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Abstract
Research on individual decisions from experience reveals a robust tendency to behave as if rare events are
underweighted. Experimental studies of strategic interactions often exclude probabilistic outcomes, thus
neglecting the potential extension of this tendency to strategic games. Our study addresses this gap by
examining how players in games adjust their strategies when confronted with low-probability, high-impact
outcomes. We introduce two finitely repeated, asymmetric games with lottery-based payoffs. These games,
when simplified by replacing lotteries with their expected values, yield straightforward equilibrium predic-
tions based on dominant strategies. However, results from three experiments reveal players strongly deviate
from these predictions, instead behaving consistently with underweighting of rare events. The results addi-
tionally indicate that social preferences also play a role in shaping behavior. To explain these observations,
we propose the simplistic Reciprocal Altruistic Sampler (REALS) model. This model posits that players’
decisions are a result of the interplay between reliance on small samples of past experiences, altruistic ten-
dencies, and strategic considerations. We experimentally compare behavior in variants of the games that
disentangle the behavior to these three components, and show that the REALSmodel, despite its simplicity,
effectively captures their complex interactions. Our results additionally demonstrate that players can often
choose strictly dominated strategies in a sophisticated effort to react to underweighting of rare events by
other players. Overall, this study enhances our understanding of strategic decision making by highlighting
the crucial impact of rare events and the interplay of different uncertainties in influencing players’ choices.

Keywords:Dominated strategy; Environmental uncertainty; Probability transformations; Repeated games; Sequential
games; Social uncertainty; Strategic uncertainty
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1. Introduction
For decades, behavioral decision research has been intrigued with the way people make decisions
involving rare events. In their seminal prospect theory paper, Kahneman andTverskywrote: “Because
people are limited in their ability to comprehend and evaluate extreme probabilities, highly unlikely
events are either ignored or overweighted” (Kahneman&Tversky, 1979, pp. 282–283).Understanding
human decision making in this context is of huge significance for analysis of many industries and
domains, from finance and insurance to law and public policy. As a recent example of the puzzling
patterns people exhibit, the coronavirus pandemic seems to have triggered both panic and compla-
cency reactions, the former consistent with overweighting the rare risk and the latter consistent with
ignoring it (Erev et al., 2020).
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Historically, mainstream decision research has followed the basic assumption of prospect theory
and its derivatives (e.g., cumulative prospect theory, Tversky & Kahneman, 1992); that people behave
as if they overweight rare events.This assumption is often empirically corroboratedwhen studying the
behavior of individuals who make one-shot decisions based on a description of the payoff structure
(the setting to which prospect theory pertains). More recently, however, it has been shown that when
people make decisions based on experience with similar decisions, they behave as if they underweight
(or “ignore”) rare events, reflecting a “description-experience gap” (Hertwig & Erev, 2009). The bias
to underweight rare events in decisions from experience (Erev & Haruvy, 2016) was documented
in many settings including repeated risky decisions with partial (Barron & Erev, 2003), complete
(Camilleri & Newell, 2011), and biased feedback (Plonsky & Teodorescu, 2020a); repeated (Jessup
et al., 2008), and one-shot (Cohen et al., 2020) decisions from description with feedback; one-shot
decisions from sampling (Hertwig et al., 2004); investment decisions (Taleb, 2007); time-saving deci-
sions (Munichor et al., 2006); signal detection tasks (Barkan et al., 1998); consumer choice (Wulff
et al., 2015); choice among experts (Erev et al., 2022), and among decision rules (Bonder et al., 2023);
and animal choice behavior (Shafir et al., 2008).

While there is extensive research on the role of rare events in individual decisionmaking, only few
studies have directly investigated their role in the context of strategic interactions. One likely reason
for this gap is that basic research on decision making in strategic settings commonly abstracts agents’
payoffs in economic games as expected values or utilities of the feasible actions (see, e.g., Camerer,
2011), thereby overlooking effects of uncertainty in payoffs. This practice may reflect a reasonable
desire to study the effects of social or strategic uncertainty that emerges when outcomes depend on
the decisions of others, separately from the effects of environmental uncertainty that emerges when
outcomes are drawn from an underlying distribution (Bruttel et al., 2023; Messick et al., 1988; Nagel
et al., 2018; Suleiman & Rapoport, 1988).1

