥ 1

N

N∑
k=1

f (z + ωkζ) − f (z) − f (ζ)
∥∥∥∥∥→ 0 (3.6)

as |z| + |ζ | → ∞, (z, ζ) ∈ Ω.
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Corollary 3.5. Suppose that f : R4→ Y satisfies (3.6). Then f satisfies the functional
equation

1
N

N∑
k=1

f (z + ωkζ) = f (z) + f (ζ)

for all z, ζ ∈ C.

Proof. The proof is the same as that of Corollary 2.4. �

Secondly, we consider (3.2). In view of Corollary 2.4, it suffices to construct a set
Ω ⊂ R2 of measure zero satisfying (2.10).

Theorem 3.6. Let Ω = e−πi/4 be the rotation of K × K by −π/4. Then Ω satisfies (2.10)
and has two-dimensional Lebesgue measure 0.

Proof. The proof is very similar to that of Theorem 3.2. However we give the proof
for completeness. Let x, y, t ∈ R and let

Px,y,t = {(x + y, t), (x − y, t), (x + t, y), (x − t, y), (x, t)}.

Then Ω satisfies (2.10) if and only if, for every x, y ∈ R, there exists t ∈ R such that

eπi/4Px,y,t ⊂ K × K. (3.7)

The inclusion (3.7) is equivalent to

S x,y,t :=
{ 1
√

2
(u − v),

1
√

2
(u + v) : (u, v) ∈ Px,y,t

}
⊂ K.

It is easy to check that the set S x,y,t is the set of form U + tV , where

U =

{ 1
√

2
(x + y),

1
√

2
(x − y),

1
√

2
x
}
, V =

{ 1
√

2
, −

1
√

2

}
.

By Lemma 3.1, for given x, y ∈ R and M > 0 there exists t ≥ M such that

S x,y,t = U + tV ⊂ K.

Thus, Ω satisfies (2.10). This completes the proof. �

By Corollary 2.7 and Theorem 3.5 we have the following (compare with [7,
Theorem 2.1]).

Theorem 3.7. Let d, δ ≥ 0. There exists a set Ω ⊂ R2 of Lebesgue measure zero such
that if f : R→ Y satisfies the inequality

‖ f (x + y) + f (x − y) − 2 f (x) − 2 f (y)‖ ≤ δ

only for all x, y ∈ Ω, then there exists a unique quadratic mapping q : R→ Y such that

‖ f (x) − q(x)‖ ≤ 3
2δ

for all x ∈ R.
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