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On the Diameter of Unitary Cayley Graphs
of Rings

Huadong Su

Abstract. _e unitary Cayley graph of a ring R, denoted Γ(R), is the simple graph deûned on all
elements of R, and where two vertices x and y are adjacent if and only if x − y is a unit in R. _e
largest distance between all pairs of vertices of a graph G is called the diameter of G and is denoted
by diam(G). It is proved that for each integer n ≥ 1, there exists a ring R such that diam(Γ(R)) = n.
We also show that diam(Γ(R)) ∈ {1, 2, 3,∞} for a ring R with R/J(R) self-injective and classify all
those rings with diam(Γ(R)) = 1, 2, 3, and∞, respectively.

1 Introduction

_is paper concerns the diameter of unitary Cayley graphs of rings. Let R be a ring
with nonzero identity. We use U(R) to denote the group of units of R. _e unitary
Cayley graph of R, denoted by Γ(R), is the simple graph whose vertices are the ele-
ments of R, and where two vertices x and y are adjacent if and only if x − y ∈ U(R).

_e earliest work on the unitary Cayley graph of a ring is for the ring Zn by Dejter
and Giudici [8]. Since then, many publications are devoted to this topic. _e study
of Γ(Zn) was continued by Berrizbeitia and Giudici [6, 7], Fuchs [10], and Klotz and
Sander [17]. _e unitary Cayley graph Γ(R) was studied for a ûnite ring R by Akhtar,
et al. [2], and for an Artinian ring R by Lucchini and Maróti [19] and Lanski and
Maróti [20]. Several other papers are devoted to the spectral properties and the en-
ergy of unitary Cayley graphs of Zn or a ûnite commutative ring (see [14, 16, 21]).
Recently, Kiani and Aghaei [15] investigated the isomorphism problem for unitary
Cayley graphs associated with ûnite (commutative) rings.

Let us recall some needed notions in graph theory. LetG be a simple graph. Awalk
is a sequence of vertices and edges, where each edge’s endpoints are the preceding and
following vertices in the sequence. _e length of a walk is the number of edges that it
uses. A path in a graph is a walk that has all distinct vertices (except the endpoints).
We use x—y to denote two vertices x and y in a graph G are adjacent. A graph G
is connected if there is a path between each pair of the vertices of G; otherwise, G is
disconnected. _e distance between two vertices x and y, denoted d(x , y), is the length
of the shortest path inG beginning at x and ending at y. _e largest distance between
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all pairs of vertices of G is called the diameter of G, and is denoted by diam(G). A
complete graph is a graphwhere each vertex is adjacent to all other vertices. Obviously,
G is a complete graph if and only if diam(G) = 1. We use Km ,n and Kn to denote the
complete bipartite graph with partitions of size m and n, and the complete graph of
n vertices, respectively.

_e diameter of graphs associated with rings is an active research subject. For
instance, Anderson and Livingston [3] and Anderson and Mulay [4] investigated the
diameter of the zero-divisor graph of a commutative ring. It was proved that the zero-
divisor graph of a commutative ring is always connected with diameter at most three.
A similar version for the zero-divisor graph of a commutative semigroup was shown
in [9] by DeMeyer, McKenzie, and Schneider. Anderson and Badawi [1] proved that
for each integer n ≥ 1, there exists a ring R such that its total graph has diameter
n. Concerning the diameter of the unitary Cayley graph of a ring, Akhtar et al. [2,
_eorem 3.1] proved that diam(Γ(R)) ∈ {1, 2, 3,∞} for a le� Artinian ring R and
classiûed all le� Artinian rings according to diameters of their unitary Cayley graphs.
In this paper, we generalize the results to rings Rwith R/J(R) self-injective (_eorems
3.5 and 3.6). We also prove that for each integer n ≥ 1, there exists a ring R such that
diam(Γ(R)) = n (_eorem 2.5). _e diameter of some extensions of rings are also
investigated.
As usual, Zn will denote the ring of integers modulo n. We use J(R) to denote the

Jacobson radical of R and write R = R/J(R) and ā = a + J(R) ∈ R for a ∈ R. _e
polynomial ring over a ring R in the indeterminate t is denoted by R[t]. _e formal
power series ring over a ring is denoted by R[[t]]. Recall that a ring R is called right
self-injective if, for any (principal) right ideal I of R, every homomorphism from IR to
RR extends to a homomorphism from RR to RR .

