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On the Diameter of Unitary Cayley Graphs
of Rings

Huadong Su

Abstract. The unitary Cayley graph of a ring R, denoted I'(R), is the simple graph defined on all
elements of R, and where two vertices x and y are adjacent if and only if x — y is a unit in R. The
largest distance between all pairs of vertices of a graph G is called the diameter of G and is denoted
by diam(G). It is proved that for each integer n > 1, there exists a ring R such that diam(T'(R)) = n.
We also show that diam(T'(R)) € {1,2,3, oo} for aring R with R/J(R) self-injective and classify all
those rings with diam(T'(R)) = 1,2, 3, and oo, respectively.

1 Introduction

This paper concerns the diameter of unitary Cayley graphs of rings. Let R be a ring
with nonzero identity. We use U(R) to denote the group of units of R. The unitary
Cayley graph of R, denoted by T'(R), is the simple graph whose vertices are the ele-
ments of R, and where two vertices x and y are adjacent if and only if x — y € U(R).

The earliest work on the unitary Cayley graph of a ring is for the ring Z,, by Dejter
and Giudici [8]. Since then, many publications are devoted to this topic. The study
of T'(Z,) was continued by Berrizbeitia and Giudici [6,7], Fuchs [10], and Klotz and
Sander [17]. The unitary Cayley graph I'(R) was studied for a finite ring R by Akhtar,
et al. [2], and for an Artinian ring R by Lucchini and Maréti [19] and Lanski and
Maréti [20]. Several other papers are devoted to the spectral properties and the en-
ergy of unitary Cayley graphs of Z, or a finite commutative ring (see [14, 16, 21]).
Recently, Kiani and Aghaei [15] investigated the isomorphism problem for unitary
Cayley graphs associated with finite (commutative) rings.

Let us recall some needed notions in graph theory. Let G be a simple graph. A walk
is a sequence of vertices and edges, where each edge’s endpoints are the preceding and
following vertices in the sequence. The length of a walk is the number of edges that it
uses. A path in a graph is a walk that has all distinct vertices (except the endpoints).
We use x—y to denote two vertices x and y in a graph G are adjacent. A graph G
is connected if there is a path between each pair of the vertices of G; otherwise, G is
disconnected. The distance between two vertices x and y, denoted d(x, y), is the length
of the shortest path in G beginning at x and ending at y. The largest distance between
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all pairs of vertices of G is called the diameter of G, and is denoted by diam(G). A
complete graph is a graph where each vertex is adjacent to all other vertices. Obviously,
G is a complete graph if and only if diam(G) = 1. We use K, and K, to denote the
complete bipartite graph with partitions of size m and n, and the complete graph of
n vertices, respectively.

The diameter of graphs associated with rings is an active research subject. For
instance, Anderson and Livingston [3] and Anderson and Mulay [4] investigated the
diameter of the zero-divisor graph of a commutative ring. It was proved that the zero-
divisor graph of a commutative ring is always connected with diameter at most three.
A similar version for the zero-divisor graph of a commutative semigroup was shown
in [9] by DeMeyer, McKenzie, and Schneider. Anderson and Badawi [1] proved that
for each integer n > 1, there exists a ring R such that its total graph has diameter
n. Concerning the diameter of the unitary Cayley graph of a ring, Akhtar et al. [2,
Theorem 3.1] proved that diam(T'(R)) € {1,2,3,00} for a left Artinian ring R and
classified all left Artinian rings according to diameters of their unitary Cayley graphs.
In this paper, we generalize the results to rings R with R/J(R) self-injective (Theorems
3.5 and 3.6). We also prove that for each integer n > 1, there exists a ring R such that
diam(T(R)) = n (Theorem 2.5). The diameter of some extensions of rings are also
investigated.

As usual, Z, will denote the ring of integers modulo n. We use J(R) to denote the
Jacobson radical of R and write R = R/J(R) and @ = a + J(R) € R for a € R. The
polynomial ring over a ring R in the indeterminate ¢ is denoted by R[¢]. The formal
power series ring over a ring is denoted by R[[¢]]. Recall that a ring R is called right
self-injective if, for any (principal) right ideal I of R, every homomorphism from I to
Ry extends to a homomorphism from Rg to Rg.

