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ABSTRACT. The AD 775 peak in Δ
14C (henceforth, M12) was first measured by Miyake et al. and has since been

confirmed globally. Here we present earlywood and latewoodΔ
14C values from tree rings of pinyon pine (Pinus edulis)

from Mummy Cave, Canyon de Chelly National Monument, Chinle, Arizona, USA, for the period AD 770–780.
These data reconfirm the timing of M12 and show a small rise in Δ

14C in AD 774 latewood. Allowing for the
delay in lateral transfer of radiocarbon produced at high latitude, this suggests that 14C peak production occurred
in late winter or spring of AD 774. Additionally, Δ

14C decreased slightly in the earlywood of AD 775 and
increased in the latewood of AD 775 to a higher level than that observed in AD 774.
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INTRODUCTION

Although studies of the peak in Δ
14C in AD 775 (henceforth, M12) have been performed by

many researchers since Miyake first discoveredM12 (Miyake et al. 2012), the cause of the peak
and its geographic variability remain under investigation. The dates of peak onset were
identified as June–August of AD 774 by Büntgen et al. (2018) and April–June of AD 774
by Uusitalo et al. (2018).

Many causes have been proposed for M12, including a solar proton event (SPE) (Melott and
Thomas 2012; Miyake et al. 2012; Usoskin et al. 2013; Jull et al. 2014; Mekhaldi et al. 2015), a
supernova (Miyake et al. 2012), a gamma ray burst (GRB) (Hambaryan and Neuhäuser 2013;
Pavlov et al. 2013), and periods of low solar activity (Neuhäuser and Neuhäuser 2015).
A supernova and a GRB are now viewed as less likely explanations, whereas an SPE
remains under consideration. Obtaining M12 data from a range of latitudes, at subannual
resolution, could provide insight into 14C production processes and solar activity in relation
to M12, including the underlying mechanisms.

This study presents Δ
14C values for earlywood and latewood tree rings from pinyon pine

(Pinus edulis) in the period AD 770–780, sampled from Mummy Cave, Canyon de Chelly
National Monument, Chinle, Arizona, USA. From the results, we can determine the onset
time of M12 more precisely.

SAMPLES AND METHODS

A pinyon pine (Pinus edulis) archaeological sample excavated at Mummy Cave, Chinle,
Arizona, USA (N36°14 0, W109°22 0, ca. 1950 m a.s.l., Figure 1), grew during the M12
event and was analyzed in this study. Its tree rings were dated by dendrochronology
(Stokes and Smiley 1968) in the Laboratory of Tree-Ring Research (LTRR), University of
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Arizona. To measureΔ14C in earlywood and latewood, tree rings (AD 770–780) were carefully
separated under a binocular microscope.

Pinyon is a two-needle pine species, with a range that encompasses Colorado, southern
Wyoming, eastern and central Utah, northern Arizona, New Mexico, and the Guadalupe
Mountains in farwesternTexas. This pine also occurs atmoderate altitudes of 1600–2400ma.s.l.

Tree-ring samples for AD 770–780 underwent an acid-base-H2O2–acid treatment to extract
holocellulose and were then burned to produce CO2. Subsequently, the samples were
reduced to graphite and the radiocarbon content was measured using the accelerator mass
spectrometry facility at the Korean Institute of Geoscience and Mineral Resources in
Daejeon, Korea.

RESULTS AND DISCUSSION

The Δ
14C values for earlywood and latewood (AD 770–780) pinyon pine samples from

Mummy Cave are presented in Figure 2 and were compared with the results of Miyake
(Miyake et al. 2012). Earlywood is estimated to form from late May to July and latewood
from late July to August based on growth monitoring of pinyon pine in the 1960s by Fritts
et al. (1965) at Mesa Verde, ca. 160 km to the northeast. Consequently, earlywood values
were simply plotted at the year �0.4 position, and latewood values at the year �0.6
position (e.g., AD 774 earlywood was plotted at AD 774.4 and AD 774 latewood was
plotted at AD 774.6). The Δ

14C values for the latewood (AD 774, 775, and 776) were all
significantly higher than those of the earlywood. This indicates that during the latewood’s
growing period (July and August), Δ

14C values were elevated in the atmosphere around
Chinle, Arizona.

A source region for the excess 14C in M12 at high latitudes in the Northern Hemisphere
stratosphere could be analogous to the 14C bomb peak associated with nuclear atmospheric

Figure 1 Map of the sampling site (black star): Mummy Cave, Canyon de Chelly National Monument,
Chinle, Arizona, USA (N36°14 0, W109°22 0, ca. 1950 m).
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tests. During above-ground testing, 14C was produced mainly at high latitudes in the Northern
Hemisphere and was rapidly transported into the upper stratosphere via the nuclear fireball
(Nydal and Lövseth 1983). Before the Test Ban Treaty (5 August 1963), many nuclear tests
were performed in 1961 and 1962; thus, Δ14C in the atmosphere increased dramatically in
1962 and 1963, where it should be noted that there is a 1-year difference between the time
of nuclear tests and the peak of Δ14C in atmospheric CO2 (Nydal and Lövseth 1983). This
is due to Brewer–Dobson circulation, which causes an extratropical injection of
stratospheric air into the troposphere on an annual basis during the spring and summer
(Holton et al. 1995; Stohl et al. 2003; Butchart 2014). Thus, the main reason for the Δ

14C
peak in 1963 was the 14C in the stratosphere at high Northern Hemisphere latitudes
produced by nuclear atmospheric tests occurring in the second half of 1962. Similarly, 14C
released from nuclear tests in 1961 was the main source for the increase in Δ

14C in 1962.

