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Abstract

Background. Psychosis expression in the general population may reflect a behavioral mani-
festation of the risk for psychotic disorder. It can be conceptualized as an interconnected sys-
tem of psychotic and affective experiences; a so-called ‘symptom network’. Differences in
demographics, as well as exposure to adversities and risk factors, may produce substantial het-
erogeneity in symptom networks, highlighting potential etiological divergence in psychosis
risk.
Methods. To explore this idea in a data-driven way, we employed a novel recursive partition-
ing approach in the 2007 English National Survey of Psychiatric Morbidity (N = 7242). We
sought to identify ‘network phenotypes’ by explaining heterogeneity in symptom networks
through potential moderators, including age, sex, ethnicity, deprivation, childhood abuse, sep-
aration from parents, bullying, domestic violence, cannabis use, and alcohol.
Results. Sex was the primary source of heterogeneity in symptom networks. Additional het-
erogeneity was explained by interpersonal trauma (childhood abuse and domestic violence) in
women and domestic violence, cannabis use, ethnicity in men. Among women, especially those
exposed to early interpersonal trauma, an affective loading within psychosis may have distinct
relevance. Men, particularly those from minority ethnic groups, demonstrated a strong net-
work connection between hallucinatory experiences and persecutory ideation.
Conclusion. Symptom networks of psychosis expression in the general population are highly
heterogeneous. The structure of symptom networks seems to reflect distinct sex-related adver-
sities, etiologies, and mechanisms of symptom-expression. Disentangling the complex inter-
play of sex, minority ethnic group status, and other risk factors may help optimize early
intervention and prevention strategies in psychosis.

Introduction

Recent research has advanced our understanding of psychosis through so-called ‘symptom
networks’, i.e. causal systems of individual interacting experiences and symptoms (Betz
et al., 2020; Hardy, O’Driscoll, Steel, van der Gaag, & van den Berg, 2020; Isvoranu,
Borsboom, van Os, & Guloksuz, 2016; Isvoranu et al., 2019, 2017; Moffa et al., 2017;
Murphy, McBride, Fried, & Shevlin, 2018; Robinaugh, Hoekstra, Toner, & Borsboom,
2020). Complex interactions between specific psychotic as well as non-psychotic experiences
(e.g. depression and anxiety) in the general population may predate onset of psychosis in clin-
ical settings (Guloksuz et al., 2016, 2015; Kelleher et al., 2012; Linscott & van Os, 2013;
Murphy et al., 2018; van Os & Reininghaus, 2016). Additional lines of evidence indicate
that there is considerable etiological continuity between subclinical and clinical levels of psych-
osis (Binbay et al., 2012; DeRosse & Karlsgodt, 2015; Kelleher & Cannon, 2011; Linscott & van
Os, 2013). Thus, examining the symptom network structure of a transdiagnostic psychosis
phenotype, reflecting a behavioral manifestation of risk for psychotic disorder in the general
population that blends gradually into clinical syndromes, may help to better understand etio-
logical mechanisms in psychosis and to develop prevention strategies (Bebbington, 2015;
Binbay et al., 2012; DeRosse & Karlsgodt, 2015; Isvoranu et al., 2016; Kelleher & Cannon,
2011; Linscott & van Os, 2013; Robinaugh et al., 2020; van Os & Reininghaus, 2016).

Importantly, symptomatology and involved etiological mechanisms in psychosis expression
are highly variable by specific at risk groups (Bentall, Wickham, Shevlin, & Varese, 2012;
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Isvoranu et al., 2016; Linscott & van Os, 2013; van Os &
Reininghaus, 2016). For example, in line with the theory of an
affective pathway to psychosis, early traumatic events are strongly
associated with connections between affective and psychotic
symptomatology (Myin-Germeys & van Os, 2007; Upthegrove
et al., 2015; van Nierop et al., 2015). In the presence of heterogen-
eity, averaged network models of psychosis may obscure import-
ant distinctions in relevant etiological mechanisms across specific
risk groups (Jones, Mair, Simon, & Zeileis, 2020; Moriarity, van
Borkulo, & Alloy, 2020). Thus far, however, heterogeneity in
symptom networks of psychosis has been either overlooked or
addressed in a partial way on a single candidate risk factor
(such as sex, cannabis use, or socioeconomic background) at spe-
cific thresholds, or using summed environmental risk scores (Betz
et al., 2020; Guloksuz et al., 2016; Isvoranu et al., 2016; Wüsten
et al., 2018), which lose specificity and relevance for real work
prevention and intervention.