2 Unitary Cayley Graphs with Diameter n

As we will shortly see, the connectedness of T'(R) is closely related to whether the ring
R is generated additively by its units. So let us first recall the following definitions. Let
R be a ring and let k be a positive integer. An element r € R is said to be k-good if
r=up+---+ug withu; € U(R) foreach 1 < i < k. A ring is said to be k-good if every
element of R is k-good. The unit sum number of a ring R, denoted by u(R), is defined
to be

(1) min{k € N| Risak-good } if R is k-good for some k > I;
(2) wif Risnot k-good for every k > 1, but each element of R is k-good for some k;
(3) oo if some element of R is not k-good for any k > 1.

For example, u(Z3) = 2, u(Z) = w and u(Z[t]) = co. It is clear that if 2 € U(R),
then r € R being k-good implies that r is I-good for all [ > k. The investigation of
rings generated additively by their units started in 1953-1954 when Wolfson [23] and
Zelinsky [24] proved independently that every linear transformation of a vector space
V over a division ring D is the sum of two nonsingular linear transformations, except
when dim V = 1and D = Z,. For the unit sum number of rings, we refer the reader
to [11,18,22].
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We recall another slightly different definition introduced in [13]. Let usn(R) be
the smallest number 7 such that every element can be written as the sum of at most n
units. If some element of R is not k-good for any k > 1, then usn(R) is defined to be occ.
Note that usn(R) and u(R) are different. For example, u(Z4) = w and usn(Z,) = 2.

Our first lemma characterizes the rings R with diam(T(R)) = 1.

Lemma 2.1 Let R be a ring. Then diam(T'(R)) = 1if and only if R is a division ring.

Proof If diam(T'(R)) =1, then I'(R) is a complete graph. For any nonzero element
r in R, the vertex 0 is adjacent to r, so r is a unit, and hence R is a division ring.
Conversely, suppose that R is a division ring. Then for any two distinct vertices x and
9,04 x—y € Risaunit of R. So d(x, y) =1, and hence diam(T(R)) = 1. [ |

Lemma 2.2 Let R be a ring and r € R. Then the following statements hold:

(i) Ifris k-good, then d(r,0) < k in T(R).

(ii) Ifr#0andd(r,0) =kinT(R), then r is k-good but not 1-good for all | < k.
(iii) Foranyx,y,z€R,d(x,y) =kifandonlyifd(x+z,y+z) =k.

Proof (i) Letr=u+uy+---+uy witheachu; e U(R) andletx; = uj+---+u;, i =
L...,k. Then 0—x;—x;— -+ —x)_;—xk = ris a walk from 0 to r, so d(r,0) < k.

(ii) Let 0 = xo—x;—x,— -+ —xj = r be a path from 0 to 7. Then u; := x; —x;_; €
U(R) for 1< i < k. It is easy to check that r = %, u;. So,  is k-good. By part (i), we
know that r is not I-good for all / < k.

(iii) Let d(x, y) = k. Suppose that x = xg—x;—x,— --- —xx = y is a path from x
toy. Thenx+z=(xo+2)—(x1+2)—(x3+2)— - —(xp1+2)—(xp +2) = y+z
isapathfromx+ztoy+z Sod(x+z,y+z)<k. Similarly, d(x +z,y +2) = k
implies d(x, y) < k. Thus, d(x, y) = kifand only if d(x + z, y + 2) = k. [ |

Lemma 2.3 Let R be aring. Then diam(T'(R)) = 2 if and only if usn(R) = 2 and R
is not a division ring.

Proof Assume thatdiam(T'(R)) = 2. Then R is not a division ring by Lemma 2.1. For
any nonzero nonunit r in R, as diam(T(R)) = 2, we have d(r,0) = 2. So r is 2-good
by Lemma 2.2(ii), and thus usn(R) = 2. Conversely, it is clear that diam(T(R)) > 2.
Forany x,y € R,ifx —y € U(R), thend(x,y) = L ifx — y ¢ U(R), then x — y
is 2-good. So d(x — y,0) = 2, and hence d(x, y) = 2 by Lemma 2.2(i)(iii). Thus,
diam(T(R)) = 2. [ |

Lemma 2.4 Let R be a ring and let k > 3 be an integer. Then usn(R) = k if and only
ifdiam(I'(R)) = k.