2 Unitary Cayley Graphs with Diameter n

Aswe will shortly see, the connectedness of Γ(R) is closely related to whether the ring
R is generated additively by its units. So let us ûrst recall the following deûnitions. Let
R be a ring and let k be a positive integer. An element r ∈ R is said to be k-good if
r = u1 + ⋅ ⋅ ⋅ +uk with u i ∈ U(R) for each 1 ≤ i ≤ k. A ring is said to be k-good if every
element of R is k-good. _e unit sum number of a ring R, denoted by u(R), is deûned
to be

(1) min{k ∈ N∣ R is a k-good } if R is k-good for some k ≥ 1;
(2) ω if R is not k-good for every k ≥ 1, but each element of R is k-good for some k;
(3) ∞ if some element of R is not k-good for any k ≥ 1.

For example, u(Z3) = 2, u(Z) = ω and u(Z[t]) = ∞. It is clear that if 2 ∈ U(R),
then r ∈ R being k-good implies that r is l-good for all l ≥ k. _e investigation of
rings generated additively by their units started in 1953–1954 whenWolfson [23] and
Zelinsky [24] proved independently that every linear transformation of a vector space
V over a division ring D is the sum of two nonsingular linear transformations, except
when dimV = 1 and D = Z2. For the unit sum number of rings, we refer the reader
to [11, 18, 22].

https://doi.org/10.4153/CMB-2016-014-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-014-7


654 H. Su

We recall another slightly diòerent deûnition introduced in [13]. Let usn(R) be
the smallest number n such that every element can be written as the sum of at most n
units. If some element of R is not k-good for any k ≥ 1, then usn(R) is deûned to be∞.
Note that usn(R) and u(R) are diòerent. For example, u(Z4) = ω and usn(Z4) = 2.

Our ûrst lemma characterizes the rings R with diam(Γ(R)) = 1.

Lemma 2.1 Let R be a ring. _en diam(Γ(R)) = 1 if and only if R is a division ring.

Proof If diam(Γ(R)) = 1, then Γ(R) is a complete graph. For any nonzero element
r in R, the vertex 0 is adjacent to r, so r is a unit, and hence R is a division ring.
Conversely, suppose that R is a division ring. _en for any two distinct vertices x and
y, 0 /= x − y ∈ R is a unit of R. So d(x , y) = 1, and hence diam(Γ(R)) = 1.

Lemma 2.2 Let R be a ring and r ∈ R. _en the following statements hold:
(i) If r is k-good, then d(r, 0) ≤ k in Γ(R).
(ii) If r /= 0 and d(r, 0) = k in Γ(R), then r is k-good but not l-good for all l < k.
(iii) For any x , y, z ∈ R, d(x , y) = k if and only if d(x + z, y + z) = k.

Proof (i) Let r = u1 +u2 + ⋅ ⋅ ⋅ +uk with each u i ∈ U(R) and let x i = u1 + ⋅ ⋅ ⋅ +u i , i =
1, . . . , k. _en 0—x1—x2— ⋅ ⋅ ⋅—xk−1—xk = r is a walk from 0 to r, so d(r, 0) ≤ k.

(ii) Let 0 = x0—x1—x2— ⋅ ⋅ ⋅—xk = r be a path from 0 to r. _en u i ∶= x i − x i−1 ∈

U(R) for 1 ≤ i ≤ k. It is easy to check that r = ∑k
i=1 u i . So, r is k-good. By part (i), we

know that r is not l-good for all l < k.
(iii) Let d(x , y) = k. Suppose that x = x0—x1—x2— ⋅ ⋅ ⋅—xk = y is a path from x

to y. _en x + z = (x0 + z)—(x1 + z)—(x2 + z)— ⋅ ⋅ ⋅—(xk−1 + z)—(xk + z) = y + z
is a path from x + z to y + z. So d(x + z, y + z) ≤ k. Similarly, d(x + z, y + z) = k
implies d(x , y) ≤ k. _us, d(x , y) = k if and only if d(x + z, y + z) = k.

