PRELIMINARY REPORT

DENSITY MATRICES OF n-FERMION SYSTEMS
A.J. Coleman
(received April 4,1961)

The energy of a system of indistinguishable particles in
two-body interaction may be expressed in terms of the one and
two-particle density matrices. In order to work directly with
the density matrices we must know what restrictions are imposed
on them by the statistics of the system. This report summarizes
some results giving a partial answer to the question "What func-
tions can arise as density matrices of a system of n fermions?'".

NOTATION. The system is characterized by the normalized

antisymmetric function ¢y =¢(1, 2, 3, ... , n). The p-th order
density matrix :

Dp(x;x')
(1) :
=L+1’ .. ’nLP(i,Z,... ,n) §(4Y, ..., p, p+i, ..., n)

may be regarded as the kernel of the hermitian integral equation
of trace 1:

/an(x;y) W) = AT ()

Here, qu is a function of p particles which, in analogy with
Loéwdin, we call a natural p-state of § corresponding to the p-th

order eigenvalue of y, )\I;. These eigenvalues are positive and

Ei )\f =1. We assume they are ordered monotonically, )\I;.Z )\i+ s
Superscripts are integers between 1 and n indicating the num-
ber of particles involved in the corresponding function; throughout
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this report, p+ q =n} the product fpfq stands for
1,2, ..., p)fXp+1, ... , n). The p-rank of y is the
number of non-zero )\f, though, for convenience, we shall refer

to the 1-rank simply as the rank of y and denote it by r.

A function Dp(x;y) will be called n-representable if there
exists an antisymmetric function ¢ of n particles satisfying
equation (1). In this language, a basic problem of many particle
physics is to obtain intrinsic criteria for recognizing when a
given function is n-representable. A similar problem may be
formulated for bosons, or more generally for functions of arbi-
trary symmetry type. We denote by A the idempotent operator
which antisymmetrizes a function of n particles.

THEOREM 4. For m a finite natural number, 1< i< m,

¢ complex numbers, and f?, f? functions of p and q particles
respectively, the difference !

= u-ze e

attains its minimum, 1 - Ezin: )\f, if and qnly if the f's are
proportional to the corresponding natural states of |y, and
lH2 = AP =
i i
THEOREM 2. ¢ and the upf may be expanded in terms
of the r 4:: for which X: #0.
If a little more care is taken in defining the p and gq

natural states, theorem 1 is independent of the symmetry type
of Y; theorem 2 is valid for fermions and bosons.

THEOREM 3. For fermions, n A . <1; (m-p+ FP<t
for p>1. ' '

Thus the 2-rank of y is at least n.

THEOREM 4. The condition that D1 be n-representable
can be expressed in terms of the first order eigenvalues alone.
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THEOREM 5. A sufficient condition that D1 be n-repre-
sentable is that each of the first order eigenvalues of y be
degenerate with multiplicity divisible by n.

1
THEOREM 6. D" is 2-representable if and only if the
first order eigenvalues are evenly degenerate.

THEOREM 7. If D1 is n-representable, r #n + 1.
THEOREM 8. If r=n+ 2, a n.a.s.c. that D1 be

n-representable is as follows:

1 -1
(i) if n is odd, Ay=n and the remaining first order
eigenvalues are evenly degenerate and less than n~1;

(ii) if n is even, the first order eigenvalues are evenly
degenerate and all less than a1,

THEOREM 9. If D1(x;y) is n-representable and

i 1 1 -1
)\1-)\2-... —Xk-n , then

D = n-1[¢1(x)$-i(y) +oot ¢11<(x)$11<(y)] + D;_

1
where Dz(x;y) is (n - k)-representable.
1
THEOREM 10. D (x;y), of rank r, is n-representable by
Y, if and only if it may be put into the form
1 11 -1 1_1 1, .1
D = + - D + - D,
x1¢1(x)¢1(y) (n 1)>\1 A (1 nki) 5
i . 1
where D1 is (n - 1)-representable and orthogonal to LlJi, and
D2 has rank at most r - 1 and is n-representable by
(U cA(Lp: LIJni_ 1) where ¢ is an appropriately chosen constant.
The first part of theorem 1 was suggested by and generalizes
a result of Lowdin [1] for n =2; the last equality was recently
noticed by Carlson and Keller [2]. ‘The first part of theorem 3
was known to Lowdin [3] and has as a consequence that if r =n,
D! is the Dirac density matrix corresponding to the Hartree-

Fock approximation. Theorem 410 provides a double induction
algorithm by which, in principle, the n-representability of any
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alleged one particle density matrix of finite rank could be decided.
For two particle matrices the result analogous to theorem 5 is
considerable more complicated since )\iz do not provide a com-
plete set of unitary invariants; my results in this connection

so far are partial and scattered.

Numerical calculations have been initiated to test the
practical usefulness of theorem 410. Preliminary results of
these calculations together with proofs of the above will be given
in a paper now being prepared for publication.

The author wishes to acknowledge the financial assistance
of the Canadian Mathematical Congress in the form of a fellow-
ship at the Summer Research Institute of the Congress in 1951
when the above work was begun and theorem 6 obtained.
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