Proof (=)Forx# yeR,asusn(R) =k, x— y can be expressed as a sum of m (< k)
units. Let x — y = 4y + 4y +- -+ + Uy, with each u; € U(R). Setx; =uy+---+u; +y,i =
1,...,m. Then y—x;—x;— -+ —x,, = x isawalk from y to x, so d(x, y) < m < k.
By assumption, there exists an element r € R, such that r is a sum of k units but
not a sum of m units for any m < k. Then d(r,0) < k. We claim that d(r,0) = k. If
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d(r,0) = I < k, then, by Lemma 2.2(ii),  is /-good, a contradiction. So d(r,0) = k,
hence diam(T'(R)) = k.

(<). Itis clear that 0 is 2-good. For any 0 # r € R, as diam(T'(R)) = k, we have
d(r,0) =1 < k. It follows that r is I-good by Lemma 2.2(ii). Again asdiam(T'(R)) = k,
there exist x and y with d(x, y) = k. Then d(x — y,0) = k. By Lemma 2.2, x — y is
k-good, but not I-good for any I < k, so usn(R) = k. [ |

Theorem 2.5  For each integer n > 1, there exists a ring R such that diam(T'(R)) = n.

Proof In [13, Corollary 4], the authors proved that there exists a ring R such that
usn(R) = n for each n > 2. So the theorem holds for # > 3 by Lemma 2.4. It is clear
that diam(T'(Z,)) = 1and diam(T(Z,)) = 2. This completes the proof. [ |

Corollary 2.6 Let R be a ring. Then T(R) is connected if and only ifu(R) < w.

Proof Suppose that I'(R) is connected. Then for any 0 # r € R, d(r,0) = k for some
k. So ris k-good by Lemma 2.2(ii). Thus, u(R) < w. Conversely, if u(R) < w, then for
any two vertices x and y in R, we have that x is k-good and y is I-good for some k and /.
Sod(x,0) < kandd(y,0) < Iby Lemma?2.2(i). Sod(x, y) <d(x,0)+d(y,0) = k+1.
Thus, T'(R) is connected. u

Note that u(R) = n implies usn(R) = #, but usn(R) = n cannot imply u(R) = n
in general. For example, usn(Z4) = 2, but u(Z4) = w. In fact, we can easily obtain
the following proposition.

Proposition 2.7  Let R be a ring and let n > 1 be an integer. Suppose that 2 € U(R).
Then u(R) = n if and only if usn(R) = n.

3 Self-injective Rings

In [2, Theorem 3.1], the authors proved that diam(T'(R)) € {1,2,3,00} for a left
Artinian ring R and classified all left Artinian rings according to the diameter of
their unitary Cayley graphs. Next, we generalize the results to the rings R for which
R/J(R) is self-injective. To do so, we first study the relationship between diam(T'(R))
and diam(T'(R)). Note that r is a unit in R if and only if 7 is a unit in R. Using
the idea of [12, Remark 1], we have diam(I'(R) < diam(T'(R)). Indeed, suppose
diam(T(R)) = m. Then for any X # ¥ € R, we have d(x, y) < m. As a path from
x to y gives a walk from X to y, d(X,y) < d(x, y) < m. Thus, diam(T'(R)) < m.

Lemma 3.1 Let R be aring. Ifdiam(T(R)) > 3, then diam(T(R)) = diam(T'(R)).

Proof It suffices to show that diam(T'(R)) < diam(T'(R)).

Suppose diam(T'(R)) = oco. We show that diam(T'(R)) = oco. Assume to the con-
trary that diam(T'(R)) = m < oco. Forany x, y € R, if x = 7, then x — y € J(R), and
hencel+x — y € U(R). So we get a path x—(y —1)—y from x to y, so d(x, y) < 2.
If x # , then a path form X to y deduces a path from x to y. This implies that
d(x,y) <d(x,y) < m. Sodiam(T(R)) < m, a contradiction.
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Assume that diam(T'(R)) is finite and k := diam(T'(R)) > 3. There exist x, y € R,
such that d(x, y) = k. First, we claim that x # ¥. In fact, if x = y, then x — y € J(R),
and hencel+x—y € U(R). Sox—(y-1)—yisawalk from x to y. Thus, d(x, y) < 2,

a contradiction. Assume that m := d(x,y) <kand x—x—x;— -+ —x,,.1—y isa
path from X to y. Then x —x;—x2 — -+ - —X,,—1 — y is path of length m, so d(x, y) <
m < k, a contradiction. Thus, d(X,¥) = k. This proves diam(T'(R)) > k. Hence,
diam(T(R)) = diam(T(R)). [ ]

Theorem 3.2  Let R be a ring. Then the following are equivalent:
(i) diam(T(R)) < diam(T(R)).