Lemma 2.3 Let R be a ring. _en diam(Γ(R)) = 2 if and only if usn(R) = 2 and R
is not a division ring.

Proof Assume that diam(Γ(R)) = 2. _enR is not a division ring by Lemma 2.1. For
any nonzero nonunit r in R, as diam(Γ(R)) = 2, we have d(r, 0) = 2. So r is 2-good
by Lemma 2.2(ii), and thus usn(R) = 2. Conversely, it is clear that diam(Γ(R)) ≥ 2.
For any x , y ∈ R, if x − y ∈ U(R), then d(x , y) = 1; if x − y ∉ U(R), then x − y
is 2-good. So d(x − y, 0) = 2, and hence d(x , y) = 2 by Lemma 2.2(i)(iii). _us,
diam(Γ(R)) = 2.

Lemma 2.4 Let R be a ring and let k ≥ 3 be an integer. _en usn(R) = k if and only
if diam(Γ(R)) = k.

Proof (⇒) For x /= y ∈ R, as usn(R) = k, x − y can be expressed as a sum ofm (≤ k)
units. Let x − y = u1 +u2 + ⋅ ⋅ ⋅ +um with each u i ∈ U(R). Set x i = u1 + ⋅ ⋅ ⋅ +u i + y, i =
1, . . . ,m. _en y—x1—x2— ⋅ ⋅ ⋅—xm = x is a walk from y to x, so d(x , y) ≤ m ≤ k.
By assumption, there exists an element r ∈ R, such that r is a sum of k units but

not a sum of m units for any m < k. _en d(r, 0) ≤ k. We claim that d(r, 0) = k. If
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d(r, 0) = l < k, then, by Lemma 2.2(ii), r is l-good, a contradiction. So d(r, 0) = k,
hence diam(Γ(R)) = k.

(⇐). It is clear that 0 is 2-good. For any 0 /= r ∈ R, as diam(Γ(R)) = k, we have
d(r, 0) = l ≤ k. It follows that r is l-good by Lemma 2.2(ii). Again as diam(Γ(R)) = k,
there exist x and y with d(x , y) = k. _en d(x − y, 0) = k. By Lemma 2.2, x − y is
k-good, but not l-good for any l < k, so usn(R) = k.

_eorem 2.5 For each integer n ≥ 1, there exists a ring R such that diam(Γ(R)) = n.

Proof In [13, Corollary 4], the authors proved that there exists a ring R such that
usn(R) = n for each n ≥ 2. So the theorem holds for n ≥ 3 by Lemma 2.4. It is clear
that diam(Γ(Z2)) = 1 and diam(Γ(Z4)) = 2. _is completes the proof.

Corollary 2.6 Let R be a ring. _en Γ(R) is connected if and only if u(R) ≤ ω.

Proof Suppose that Γ(R) is connected. _en for any 0 /= r ∈ R, d(r, 0) = k for some
k. So r is k-good by Lemma 2.2(ii). _us, u(R) ≤ ω. Conversely, if u(R) ≤ ω, then for
any two vertices x and y inR, we have that x is k-good and y is l-good for some k and l .
So d(x , 0) ≤ k and d(y, 0) ≤ l by Lemma 2.2(i). So d(x , y) ≤ d(x , 0)+d(y, 0) = k+ l .
_us, Γ(R) is connected.

Note that u(R) = n implies usn(R) = n, but usn(R) = n cannot imply u(R) = n
in general. For example, usn(Z4) = 2, but u(Z4) = ω. In fact, we can easily obtain
the following proposition.

Proposition 2.7 Let R be a ring and let n > 1 be an integer. Suppose that 2 ∈ U(R).
_en u(R) = n if and only if usn(R) = n.