The characterization of ‘network phenotypes’ based on a com-
prehensive set of environmental and demographic factors may
explain heterogeneity; that is, the structure of symptomatology
is a function of types, combinations, and intensity of etiological
loads in psychosis expression (Jones et al., 2020; Moriarity
et al., 2020). With the goal of characterization of network pheno-
types in mind, the current study uses novel work on recursive par-
titioning, a data-driven, explorative statistical technique that can
sequentially extract isolated and combined moderation effects of
a large set of environmental and demographic factors on symp-
tom networks, without a priori specification of thresholds or com-
binations of risk factors (Jones et al., 2020; Strobl, Malley, & Tutz,
2009). Recursive partitioning identifies network phenotypes that
are maximally distinct from each other (Jones et al., 2020;
Zeileis, Hothorn, & Hornik, 2008).

We used recursive partitioning to define meaningful network
phenotypes of psychosis expression in the general population,
using the 2007 Adult Psychiatric Morbidity in England Survey
(APMS; National Centre for Social Research, University of
Leicester, 2017). We hypothesized that exposure to environmental
risk, if identified as defining a network phenotype, would be char-
acteristically associated with more densely connected symptom
networks when compared with samples not exposed to that spe-
cific environmental risk (Guloksuz et al., 2016, 2015; Isvoranu
et al., 2016; Lin, Fried, & Eaton, 2019; Russell, Keding, He, Li,
& Herringa, 2020). We also aimed to test whether the strength
of connections between individual symptoms differed between
network phenotypes.

Method

Data analytic strategy

We conducted all analyses in the R language for statistical com-
puting, version 4.0.4. Throughout, we considered a significance
level of α = 0.05. Data of the 2007 APMS (National Centre for
Social Research, University of Leicester, 2017) used in the analyses
are available from the UK Data Service (https://ukdataservice.ac.
uk/). Code to reproduce the analyses can be accessed at www.
github.com/LindaBetz/APMS_NetworkTree.

Sample

We present analyses based on the 2007 APMS of adults living in
private households aged 16 and above who were recruited using

a stratified multistage random probability sampling strategy (N =
7403) (McManus, Meltzer, Brugha, Bebbington, & Jenkins, 2009;
Singleton, Bumpstead, O’Brien, Lee, & Meltzer, 2003). Methods,
procedures, and full details on sample characteristics have been
described previously (McManus et al., 2009). For the present ana-
lyses, we excluded participants with missing values in the variables
of interest, given that the methods employed do not allow missings.
For comparing sample characteristics of included and excluded
participants, we used permutation tests as implemented in the R
package ‘coin’ (Hothorn, Hornik, van de Wiel, & Zeileis, 2008).

Assessment of symptomatology

Selection and definition of symptom variables followed a previ-
ously published network analysis using data from the 2007
APMS (Moffa et al., 2017), including measures from an affective
domain (worry, sleep disturbance, generalized anxiety, and
depression), and from a psychotic domain (persecutory ideation
and hallucinatory experiences). All symptom variables in the net-
work were coded in binary form (present or absent). For details
on these assessments, see online Supplementary Method 1.

Assessment of environmental and demographic risk factors

Environmental risk factors comprised of psychosocial adversities
in the form of physical abuse and sexual abuse before the age
of 16, separation from parents until the age of 16 (local authority
care and/or institutional care), lifetime experiences of bullying,
and lifetime experiences of domestic violence. Additionally, we
included sex, age, ethnic origin (White, Black, South Asian, and
Mixed/Other), cannabis use in the past year, alcohol use, and
socioeconomic deprivation. For details on these assessments, see
online Supplementary Method 2.