(ii) R is a local ring with J(R) # 0.

(ii)) diam(T(R)) =2 and diam(T'(R)) = L.

Proof (i)=>(ii). Suppose that diam(T(R)) < diam(T(R)). Then by Lemma 3.1,
diam(T(R)) < 2. By assumption, diam(T'(R)) = 1. So R is a division ring by
Lemma 2.1. Therefore, R is a local ring with J(R) # 0.

(ii)=(iii). Suppose that R is a local ring with J(R) # 0. Then R = R/J(R) is a
division ring. So diam(T'(R)) = 1 by Lemma 2.1. On the other hand, for any r € R,
either r € J(R) or r € U(R). For any two distinct elements a,b € R, if a—b € U(R),
then d(a, b) = 1. Suppose that a—b € J(R). If a € J(R), then b € J(R) as well. So we
have a path a—1—b, and hence d(a, b) = 2 (note that since J(R) # 0, such a,b do
exist). If a € U(R), then b € U(R), we have a path a—(a + b)—b, so d(a,b) = 2.
Hence, diam(T'(R)) = 2.

(iii)= (i). It is clear. [ |

Corollary 3.3 Let R be a ring. Then diam(T'(R)) = diam(T'(R)) if and only if one
of the following holds:

(i) Risnotalocal ring.
(ii) R is a division ring.

In [18, Theorem 6], Khurana and Srivastava determined the unit sum number u(R)
of aregular right self-injective ring R. We use the notion usn(R) to restate the theorem
below.

Lemma 3.4 ([18]) Let R be a regular self-injective ring. Then usn(R) = 2, 3, or oo.
Moreover,

(i) usn(R) = 2ifand only if R has no nonzero Boolean ring as a ring direct summand
or R=7,;

(ii) usn(R) = 3 ifand only if R  Z, and R has Z,, but no Boolean ring with more
than two elements, as a ring direct summand;

(iii) usn(R) = oo if and only if R has a Boolean ring with more than two elements as
a ring direct summand.

Theorem 3.5 Let R be a ring with R/J(R) right self-injective (in particular, R is right
self-injective). Then diam(T'(R)) € {1,2,3,00}.
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Proof AsR = R/J(R) is a right (regular) self-injective ring, we have usn(R) = 2, 3
or, co by Lemma 3.4. Then diam(R) € {1,2,3, oo} by Lemmas 2.1, 2.3, and 2.4. Now,
by Lemma 3.1, we get diam(T'(R)) € {1,2,3, 00 }. ]

Theorem 3.6 Let R be a ring with R/J(R) right self-injective. Then the following

hold:

(i) diam(T(R)) =1if and only if R is a division ring.

(ii) diam(T(R)) = 2 if and only if R is not a division ring and one of following holds:
(a) R has no nonzero Boolean ring as a ring direct summand.
(b) R2Z,.

(iii) diam(T(R)) = 3 if and only if R ¢ Z, and R has Z, but no Boolean ring with
more than two elements, as a ring direct summand.

(iv) diam(T(R)) = oo ifand only if R has a Boolean ring with more than two elements
as a ring direct summand.

Proof (i) This follows from Lemma 2.1.

Next, we assume that R is not a division ring and prove (ii), (iii), and (iv) together.
Note that R is a regular right self-injective ring. So u(R) = 2, w or oo by [18, Theo-
rem 6]. To complete the proof, we determine the diameter in each case.

Case 1: u(R) = 2. In this case, R has no nonzero Boolean ring as a ring direct sum-
mand or R & Z, by Lemma 3.4. Note that diam(T'(R)) € {1,2}. So diam(T(R)) = 2
by Lemma 3.1.

Case 2: u(R) = w. If R = Z,, then T(R) is a complete bipartite graph. So
diam(T'(R)) =2. If R # 7Z,, in this case, usn(R) = 3, so diam(T'(R)) = 3 by
Lemma 2.4. Thus, diam(T'(R)) = 3 by Lemma 3.1.

Case 3: u(R) = oo. Then T'(R) is disconnected by Corollary 2.6, so diam (T (R)) = oo.
Thus, diam(T'(R)) = co by Lemma 3.1. [ |

4 Extensions of Rings

In this section, we consider the diameter of the unitary Cayley graphs of some exten-
sions of rings.