3 Self-injective Rings

In [2, _eorem 3.1], the authors proved that diam(Γ(R)) ∈ {1, 2, 3,∞} for a le�
Artinian ring R and classiûed all le� Artinian rings according to the diameter of
their unitary Cayley graphs. Next, we generalize the results to the rings R for which
R/J(R) is self-injective. To do so, we ûrst study the relationship between diam(Γ(R))
and diam(Γ(R)). Note that r is a unit in R if and only if r is a unit in R. Using
the idea of [12, Remark 1], we have diam(Γ(R) ≤ diam(Γ(R)). Indeed, suppose
diam(Γ(R)) = m. _en for any x /= y ∈ R, we have d(x , y) ≤ m. As a path from
x to y gives a walk from x to y, d(x , y) ≤ d(x , y) ≤ m. _us, diam(Γ(R)) ≤ m.

Lemma 3.1 Let R be a ring. If diam(Γ(R)) ≥ 3, then diam(Γ(R)) = diam(Γ(R)).

Proof It suõces to show that diam(Γ(R)) ≤ diam(Γ(R)).
Suppose diam(Γ(R)) = ∞. We show that diam(Γ(R)) = ∞. Assume to the con-

trary that diam(Γ(R)) = m < ∞. For any x , y ∈ R, if x = y, then x − y ∈ J(R), and
hence 1 + x − y ∈ U(R). So we get a path x—(y − 1)—y from x to y, so d(x , y) ≤ 2.
If x /= y, then a path form x to y deduces a path from x to y. _is implies that
d(x , y) ≤ d(x , y) ≤ m. So diam(Γ(R)) ≤ m, a contradiction.
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Assume that diam(Γ(R)) is ûnite and k ∶= diam(Γ(R)) ≥ 3. _ere exist x , y ∈ R,
such that d(x , y) = k. First, we claim that x /= y. In fact, if x = y, then x − y ∈ J(R),
and hence 1+x− y ∈ U(R). So x—(y−1)—y is a walk from x to y. _us, d(x , y) ≤ 2,
a contradiction. Assume that m ∶= d(x , y) < k and x—x1—x2— ⋅ ⋅ ⋅—xm−1—y is a
path from x to y. _en x—x1—x2— ⋅ ⋅ ⋅—xm−1—y is path of length m, so d(x , y) ≤
m < k, a contradiction. _us, d(x , y) = k. _is proves diam(Γ(R)) ≥ k. Hence,
diam(Γ(R)) = diam(Γ(R)).

_eorem 3.2 Let R be a ring. _en the following are equivalent:
(i) diam(Γ(R)) < diam(Γ(R)).
(ii) R is a local ring with J(R) /= 0.
(iii) diam(Γ(R)) = 2 and diam(Γ(R)) = 1.

Proof (i)⇒(ii). Suppose that diam(Γ(R)) < diam(Γ(R)). _en by Lemma 3.1,
diam(Γ(R)) ≤ 2. By assumption, diam(Γ(R)) = 1. So R is a division ring by
Lemma 2.1. _erefore, R is a local ring with J(R) /= 0.

(ii)⇒(iii). Suppose that R is a local ring with J(R) /= 0. _en R = R/J(R) is a
division ring. So diam(Γ(R)) = 1 by Lemma 2.1. On the other hand, for any r ∈ R,
either r ∈ J(R) or r ∈ U(R). For any two distinct elements a, b ∈ R, if a—b ∈ U(R),
then d(a, b) = 1. Suppose that a—b ∈ J(R). If a ∈ J(R), then b ∈ J(R) as well. So we
have a path a—1—b, and hence d(a, b) = 2 (note that since J(R) /= 0, such a, b do
exist). If a ∈ U(R), then b ∈ U(R), we have a path a—(a + b)—b, so d(a, b) = 2.
Hence, diam(Γ(R)) = 2.

(iii)⇒ (i). It is clear.

Corollary 3.3 Let R be a ring. _en diam(Γ(R)) = diam(Γ(R)) if and only if one
of the following holds:
(i) R is not a local ring.
(ii) R is a division ring.

In [18,_eorem6], Khurana and Srivastava determined the unit sumnumberu(R)
of a regular right self-injective ringR. Weuse the notion usn(R) to restate the theorem
below.