Identification of network subgroups via recursive partitioning

In a first step, we estimated a partial correlation network (without
regularization) based on the full sample, using the R package
‘qgraph’, version 1.6.5 (Epskamp, Cramer, Waldorp, Schmittmann,
& Borsboom, 2012). A partial correlation network depicts unique
pairwise associations between variables (‘edges’ in network termin-
ology), i.e. the share of the association between two variables that
remains after controlling for all other variables in the network
(Epskamp, Borsboom, & Fried, 2018). We estimated the underlying
zero-order correlations between the binary items using Pearson’s w,
as recommended when employing recursive partitioning on binary
data (Jones et al., 2020). The stronger the partial correlation between
two variables, the more likely it is that they co-occur, controlling for
the other variables under consideration.

Second, we used a model-based recursive partitioning approach
to identify meaningful subgroups of symptom networks given the
included environmental and demographic factors, as implemented
in the R package ‘networktree’, version 1.0.1 (Jones et al., 2020). In
brief, recursive partitioning sequentially creates a decision tree by
either splitting or not splitting the sample along a set of potential
moderating variables (Strobl et al., 2009; Zeileis et al., 2008). The
‘networktree’ approach (Fig. 1) determines sample splits based on
significant invariance in the correlation matrix of the network vari-
ables under consideration, yielding non-overlapping partitions of
the sample with maximally heterogeneous symptom networks
(Jones et al., 2020). For a detailed account, we refer to online
Supplementary Method 3 and available methodological articles
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(Jones et al., 2020; Strobl et al., 2009; Zeileis et al., 2008). For plot-
ting, we transformed the correlation matrices to partial correlation
matrices using the R package ‘qgraph’, such that edges reflect
unique associations between two variables.

Comparison of identified subgroups

To delineate specific network differences between the identified
subgroups (i.e. differences between subgroups as defined by a
splitting factor in the recursive partitioning approach), we com-
pared the overall strength of symptom connections, defined as
the absolute sum of all individual partial correlation coefficients
in the network (global strength; S ), and differences in estimates
of individual partial correlation coefficients (individual edge
weights; ρ) within a Bayesian framework, using the R package
‘BGGM’, version 2.0.2 (Williams, 2021; Williams & Mulder,

2019; Williams, Rast, Pericchi, & Mulder, 2020). Specifically, we
used posterior predictive checks for assessing differences in overall
connection strength (Williams et al., 2020), and evaluated the
posterior distribution for each difference in partial correlation
coefficients, where we deemed a difference significant if the
95% credible interval did not contain 0 (Williams, 2021). The
p-values derived from recursive partitioning are denoted as pRP,
whereas p-values derived from post-hoc comparisons implemen-
ted in the package ‘BGGM’ are denoted as pBGGM.

Robustness analyses

We used the R package ‘bootnet’, version 1.4.3 (Epskamp et al.,
2018) to conduct robustness analyses to check stability and accur-
acy of the results. We investigated stability of symptom networks
estimated in the full sample and identified subgroups by testing

Fig. 1. Recursive partitioning for symptom networks as applied to data from the 2007 Adult Psychiatric Morbidity Survey (APMS) study. The goal is to assess which
of the included demographic and risk factors capture individual deviations from the correlation matrix of symptom scores, which underlies symptom networks.
Starting with the whole sample, individual deviations from the correlation matrix of symptom scores are computed via a log-likelihood-based score function. The
variable that explains these deviations best, as determined by a minimum p-value strategy at Bonferroni-corrected α, is selected (here: sex), and the sample split
accordingly. Within the identified subgroups, the procedure is repeated recursively until no significant deviations, i.e. heterogeneity, is detected. We compared
symptom networks of the identified subgroups in terms of global strength and individual edge weights. For a detailed account of the method, see online
Supplementary Method 3 and Jones et al. (2020).
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sensitivity to dropping cases. Specifically, we assessed the degree
to which edge weights remained the same after re-estimating
the networks with less cases via the correlation stability (CS) coef-
ficient. The CS coefficient represents the maximum proportion of
cases that can be dropped, such that the correlation between ori-
ginal edge weights and edge weights of networks based on subsets
is 0.7 or higher (95% confidence). The CS coefficient should pref-
erably be above 0.5 (good stability), and not be below 0.25
(acceptable stability) (Epskamp et al., 2018). To investigate the
accuracy of individual edge weights estimates across the networks
in the full sample and identified subgroups, participants were ran-
domly resampled 5000 times, and the bootstrapped confidence
intervals (CIs) of the edge weights were estimated.