Although this may be a reasonable research strategy, there is significant importance in examining
the joint effect of the two types of uncertainty. It is hard to think of natural settings in which there
is absolutely no environmental or no social/strategic uncertainty, and their joint interacting influ-
ence may well differ from the sum of their independent effects. Indeed, studies that incorporated
both forms of uncertainty revealed important insights (e.g., Avrahami et al., 2005; Fudenberg et al.,
2012; Moisan & Gonzalez, 2017; Schulze & Newell, 2015). For example, studies found that adding or
increasing environmental uncertainty reduces cooperation in public good games (Berger & Hershey,
1994; Dickinson, 1998; Levati et al., 2009; Wit & Wilke, 1998), in resource dilemma games (Budescu
et al., 1990; Rapoport et al., 1992), and in repeated prisoner’s dilemma games (Aoyagi et al., 2019;
Aoyagi & Fréchette, 2009; Bereby-Meyer & Roth, 2006; Gong et al., 2009; Kunreuther et al., 2009).
The payoff variability effect (Busemeyer & Townsend, 1993) demonstrated in individual learning
paradigms is one plausible explanation for these findings, suggesting basic learning processes may
extend to strategic interactions. Moreover, studies suggest that environmental uncertainty may have
a larger influence on behavior than social uncertainty (Rapoport et al., 1992).

As noted, studies that directly examined behavior in strategic interactions in the presence of rare
events are scarce. Artinger et al. (2012) studied one-shot public good games with rare events. They
compared behavior of participants who learned the outcome probabilities either via description or
via sampling (“experience”) and found little differences. They also found mixed evidence concerning
the apparent ‘weighting’ participants give to rare events. Yet, their results may stem from the fact that
decisions were not repeated. Indeed, Erev et al. (2010) organized a competition to predict behavior in

1Multiple studies have investigated whether the two sources of uncertainty are treated similarly by agents, mostly by com-
paring treatments in which the same outcomes are the result of each source of uncertainty (Bohnet & Zeckhauser, 2004; Bruttel
et al., 2023). The evidence suggests that in some cases these sources of uncertainty are treated similarly by subjects, but not in
all cases. For example, using such a design, Nagel et al. (2018) found that choice under risk is similar to behavior in stag hunt
games but not to behavior in entry games. In contrast to these studies, our research focuses on the joint impact of the different
sources of uncertainty.
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4-person repeated market entry games, some of which included rare events, and showed that models
that imply that rare events are underweighted performed best. Yet, they did not systematically inves-
tigate the impact of rare events in these settings nor were participants in their study provided with a
description of the payoff structure, the commonpractice when studying behavior in economic games.
Finally, Plonsky et al. (2021) studied a 4-person 3-alternative game abstracting behavior in a pan-
demic that provided the first clear evidence for behavior consistent with the underweighting of rare
events in fully described repeated games. While convincing, this latter study demonstrates this pat-
tern in only a single specific symmetric game in which all players face potential rare events. It remains
unknown whether findings generalize to other types of games, and particularly how players whose
payoffs do not include rare events respond when other players underweight rare events: Can they
learn to exploit this bias, and if they do, can people “unlearn” to underweight the rare events (and
so forth)? Additionally, these studies did not systematically compare settings with and without social
uncertainty to uncover how this additional aspect impacts behavior. Finally, extant research did not
systematically examine the importance of the presence of rare events in strategic interactions relative
to varying social dimensions.

The goal of the current study is to start investigating these questions empirically using 2-person
asymmetric repeated games with rare events. In the main treatment (Game “Rare Disasters”), one
player chooses between an outside option and a stochastically dominated alternative, which offers the
chance to get an outcome of a “rare disasters” lottery. That is, often, the lottery yields a good outcome
but rarely it yields a “disaster.”This implies that players who behave as if they underweight rare events
may be tempted to choose the (stochastically) dominated action. Strategic uncertainty complicates
these decisions however, since it is the decision of the second player that determines whether the first
player gets a chance to play the lottery, or loses with certainty. Importantly, for the first player to play
the lottery, the second player should himself choose a dominated action. Hence, both players have a
dominant action, which they should play in equilibrium of the stage game. Yet, the game is designed
such that if the first player behaves as if she underweights rare events, and if the second player realizes
it, then we expect both players to play their off-equilibrium actions.