Proposition 4.1  Let R be a commutative ring. Then T'(R[t])) is disconnected.

Proof Asu(R[t]) = oo, T(R[t])) is disconnected by Corollary 2.6. [ |
Proposition 4.2  Let R be a commutative ring. Then the following conditions are
equivalent:

(i) u(R)<ow.

(ii) T(R) is connected.
(iii) T(R[[t]]) is connected.

Proof (i)=(ii). This follows from Corollary 2.6.
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(i))=-(iii). Let f(¢),g(t) € R[[t]]. Since T'(R) is connected, there is a
path from f(0) to g(0) in T(R), say f(0)—a;—a,—---—ar—g(0). Then
f(t)—a;—ay— - —ax—g(t)isapath from f(¢) to g(¢) in T(R[[t]]). So T(R[[#]])
is connected.

(ii))=> (i). Let 0 # a € R. As T'(R[[t]]) is connected, d(a,0) = k in T(R[[¢]]) for

some integer k > 1. Let fo(t) :== a—fi(t)—fa(t)— -+ — fe—1(t)— fr(¢) == O be a
path from a to 0 in T(R[[¢]]). Then u; := f;(0) — f;+1(0) e U(R) for0< i < k—1.So
a =Y u;, which is k-good, so u(R) < w. [ |

Proposition 4.3  Let R be a commutative ring. Then the following statements hold:
(i) IfRisa field, then diam(T(R[[t]])) = 2.
(ii) IfR is not a field, then diam(T(R[[¢]])) = diam(T(R)).

Proof (i) As R[[t]] is not a field, diam(T'(R[[¢]])) > 2 by Lemma 2.1. For any
f(8),g(t) € R[[t]], if f(0) = g(0), taking a # f(0), then f(t)—a—g(t) is a path
from f(t) to g(t). So diam(T(R[[¢]])) = 2.

(ii) Note that in this case, both diam(T(R[[¢]])) and diam(T(R)) are at least two.
We first prove that diam(T'(R)) < diam(T(R[[¢]])). If diam(T (R[[#]])) = oo, there is
nothing to prove. Suppose that diam(T(R[[¢]])) = #n < co. Let a, b € R. Then we have
k:=d(a,b) <ninT(R[[t]]). Let

a—fi()—fot) =+ —f(t) = b

be a path from a to b. Then

a—fi(0)—f2(0)— - —fi(0) = b
isawalkfromatobinT(R),sod(a,b) < k < ninT(R), and hence diam(T'(R)) < n.
Now we prove that diam(T'(R)) > diam(T(R[[¢]])). If diam(T(R)) = oo, there is

nothing to prove. Suppose that diam(T(R)) = n < oo. Let f(¢), g(t) € R[[¢]]. Then
we have k := d(f(0),g(0)) <ninT(R). Let

f0)—a—a— - —ar—g(0)
be a path from f(0) to g(0) in I'(R). Then

f()—a—ay— - —ar—g(1)
is a path from f(t) to g(¢) in T(R[[¢]]). So, d(f(t),g(t)) =k <ninT(R[[¢]]), and
hence diam(T(R[[t]])) < n. [

Proposition 4.4 Let T := M, (R) be the n x n (n > 2) matrix ring over a ring R.
Then 2 < diam(T(T)) < 3. Moreover, diam(I'(T)) = 2 if and only ifusn(R) = 2.

Proof We know that u(T) < 3 by [11, Theorem 3]. So usn(R) < 3. As T is not
a division ring, 2 < diam(T(T)) < 3. If usn(R) = 2, then usn(T) = 2 as well, so
diam(T(T)) = 2. Conversely, if diam(T(T)) = 2, then usn(T) = 2, so usn(R) = 2.

|

The group ring of a group H over ring R is denoted by RH.
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Proposition 4.5 Let R be a ring and H be a nontrivial group. Then T (RH) is con-
nected if and only if T(R) is connected.

Proof This follows from Corollary 2.6 and [5, Proposition 9]. [ |

Proposition 4.6  Let F be a field and H be a locally finite group (that is, every finitely
generated subgroup of H is finite). Then diam(T'(Z,H)) = oo and diam(I'(FH)) =2
if F ¢ Z,.

Proof By [5, Proposition 9(v)], diam(T'(FH)) = 2if F ¢ Z,. Asu(Z,H) = w, we
have diam(T'(Z,H)) = oco.
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