Results

Sample

Following removal of 161 participants (2.2% of the whole sample)
with missing values in the variables of interest, the final sample
comprised of 7242 participants, 56.8% of whom were women,
with an average age of 50 (IQR = 30) years. Participants excluded
due to missing data were on average older, less White and
reported lower proportions of alcohol use and hallucinatory
experiences, and higher proportions of depressive symptoms
(online Supplementary Table S1).

Network variables and potential moderators

Table 1 presents positive endorsement and characteristics of the
network variables and potential moderating risk factors in the

sample. The most prevalent symptom was worry, and the most
prevalent risk factor bullying.

Overall symptom network structure and subgroups

The partial correlation network estimated in the full sample sug-
gested positive relationships between all symptoms, with a mean
edge weight of 0.11. Partial correlations within each symptom
domain were, on average, stronger than between the domains.
Recursive partitioning revealed that six of the tested demographic
and environmental risk factors were linked to significant hetero-
geneity in symptom networks and split the sample accordingly
in a hierarchical fashion: sex, childhood sexual abuse, childhood
physical abuse, domestic violence, cannabis use, and ethnicity.
Partial correlation matrices for the plotted networks are available
at the linked GitHub repository. Sex was the primary source of
heterogeneity (Fig. 2a, pRP < 0.001): the network of women was
overall significantly less strongly connected (ΔS =−0.17, pBGGM
= 0.002), and featured a significantly stronger connection between
depression and hallucination (Δρ = 0.06), and a significantly
weaker connection between sleep problems and persecutory idea-
tion (Δρ = −0.07) than the network of men. This means that in
women, depression and hallucination were more likely to
co-occur than in men, whereas sleep problems and persecutory
ideation were less likely to co-occur than in men. For networks
of women and men, see Fig. 3.

Distinct risk factors explained further heterogeneity in symp-
tom networks of women and men, yielding eight different net-
work phenotypes in total. Among women, experiences of

Table 1. Network variables and potential moderators with positive endorsement (%) or median (IQR) for the whole sample and disaggregated by sex

Variable
Yes (%)/median (IQR)

Whole sample
(N = 7242)

Women
(n = 4115)

Men
(n = 3127)

Network variables

Worry 36.0 40.2 30.5

Sleep problems 34.6 41.4 25.8

Anxiety 17.3 19.4 14.5

Depression 22.9 25.5 19.4

Persecutory ideation 7.7 7.1 8.4

Hallucinatory experiences 0.80 1.0 0.70

Potential moderators

Sex (% female) 56.8 100 0

Age (years) 50 (30) 50 (30) 50 (28)

Ethnic background White: 92.7, Black: 2.6,
South Asian:

2.6, Mixed/Other: 2.1

White: 93.1, Black: 2.7,
South Asian: 2.1,
Mixed/Other: 2.1

White: 92.1, Black: 2.4,
South Asian:

3.3, Mixed/Other: 2.1

Deprivation 3 (2) 3 (2) 3 (2)

Bullying 18.9 19.0 18.8

Separation from parents 3.4 3.0 4.0

Domestic violence 9.5 12.9 5.0

Physical abuse 4.8 4.2 5.5

Sexual abuse 13.5 17.1 8.7

Cannabis use in past year 5.7 4.1 7.8

Alcohol consumption (AUDIT score) 4 (5) 3 (4) 5 (6)
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childhood sexual abuse were the major source of heterogeneity in
symptom networks (Fig. 2b, pRP = 0.016) linked to a stronger con-
nection between anxiety and persecutory ideation (Δρ = 0.09).
The difference in global strength of the symptom networks of

women who reported sexual abuse and those who did not was
not significant (ΔS = 0.08, pBGGM = 0.482). Among women who
reported no childhood sexual abuse, exposure to childhood phys-
ical abuse explained further heterogeneity (Fig. 2c, pRP = 0.015),