Our experiment reveals that this is indeed how most participants play. To rule out alternative
explanations for this pattern of choice, we design and test a second treatment (Game “RareTreasures”)
in which these alternative explanations have similar predictions to the main treatment, but under-
weighting of rare events prescribes a major shift in the first player’s behavior, which we find. Finally,
we present a simple, and indeed simplistic, behavioral model to explain this behavior and estimate it
using two additional experiments that replicate and extend the first experiment. Together, our results
suggest underweighting of rare events plays a central role in these games, although players’ behavior
is also sensitive to the social and strategic context.

2. Games design and behavioral predictions
2.1. Two-person games with rare events
Our main treatment involves the asymmetric simultaneous-move 2-player finitely repeated game
presented in Figure 1. The focus in our study is on the choices made here by Player 1 (P1). In this
“Rare Disasters” game, P1 chooses between playing OUT, an outside option that guarantees a payoff
of zero, and playing IN, an option that involves both social/strategic uncertainty and environmental
uncertainty. The social uncertainty is the result of Player 2’s (P2) choice: If P2 plays RIGHT – his
strictly dominant action in the stage game – then P1 is guaranteed to lose 5. If, however, P2 plays
LEFT (a dominated action), then P1 is faced in additionwith environmental uncertainty that includes
rare events: her payoff is an outcome of the lottery “+5 with probability .9, −100 otherwise,” which
has expected value (EV) of −5.5.

In addition to this main treatment, we also consider the “Rare Treasures” game presented in
Figure 2. Game Rare Treasures is identical to Game Rare Disasters from Figure 1, except that the risky
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(a) 

  Player 2 

  LEFT RIGHT 
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 1
 IN 

5 w.p. 0.9, 

−100 otherwise; 

5 with certainty 

−5 with certainty; 

10 with certainty 

OUT 

0 with certainty; 

−5 with certainty 

0 with certainty; 

−5 with certainty 

 

(b) 

 

Player 1

Player 2 

+5 with probability 0.9,  
−100 otherwise; 
+5 with certainty  

0 with certainty; 
−5 with certainty  

−5 with certainty; 
+10 with certainty  

OUT IN 

RIGHT LEFT 

Fig. 1 The stage game in Game Rare Disasters, presented in normal form (a) and extensive form (b). w.p. = with probability.
Players make choices simultaneously and independently

(a) 
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  LEFT RIGHT 
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 1
 IN 

−10 w.p. 0.95, 

+100 otherwise; 

5 with certainty 

−5 with certainty; 

10 with certainty 

OUT 

0 with certainty; 

−5 with certainty 

0 with certainty; 

−5 with certainty 

 

(b) 

 

Player 1 

Player 2 

−10 with probability 0.95,  
+100 otherwise; 
+5 with certainty  

0 with certainty; 
−5 with certainty  

−5 with certainty; 
+10 with certainty  

OUT IN 

RIGHT LEFT 

Fig. 2 The stage game in Game Rare Treasures, presented in normal form (a) and extensive form (b). w.p. = with
probability. Players make choices simultaneously and independently

lottery that P1s can potentially play is replaced from one with a potential “disaster” (a negative rare
event, −100) to one with a potential “treasure” (a positive rare event, +100). The lottery in this Rare
Treasures game is also slightly better on average (EV = −4.5) than the lottery in the main treatment,
although it is still bad.

2.2. Behavioral predictions
Asmentioned, because P1s in the games presented above face both environmental and social/strategic
uncertainty, we focus on their decisions. What are the behavioral predictions of different theo-
ries/models for P1s behavior in these games? We start by discussing the expected pattern of behavior
if P1s underweight rare events (as we predict), and then show that this expected pattern qualitatively
differs from the expected behavior under alternative considerations.
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Underweighting of rare events. In both games, playing IN provides an expected loss (vs. an
outside option of zero). Yet, if P1 underweights rare events, she may choose to play IN in our main
treatment, Game Rare Disasters (Figure 1). This happens because the weight given to the potential
“disaster” event in the lottery (−100) would be smaller than it objectively deserves, potentiallymaking
the lottery appear attractive. For example, in the extreme case of complete neglect of the possibility
of the rare event here (i.e., behaving as if the payoff of the lottery is guaranteed to be +5), playing IN
is the payoff-maximizing choice under the belief that P2 is more likely to play LEFT than he is to play
RIGHT. In Game Rare Treasures (Figure 2), in contrast, if P1 underweights rare events, she would
treat the long-shot gamble that includes a potential “treasure” (+100) as even less attractive than it
objectively is. Hence, in this game, P1 is expected to play OUT. Therefore, our main qualitative pre-
diction under behavior that appears as underweighting of rare events is higher IN rates in Game Rare
Disasters than in Game Rare Treasures. Moreover, we may expect P1s to play IN with rates higher
than chance in Game Rare Disasters and with rates lower than chance in Game Rare Treasures. Note
however, that the choice rates themselves also depend on the beliefs, and actual behavior, of P2s.