The lack of an increase in Δ
14C in the earlywood of the AD 774 ring indicates that air

containing the pulse of elevated 14C produced at high latitudes had not yet reached
northern Arizona by the time photosynthesis and metabolic processes (Grootes et al. 1989)
initiated tree-ring formation in earlywood. However, elevated Δ

14C levels in the AD 774
latewood would allow for the peak high-latitude 14C production to have occurred at the
beginning of AD 774 in late winter or spring.

Mixing with low-Δ14C air from low latitudes may also help to explain why the amount ofΔ14C
in the earlywood for AD 775 was lower than the amount for AD 774 latewood. Driven in part
by intense winter cooling at the poles, the Brewer–Dobson circulation (Holton et al. 1995;

Figure 2 Data forΔ14C from earlywood and latewood (AD 770–780) tree rings of pinyon pine
from Mummy Cave, Chinle, Arizona, USA are presented and compared with the results of
Miyake (Miyake et al. 2012). Earlywood values were plotted at the year �0.4 position, and
latewood values at the year �0.6 position (e.g., AD 774 earlywood was plotted at AD 774.4
and AD 774 latewood was plotted at AD 774.6).
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Stohl et al. 2003; Butchart 2014) moves air towards the winter pole and to lower altitudes;
however, this descending high Δ

14C air is blocked within the polar vortex until it breaks up
in the spring. If the Δ

14C content of low-latitude tropospheric air was low, mixing between
mid- and low-latitude air throughout the winter could dilute Δ

14C in mid-latitude air, thus
lowering the Δ

14C content of the AD 775 earlywood. Measurement of the Δ
14C content of

earlywood and latewood from low latitudes would be crucial for testing this hypothesis.

The mid-latitude location of Chinle lies in a dry area dominated by downward convective flow
from the subtropical zone, with low levels of Δ

14C. Hence, the low-Δ14C air from the
subtropics may explain the low levels of Δ

14C in AD775 earlywood, and the relatively
small Δ14C increase in AD 775 latewood at this sampling site, compared to the increase
found in tree rings at higher latitudes.

The Δ14C of the earlywood for AD 776 was slightly higher than that of the latewood for AD
775, and theΔ14C of the latewood for AD 776 was the highest in our data set. This is similar to
the delayed rise to the maximum Δ

14C measured in annual tree rings during the bomb peak.
The highest Δ14C amount yielded by nuclear tests occurred in 1962, and the peak Δ

14C in
mid-latitude atmospheric CO2 was reached in 1963; however, the highest Δ14C amount in
annual tree rings from mid-latitudes appeared later, in 1964 (Grootes et al. 1989; Hua et al.
2013). The average Δ

14C amount of earlywood and latewood in AD 776 was similar to the
annual (whole-ring) mid-latitude amounts reported by other researchers (Figure 3).

Figure 3 Data for Δ14C in Arizona (pinyon pine), Japan (cedar) (Miyake et al. 2012), New
Zealand (kauri) (Güttler et al. 2015), California, USA (sequoia) (Junghun et al. 2017),
bristlecone pine (Jull et al. 2014), and Siberia (larch) (Jull et al. 2014).
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Particles from supernovae and galactic cosmic rays have higher energies than those produced in
SPEs, and so are less influenced by the geomagnetic field; gamma rays from GRBs are entirely
unaffected. If the spike in 14C arose from one of these more exotic processes (supernovae and
galactic cosmic rays), 14C production would show a far less pronounced peak at the poles than
if an SPE were responsible. Although SPEs can penetrate the atmosphere to produce 14C at
high latitudes, they are unlikely to produce 14C at low latitudes. Hence, if the posited
difference in Δ

14C amounts between high- and low-latitude air masses was confirmed, the
likelihood that M12 was caused by an SPE would be increased (Uusitalo et al. 2018).
Measurements of Δ

14C at subannual resolution in Southern Hemisphere tree rings,
particularly from higher latitudes, would therefore be of interest.

CONCLUSIONS

TheΔ14C values from earlywood and latewood annual rings of pinyon pine (Pinus edulis) from
Mummy Cave, Chinle, Arizona, USA, were measured for the period AD 770–780. The results
showed a small increase in Δ

14C in latewood for AD 774, and larger increases for AD 775 and
776. A small increase in Δ

14C at mid-latitudes, beyond the error range of the latewood from
AD 774, suggests a spike in 14C production as early as the late winter or spring of that year.

The lower value ofΔ14C for AD 775 earlywood, relative to AD 774 latewood, is consistent with
a low Δ

14C amount in air at low latitudes, but confirmation of this hypothesis will require
measurement of low-latitude earlywood and latewood Δ

14C amounts around AD 775.
Measurements of earlywood and latewood, or annual rings, from higher latitudes of the
Southern Hemisphere would also help to determine whether high 14C production occurred
in the polar region of both hemispheres. This, in turn, would reduce the number of
potential mechanisms responsible for the M12.
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