Fig. 2. Results from recursive partitioning, depicted as a decision tree of partial correlation networks. Numbers behind splitting factors give the sample size
retained after the corresponding sample split. Symptom domains are differentiated by color. The thicker and less transparent the edge, the stronger the partial
correlation between two symptoms. Blue (red) edges indicate positive (negative) relationships. To ensure visual comparability, edge weights were scaled identically
across all networks. Only connections representing edge weights larger than 0.01 are depicted.

Fig. 3. Partial correlation networks estimated in women (n = 4115) and men (n = 3127). Sex was identified as the first split in the recursive partitioning approach,
suggesting that sex was the primary source of heterogeneity in symptom networks. Symptom domains are differentiated by color. The thicker and less transparent
the edge, the stronger the partial correlation between two symptoms. Blue (red) edges indicate positive (negative) relationships. To ensure visual comparability,
edge weights were scaled identically across both networks.
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and was associated with a significantly stronger association
between anxiety and hallucinations (Δρ = 0.26). Corresponding
symptom networks did not differ significantly in global strength
(ΔS = 0.70, pBGGM = 0.204). Finally, among those women that
reported neither sexual nor physical abuse, exposure to domestic
violence (Fig. 2d, pRP = 0.012) was linked to a stronger connection
between worry and depression (Δρ = 0.12), as well as persecutory
ideation and hallucinations (Δρ = 0.19). The difference in global
strength of the corresponding symptom networks was not signifi-
cant (ΔS = 0.32, pBGGM = 0.113).

Among men, in those who reported having experienced
domestic violence (Fig. 2e, pRP = 0.007) the connection between
sleep problems and anxiety was significantly stronger than that
in men who did not report past domestic violence (Δρ = 0.17).
Global strength was not significantly different between the corre-
sponding networks (ΔS = 0.26, pBGGM = 0.376). Second, in men
not reporting past domestic violence, cannabis use in the past
year (Fig. 2f, pRP = 0.009) was associated with a significantly
increased connection between worry and persecutory ideation
(Δρ = 0.17), and a significantly weaker connection between hallu-
cination and persecutory ideation (Δρ =−0.18). Global strength of
the corresponding symptom networks did not differ significantly
(ΔS = 0.33, pBGGM = 0.126). Finally, men reporting neither domes-
tic violence nor cannabis use were further split by ethnic back-
ground (Fig. 2g, pRP = 0.011): the network of men with a Black
or South Asian ethnic background was overall significantly
more strongly connected (ΔS = 0.76, pBGGM = 0.003), and showed
stronger connections between worry and depression (Δρ = 0.25),
sleep problems and anxiety (Δρ = 0.20), anxiety and depression
(Δρ = 0.16), depression and persecutory ideation (Δρ = 0.21), as
well as persecutory ideation and hallucinatory experiences (Δρ
= 0.20), and a weaker connection between sleep problems and
depression (Δρ =−0.23) than the network of men from a White
or Mixed ethnic background.

Age of the respondent, alcohol use, bullying, separation experi-
ences, and socioeconomic deprivation were not identified as rele-
vant sources of heterogeneity in symptom networks. Repeating
analyses based on data from women and men separately yielded
identical results regarding sex-specific moderators (online
Supplementary Fig. S1).

Robustness analyses

The network estimated in the full sample, as well as all identified
subgroup networks, showed good stability to dropping cases
(online Supplementary Table S2). Accuracy analyses showed
some relatively wide bootstrapped CIs in some of the identified
subgroups with smaller sample sizes. In these cases, we recom-
mend caution when interpreting the strength of weaker edges.
However, the bootstrap mean was generally very close to the sam-
ple mean, indicating interpretable results (online Supplementary
Figs S2–S16).