Lemma 3.4 ([18]) Let R be a regular self-injective ring. _en usn(R) = 2, 3, or ∞.
Moreover,
(i) usn(R) = 2 if and only if R has no nonzero Boolean ring as a ring direct summand

or R ≅ Z2;
(ii) usn(R) = 3 if and only if R ≇ Z2 and R has Z2, but no Boolean ring with more

than two elements, as a ring direct summand;
(iii) usn(R) = ∞ if and only if R has a Boolean ring with more than two elements as

a ring direct summand.

_eorem 3.5 Let R be a ring with R/J(R) right self-injective (in particular, R is right
self-injective). _en diam(Γ(R)) ∈ {1, 2, 3,∞}.
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Proof As R = R/J(R) is a right (regular) self-injective ring, we have usn(R) = 2, 3
or,∞ by Lemma 3.4. _en diam(R) ∈ {1, 2, 3,∞} by Lemmas 2.1, 2.3, and 2.4. Now,
by Lemma 3.1, we get diam(Γ(R)) ∈ {1, 2, 3,∞}.

_eorem 3.6 Let R be a ring with R/J(R) right self-injective. _en the following
hold:
(i) diam(Γ(R)) = 1 if and only if R is a division ring.
(ii) diam(Γ(R)) = 2 if and only if R is not a division ring and one of following holds:

(a) R has no nonzero Boolean ring as a ring direct summand.
(b) R ≅ Z2.

(iii) diam(Γ(R)) = 3 if and only if R ≇ Z2 and R has Z2, but no Boolean ring with
more than two elements, as a ring direct summand.

(iv) diam(Γ(R)) = ∞ if and only if R has a Boolean ring with more than two elements
as a ring direct summand.

Proof (i) _is follows from Lemma 2.1.
Next, we assume that R is not a division ring and prove (ii), (iii), and (iv) together.

Note that R is a regular right self-injective ring. So u(R) = 2, ω or ∞ by [18, _eo-
rem 6]. To complete the proof, we determine the diameter in each case.

Case 1: u(R) = 2. In this case, R has no nonzero Boolean ring as a ring direct sum-
mand or R ≅ Z2 by Lemma 3.4. Note that diam(Γ(R)) ∈ {1, 2}. So diam(Γ(R)) = 2
by Lemma 3.1.

Case 2: u(R) = ω. If R ≅ Z2, then Γ(R) is a complete bipartite graph. So
diam(Γ(R)) = 2. If R ≇ Z2, in this case, usn(R) = 3, so diam(Γ(R)) = 3 by
Lemma 2.4. _us, diam(Γ(R)) = 3 by Lemma 3.1.

Case 3: u(R) = ∞. _en Γ(R) is disconnected by Corollary 2.6, so diam(Γ(R)) = ∞.
_us, diam(Γ(R)) = ∞ by Lemma 3.1.

4 Extensions of Rings

In this section, we consider the diameter of the unitary Cayley graphs of some exten-
sions of rings.

Proposition 4.1 Let R be a commutative ring. _en Γ(R[t])) is disconnected.

Proof As u(R[t]) = ∞, Γ(R[t])) is disconnected by Corollary 2.6.

Proposition 4.2 Let R be a commutative ring. _en the following conditions are
equivalent:
(i) u(R) ≤ ω.
(ii) Γ(R) is connected.
(iii) Γ(R[[t]]) is connected.

Proof (i)⇒(ii). _is follows from Corollary 2.6.
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(ii)⇒(iii). Let f (t), g(t) ∈ R[[t]]. Since Γ(R) is connected, there is a
path from f (0) to g(0) in Γ(R), say f (0)—a1—a2— ⋅ ⋅ ⋅—ak—g(0). _en
f (t)—a1—a2— ⋅ ⋅ ⋅—ak—g(t) is a path from f (t) to g(t) in Γ(R[[t]]). So Γ(R[[t]])
is connected.