Utilitymaximization/Equilibriumof the stage game. In both games, the EVof the lottery P1may
get is negative. Hence, P1’s payoff from playing OUT (0 with certainty) has second-order stochastic
dominance over the possible payoffs from playing IN (which are all negative in expectation). This
implies that any risk averse (or risk neutral) utility maximizing agent should always prefer OUT over
IN (Rothschild & Stiglitz, 1970), and OUT is the action prescribed in equilibrium of the stage game.2

Prospect theory. In Game Rare Disasters (Figure 1), both loss aversion and overweighting of rare
events decrease the attractiveness of IN relative to the utility maximization benchmark since losses
are only possible when playing IN, and since the rare event is large and negative. Hence, in this game,
playingOUT is also expected if P1 has prospect theory (Kahneman&Tversky, 1979) type preferences.
In Game Rare Treasures (Figure 2), loss aversion and overweighting of rare events operate in opposite
directions, so in principle an agent who adheres to prospect theory may play either way; yet in any
case prospect theory preferences cannot account for higher IN rates in Game Rare Disasters than in
Game Rare Treasures.

Theories of levels of reasoning (Level-k). For any level of reasoning higher than 0, theories of
levels or reasoning (Camerer et al., 2004; Nagel, 1995; Stahl & Wilson, 1995) predict that the decision
of P1 should correspond with utility maximization given beliefs on the actions of P2. As discussed
above, utility maximization implies OUT in both games regardless of the actions of P2 (for all non
risk-seeking agents). Hence these theories also predict P1s would play OUT, at least most of the time
(level-0 implies random choice). These models do not predict different behavior in the two games.

Inequity aversion. Common models of inequity aversion (Fehr & Schmidt, 1999) cannot jus-
tify playing IN in Game Rare Disasters, as we show in the Supplementary Material (SM). Intuitively,
playing IN leads to strong disadvantageous inequality in payoffs (difference of at least 15 points in
expectation) whereas playing OUT leads to mild advantageous inequality in payoffs which is likely
preferred. In Game Rare Treasures, models of inequity aversion would be somewhat more likely to
predict IN (because the disadvantageous payoff inequality is smaller in expectation), and if anything,
would thus predict higher IN rates in Game Rare Treasures than in Game Rare Disasters.

Altruism. P1smay realize that by constantly playingOUT (in either game) they sentence the other
player to a fixed loss, so some degree of altruism can help account for them playing IN (Cooper &
Kagel, 2016). Note however, that altruism cannot account for difference in behavior between the two
games: altruistic players would play IN to the same degree in both games.

2In case the agent is a utility-maximizing risk seeker (cf. Budescu et al., 1990), playing IN can be justified in both games.
Notably, however, unless the risk preferences are highly non-standard, risk seekers should play IN with higher rates in Game
Rare Treasures than in Game Rare Disasters as its lottery allows for much larger rewards and has a higher EV. Thus, utility
maximizing risk seekers are expected to play differently than underweighters of rare events.
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Boredom. Constantly playing OUT, and getting zero for sure, may be quite boring (Pirla &
Navarro-Martinez, 2022). Hence, in both games, boredom can imply P1s would play IN. Again,
however, boredom does not predict different behavior in the two games.

Efficiency seeking. In both games, the highest joint (expected) payoff for the players is obtained
under the profile (IN, RIGHT). Hence, efficiency concerns may lead P1s to play IN (under the belief
that P2 will play RIGHT). Yet, efficiency seeking does not predict different IN rates in the two games.

To sum, behavior that appears as underweighting of rare events makes a unique qualitative pre-
diction concerning the behavior of P1s that none of the other explanations make: higher IN rates in
Game Rare Disasters (Figure 1) than in Game Rare Treasures (Figure 2). In addition, underweight-
ing of rare events may also predict relatively high IN rates in Game Rare Disasters, although IN is
a (stochastically) dominated action in this game. This latter prediction can also be made based on
other considerations, like boredom, efficiency seeking, and altruism. Yet, behavior that appears as
underweighting of rare events is the only explanation that would also predict dominated play by P2s.