Discussion

In the current study, we employed a novel, data-driven recursive
partitioning approach in a large national household survey to
identify networks of psychotic and affective experiences in the
population. Our findings point to considerable heterogeneity,
which we explain with several phenotypic systems: six (out of
11) demographic and environmental risk factors yielded eight dif-
ferent network phenotypes, with sex being the primary source of

heterogeneity in symptom networks. Among women and men,
different risk factors were related to heterogeneity in symptom
networks, suggesting potentially distinct relevance and mechan-
isms of these risk factors across the sexes, in line with a multidi-
mensional model of sexual differentiation in psychosis risk
(Riecher-Rössler, Butler, & Kulkarni, 2018). Overall, our findings
on sex and other environmental differences illustrate that the
multifactorial and heterogeneous nature of psychosis expression
(Isvoranu et al., 2016; Linscott & van Os, 2013; van Os &
Reininghaus, 2016) appears to be reflected in symptom networks
that differed considerably depending on the type, combination,
and strength of demographic and environmental risk in a large
general population sample.

Differences in symptom networks of women and men

The identification of multiple network phenotypes substantiates
the notion that averaged symptom network models are likely
not representative of psychosis expression in the general popula-
tion (Jones et al., 2020). Rather, observed differences in the
strength of overall and specific symptom connections may point
to diverse etiological mechanisms operating across different
demographic and environmental risk factors. Corroborating a
growing recognition that understanding variability by sex is cen-
tral for the development of comprehensive etiological models of
psychopathology (Hartung & Lefler, 2019; Hodes & Epperson,
2019; Riecher-Rössler et al., 2018; Rosen, Haidl, Ruhrmann,
Vogeley, & Schultze-Lutter, 2019), the primary source of hetero-
geneity in symptom networks of psychosis was sex.

Specifically, our results highlight how associations between
affective and psychotic experiences may be differentially expressed
in women and men. Prior research indicates that, following the
theory of an affective pathway to psychosis, affective alterations,
in particular depression and anxiety, may be fundamental driving
forces of psychotic experiences (Betz et al., 2020; Isvoranu et al.,
2017; Myin-Germeys & van Os, 2007; Upthegrove et al., 2020;
Upthegrove, Marwaha, & Birchwood, 2017; van Nierop et al.,
2018). Present findings suggest a particularly strong association
between depression and hallucinatory experiences in the network
of women compared to men, corroborating the idea that such an
affective pathway to psychosis involving depression may be
expressed to a greater degree in women, potentially funneled by
increased emotional reactivity to life events and daily hassles
(Davis, Matthews, & Twamley, 1999; Hodes & Epperson, 2019;
Myin-Germeys & van Os, 2007; Stainton et al., 2021). In the
symptom network of men, by contrast, a previously identified
link between sleep problems and persecutory ideation (Freeman
et al., 2010) was stronger, and therefore, possibly more relevant,
than in women. An intriguing potential clinical implication to
be tested is that men may, on average, profit in particular from
the use of interventions for sleep problems with demonstrated
benefit for reducing persecutory ideation (Freeman et al., 2017).

Risk factors explaining heterogeneity in symptom networks of
women and men

Among women, heterogeneity in symptom networks of psychosis
expression was explained by exposure to interpersonal trauma,
including childhood abuse and domestic violence. Specifically,
exposure to childhood abuse was linked to stronger associations
between anxiety and psychotic experiences. These findings are
consistent with previous reports of increased proportions of
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mixed symptom expression following childhood trauma
(Guloksuz et al., 2015; Russell et al., 2020; Upthegrove et al.,
2015; van Nierop et al., 2015), but extend the literature by high-
lighting how sex may be an important determinant in this rela-
tionship. Following trauma, women are more likely to blame
themselves, to view the world as dangerous, and to hold more
negative views of themselves (Davis et al., 1999; Tolin & Foa,
2002). This may facilitate a pathway from distressing interpreta-
tions of everyday events, including the experience of anxiety, to
threat beliefs feeding into the formation of psychotic experiences,
as proposed in cognitive models of psychosis (Freeman, 2007;
Garety, Kuipers, Fowler, Freeman, & Bebbington, 2001; Hardy
et al., 2020). Overall, the idea that a pathway from anxiety to
psychotic experiences may be particularly relevant among
women with a history of childhood abuse has potentially import-
ant repercussions for clinical practice and deserves further inves-
tigation (Bloomfield et al., 2020). Moreover, at a population level,
it may well be that links between affective and psychotic experi-
ences following childhood abuse are manifestations of personality
function. The interplay between borderline personality function-
ing and affective instability, also involving psychosis, and subclin-
ical and clinical levels of psychosis warrants further investigations
(Barnow et al., 2010).