(iii)⇒ (i). Let 0 /= a ∈ R. As Γ(R[[t]]) is connected, d(a, 0) = k in Γ(R[[t]]) for
some integer k ≥ 1. Let f0(t) ∶= a— f1(t)— f2(t)— ⋅ ⋅ ⋅— fk−1(t)— fk(t) ∶= 0 be a
path from a to 0 in Γ(R[[t]]). _en u i ∶= f i(0) − f i+1(0) ∈ U(R) for 0 ≤ i ≤ k − 1. So
a = ∑k−1

i=0 u i , which is k-good, so u(R) ≤ ω.

Proposition 4.3 Let R be a commutative ring. _en the following statements hold:
(i) If R is a ûeld, then diam(Γ(R[[t]])) = 2.
(ii) If R is not a ûeld, then diam(Γ(R[[t]])) = diam(Γ(R)).

Proof (i) As R[[t]] is not a ûeld, diam(Γ(R[[t]])) ≥ 2 by Lemma 2.1. For any
f (t), g(t) ∈ R[[t]], if f (0) = g(0), taking a /= f (0), then f (t)—a—g(t) is a path
from f (t) to g(t). So diam(Γ(R[[t]])) = 2.

(ii) Note that in this case, both diam(Γ(R[[t]])) and diam(Γ(R)) are at least two.
We ûrst prove that diam(Γ(R)) ≤ diam(Γ(R[[t]])). If diam(Γ(R[[t]])) = ∞, there is
nothing to prove. Suppose that diam(Γ(R[[t]])) = n < ∞. Let a, b ∈ R. _en we have
k ∶= d(a, b) ≤ n in Γ(R[[t]]). Let

a— f1(t)— f2(t)— ⋅ ⋅ ⋅— fk(t) = b

be a path from a to b. _en

a— f1(0)— f2(0)— ⋅ ⋅ ⋅— fk(0) = b

is a walk from a to b in Γ(R), so d(a, b) ≤ k ≤ n in Γ(R), and hence diam(Γ(R)) ≤ n.
Now we prove that diam(Γ(R)) ≥ diam(Γ(R[[t]])). If diam(Γ(R)) = ∞, there is

nothing to prove. Suppose that diam(Γ(R)) = n < ∞. Let f (t), g(t) ∈ R[[t]]. _en
we have k ∶= d( f (0), g(0)) ≤ n in Γ(R). Let

f (0)—a1—a2— ⋅ ⋅ ⋅—ak—g(0)

be a path from f (0) to g(0) in Γ(R). _en

f (t)—a1—a2— ⋅ ⋅ ⋅—ak—g(t)

is a path from f (t) to g(t) in Γ(R[[t]]). So, d( f (t), g(t)) = k ≤ n in Γ(R[[t]]), and
hence diam(Γ(R[[t]])) ≤ n.

Proposition 4.4 Let T ∶= Mn(R) be the n × n (n ≥ 2) matrix ring over a ring R.
_en 2 ≤ diam(Γ(T)) ≤ 3. Moreover, diam(Γ(T)) = 2 if and only if usn(R) = 2.

Proof We know that u(T) ≤ 3 by [11, _eorem 3]. So usn(R) ≤ 3. As T is not
a division ring, 2 ≤ diam(Γ(T)) ≤ 3. If usn(R) = 2, then usn(T) = 2 as well, so
diam(Γ(T)) = 2. Conversely, if diam(Γ(T)) = 2, then usn(T) = 2, so usn(R) = 2.

_e group ring of a group H over ring R is denoted by RH.
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Proposition 4.5 Let R be a ring and H be a nontrivial group. _en Γ(RH) is con-
nected if and only if Γ(R) is connected.

Proof _is follows from Corollary 2.6 and [5, Proposition 9].

Proposition 4.6 Let F be a ûeld and H be a locally ûnite group (that is, every ûnitely
generated subgroup of H is ûnite). _en diam(Γ(Z2H)) = ∞ and diam(Γ(FH)) = 2
if F ≇ Z2.

Proof By [5, Proposition 9(v)], diam(Γ(FH)) = 2 if F ≇ Z2. As u(Z2H) = ω, we
have diam(Γ(Z2H)) = ∞.
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