Specifically, note that even if P1 behaves as if she underweights rare events, she will only play IN in
Game Rare Disasters if she believes it is likely that P2 will play LEFT, a dominated action in the stage
game. Since the game is repeated over many rounds, and since the worst possible outcome for P2s
occurs if P1s play OUT, such dominated play can in principle be justified (and perhaps anticipated
by P1s), but only if P2s believe, or learn from experience, that playing LEFT increases the chances
that P1s would play IN in future rounds.3 Note that such belief or learning is unlikely if P1 plays IN
due to boredom, altruism, or efficiency seeking. Under these mechanisms, P1 does not benefit (and
can even suffer disutility) from P2 playing LEFT, and P2 should therefore play RIGHT instead. Thus,
although analysis of equilibrium in dominant strategies (as well as analysis of many popular choice
models) would predict that in the Rare Disasters game (Figure 1), P1 will play OUT and P2 will play
RIGHT, if P1 behaves as if she underweights rare events in this game, and if P2 realizes it, then we
may expect both players to play their off-equilibrium actions (IN, LEFT).

3. Experiment 1
The experiment was programmed using O-Tree (Chen et al., 2016) and received IRB approval from
the University of Haifa.

3.1. Method
3.1.1. Procedure
Participants played 60 rounds of either Game Rare Disasters presented in Figure 1 or Game Rare
Treasures presented in Figure 2. All participants in the same session played the same game. After
providing consent to participate, participants read the instructions, which included an explicit pre-
sentation of the game theywere about to face, in extensive form. In addition, the instructions included
an explanation that theywere about to be randomly paired, for thewhole experiment, with one anony-
mous participant and that one of themwill play the role of P1 and the other the role of P2 throughout
the game. After answering two open text comprehension questions concerning the payoff structure
of the game, participants were paired and randomly assigned to their role (P1 or P2).

Throughout the game, participants always saw a full description of the game in extensive form on-
screen. In each round of the game, they each had to individually and simultaneously select between
IN and OUT (P1s) or between LEFT and RIGHT (P2s). After both made a choice, they were each
given feedback for that round. Feedback included the choice they made, the payoff they obtained, the

3If P2 expects P1 to behave as if underweighting rare events, then playing LEFT is expected based on the principles of
forward induction (Balkenborg & Nagel, 2016; Kohlberg & Mertens, 1986; Van Damme, 1989) or anticipation philosophy
(Mitzkewitz & Nagel, 1993), or based on models of levels of reasoning that apply to repeated play (e.g., Nagel, 1995). Yet, none
of these can account for dominated play without the belief that P1 prefers the bad lottery over 0 with certainty.
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forgone payoff they would have obtained had they chosen the alternative (note this counterfactual
assumes the other player choice does not change), the choice made by the other player, and the payoff
the other player obtained.

To avoid delays, participants had a limit of 10 seconds to submit their choice (this limit was
extended to 18 seconds in the first three rounds). If they failed to submit their choice by that time, the
computer randomly made a choice for them, played it out as usual, and deducted 2 points from their
payoff. The limit and associated penalty were clearly stated in the instructions. A failure to submit a
choice in time in a particular round was also clearly stated as part of both players’ feedback for that
round (i.e., it was also communicated to the other player). In all analyses, we excluded pairs in which
at least one of the players did not make a choice in time in more than 10% of the rounds. All choice
rates we report exclude any decisions made automatically by the computer upon time out (2.2% of
the decisions). The median time for completion of the experiment in full (including wait times) was
17.7 minutes (IQR = 5.1).4

Participants knew that they would be paid a bonus that is contingent on their realized payoff in one
randomly selected round, with each point worth $0.01, in addition to an endowment of 100 points
from which a negative realized payoff could be deducted.

3.1.2. Participants
Participants were recruited from Amazon Mechanical Turk (MTurk). In total, 119 pairs of par-
ticipants started the experiment (logged in, completed the comprehension questions, paired with
one another and made at least one decision). In 15 of these pairs, one of the participants stopped
responding at some point in the experiment, leaving 104 pairs who completed the experiment in full.
Thirty-four pairs were excluded from the analysis because at least one of the players did not make a
choice in time in more than 10% of the rounds.5 Thus, we analyze data of 140 participants (87 males,
53 female;Mage = 36.5, SDage = 11.8). Of these, 78 (39 pairs) played Game Rare Disasters and 62 (31
pairs) played Game Rare Treasures.