Among men, cannabis use and minority ethnic group status
were identified as potential sources of heterogeneity in network
connections between psychotic and affective symptoms. Most
striking differences were evident in the symptom network of
men with a minority ethnic group status reporting no domestic
violence or cannabis use. Documented variations in experience
and reporting of hallucinations (Vanheusden et al., 2008) and
delusions (Berg et al., 2014) in minority ethnic groups seem to
extend to the level of symptom networks. Here, they appear to
be expressed as an increased co-occurrence of hallucinations
and persecutory ideations in men from a minority ethnic back-
ground compared to men from the majority White or Mixed eth-
nic background. This finding agrees with the idea that, under the
influence of risk factors, hallucinations and delusions can become
connected, which has been linked to worse prognosis and symp-
tom persistence (Binbay et al., 2012; Smeets et al., 2012; Smeets,
Lataster, Viechtbauer, Delespaul, & G.R.O.U.P., 2014; van Os &
Reininghaus, 2016). Taken together with the present results, this
may reinforce evidence that demonstrates that people from a
minority ethnic background, particularly men, are at increased
risk for poor mental health outcomes (Morgan et al., 2017;
Singh et al., 2015). With the present data, however, it cannot be
excluded that ethnicity acts as a proxy measure for factors not
covered by our analysis, such as specific forms of deprivation.
Delineating how mental health outcomes in men from a minority
ethnic background are determined is an outstanding task for
future research and may help to design more effective interven-
tions. Identifying potential commonalities underlying minority
ethnic group status and domestic violence, both of which were
associated with increased co-occurrence of psychotic experiences
in men and women, respectively, may prove insightful in this
context.

Except for domestic violence, which was a relevant moderating
factor in women and men, different risk factors explained hetero-
geneity in symptom networks of women and men, suggesting a
likely complex interplay between sex and risk factors in impacting
psychosis risk. Childhood sexual and physical abuse, for instance,
were sources of heterogeneity in symptom networks of women,
but not men. This finding adds to previous research suggesting

particularly detrimental effects of sexual and physical abuse on
mental health of girls and women (Adams, Mrug, & Knight,
2018; Thompson, Kingree, & Desai, 2004). One reason for the dis-
tinct role of adversities may lie in the sex-specific effects they have
on the nervous system, against the backdrop of sex differences in
maturation, structure, and functioning thereof (DeSantis et al.,
2011; Dow-Edwards, 2020; Hodes & Epperson, 2019; Popovic
et al., 2020). Moreover, characteristics of some risk factors have
been shown to differ by sex: men are more likely to engage in
more escalating and chronic patterns of cannabis use than
women, for example (Hawes, Trucco, Duperrouzel, Coxe, &
Gonzalez, 2019; Wagner & Anthony, 2007). Girls, on the other
hand, are more likely than boys to experience severe forms of sex-
ual abuse within close victim–perpetrator relationships (Gold,
Elhai, Lucenko, Swingle, & Hughes, 1998; Kendall-Tackett,
Williams, & Finkelhor, 1993). Such variations may contribute to
differing patterns of relationships between risk and symptom
expression in women and men.

Overall, our results corroborate a growing realization that
research should appraise that mechanisms contributing to psych-
osis expression may, at least in parts, differ by sex (Hodes &
Epperson, 2019; Riecher-Rössler et al., 2018; Rosen et al., 2019;
Stainton et al., 2021). As clinical research works toward early
identification and individually tailored preventive interventions,
the complex interplay between sex and environmental factors in
impacting psychosis risk needs to be better understood to opti-
mize these efforts (Hartung & Lefler, 2019; Riecher-Rössler
et al., 2018; Rosen et al., 2019; Stainton et al., 2021). This includes
disaggregating results by sex and gender in psychosis research
more consistently (Hartung & Lefler, 2019), for example by doc-
umenting differences and similarities in symptom networks of
women and men.

Limitations

Results from the current study should be interpreted given several
limitations. First, posterior predictive checks used for comparing
the overall network connectivity tend to be conservative
(Williams et al., 2020), which may have resulted in low sensitivity
in post-hoc comparisons. This factor, and small sample sizes in
some subgroups, may explain why we found no evidence that
exposure to risk factors was associated with more densely con-
nected symptom networks compared to non-exposure, contrary
to our hypothesis. Effects of risk factors on symptom networks
seem to be more specific, impacting single relations between
symptoms rather than connectivity between all symptoms.
Second, model-based recursive partitioning identifies those vari-
ables that reduce heterogeneity in symptom networks the most.
Thus, age of the respondent, alcohol use, separation experiences,
bullying, and socioeconomic deprivation may explain heterogen-
eity in symptom networks, but not to the same extent as the other
risk factors tested. Related, differential relevance of risk factors, for
example within ethnic groups, may have remained undetected due
to small sample sizes in some subgroups. For a better understand-
ing of the mechanisms relevant in different minority groups, tar-
geted investigations in these populations with larger sample sizes
are needed. Third, we did not incorporate complex design features
of the APMS, such as weights to take non-response into account,
due to the lack of established methods to do so for network mod-
els (Lin et al., 2019). Related, recursive partitioning currently only
allows for complete case analyses. Even though the percentage of
excluded participants was small, they differed from included
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participants in some important aspects, including hallucinatory
and depressive symptoms, which may have biased our results.
Although therefore not fully representative of the English popula-
tion, our results are based on a large national household survey,
with suitability for a data-intensive method, such as network-
based recursive partitioning, unlike for smaller samples which
would not offer the same opportunity. Fourth, the retrospective
assessment of risk factors via self-report may be prone to memory
biases and so directions of effect may be contested. Fifth, data
used in the present analyses were gathered in a large epidemio-
logical study; therefore, instruments and tools used were designed
such that they were simple to understand and appropriate given
their use in over 7000 people. This setting necessarily leads to
less refined assessments of symptomatology and risk. Sixth, the
analyses were based on cross-sectional data, meaning that the
directions of interactions among the symptoms remain unknown.
Longitudinal studies are therefore an important next step for this
line of research, and extension of recursive partitioning methods
to personalized network structures (e.g. derived from experience
sampling methods) may allow for insights into how risk factors
moderate dynamic associations between symptoms in individuals.
Finally, some researchers have expressed concerns about stability
and replicability of network models (e.g. estimates of edges;
Forbes, Wright, Markon, & Krueger, 2017; for a summary of
the debate, see McNally, 2021). Although our robustness analysis
suggests that the networks and edge estimates are generally stable,
especially weaker links in the networks of small subgroups should
be interpreted with care. Given that recursive partitioning and
network methodology are data-driven, replication of present find-
ings in other samples is needed to establish generalizability (Fried
et al., 2018).

Conclusion

Symptom networks of psychosis expression in the general popula-
tion are highly heterogeneous. Sex was the primary source of het-
erogeneity, and different risk factors explained further variability
in symptom networks of women and men, potentially reflecting
distinct sex-specific mechanisms contributing to psychosis risk.
Among women, an affective loading within psychosis, particularly
following early interpersonal trauma, may have distinct import-
ance. Among men, the symptom network of those from a minority
ethnic background showed a particularly strong connection
between hallucinatory experiences and persecutory ideation,
which may reflect poorer outcomes including symptom resolution
in this group. A better understanding and consideration of these
sex differences provides an important opportunity to deliver high-
quality prevention and patient-centered care in psychosis.
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