Participants received a show up fee of $2 and a mean performance-contingent bonus of $0.98
(SD = 0.13). 63% of participants answered both (open text) comprehension questions correctly.
While we do not discard participants who answered any of the questions falsely, we also repeated all
analyses for the subgroup that answered both questions correctly, with qualitatively similar results,
although decreased power implies fewer tests reach the required significance level.

3.2. Results
Figure 3 shows the rates of off-equilibrium play for both players in both games. Namely, for each P1,
we computed the IN-rate, the proportion of rounds in which the participant chose to play IN, and
for each P2, we computed the LEFT-rate, the proportion of rounds in which the participant chose to
play LEFT. (In computing both proportions, we first excluded rounds in which the participant had
timed out.) As Figure 3 shows, most participants in Game Rare Disasters (Figure 1), but not in Game
Rare Treasures (Figure 2), deviated from their prescribed action in equilibrium of the stage game.

Specifically, in gameRareDisasters, themean IN-rate was 62.7%, significantly greater than chance,
t(38) = 2.77, p = .009, suggesting P1s were more likely to play a stochastically dominated action
over the action prescribed in equilibrium of the stage game. This is despite the fact that by playing

4Unfortunately, data on duration of the experiment was lost for some of the sessions. The estimate of the median duration
is based on data of 50 of the participants.

5The relatively high rate of participants who did not complete the experiment in full or who were excluded due to lack of
timely responses (their own or their partner’s) is probably the result of server glitches that affected the ability of participants to
interact promptly with their partners. Note that including all pairs who completed the experiment in full does not qualitatively
change any of the results reported here. Furthermore, we replicated the main results of the experiment in two additional
experiments reported later in this paper. For the online replication experiment (Experiment 2 below), we used amore powerful
server and indeed saw significantly fewer glitches and a much higher completion rate.
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Fig. 3 The IN-rates (P1s) and LEFT-rates (P2s) in experiment 1. Game Rare Disasters is shown in Figure 1 and Game Rare
Treasures is shown in Figure 2. Each dot is the choice rate of one person. Diamonds represent the mean aggregate choice
rates and error bars correspond to 95% CI for the mean

OUT participants could have guaranteed a payoff of zero, whereas their average obtained payoff from
playing IN in this game was significantly lower than zero: M = −3.87, t(38) = −5.41, p < .001.6 In
Game Rare Treasures, in contrast, the mean IN-rate was only 32%, significantly lower than chance,
t(30) = −3.76, p < .001, suggesting P1s in this game played the action in equilibrium of the stage
game more often than not. Most importantly, the difference between the IN-rates in the two games
is large and significant: M = 0.307, 95% CI [0.175, 0.440], t(66.29) = 4.63, p< .001.7 This difference
is directly predicted by a tendency of P1s to underweight rare events, but cannot be predicted by
alternative explanations as discussed in Section 2.2.

Figure 4 presents the average obtained payoffs of the pairs of players in each game, in com-
parison with the expected payoffs, if both play pure strategies for all 60 rounds. It shows that in
Game Rare Disasters, but not in Game Rare Treasures, the observed average payoffs are closer to
the payoffs that would be expected if both players always play their dominated strategies (IN, LEFT)
than to their expected payoffs had they always played the equilibrium in dominant actions strategy
(OUT, RIGHT). In both games, the payoffs are far from the payoffs expected if P1s were altruistic or
efficiency seeking (IN, RIGHT).

Figure 5a shows the learning curves, the off-equilibrium rates in five blocks of 12 rounds each.
While the choice rate of P1s in Game Rare Disasters appears to be rather stable across blocks, in
Game Rare Treasures, P1s clearly learn in the direction of payoff maximization (i.e., staying out and
getting zero for sure). This pattern suggests that the behavior consistent with underweighting of rare
events is robust and is not eliminated with additional rounds of feedback, at least in the medium
term. Figure 5b shows that the average difference in obtained payoffs within each pair stabilizes over

6Theobserved payoff from playing IN, including rounds in which the player chose OUT, is even lower, as would be expected
due to endogeneity.

7This effect is also significant for the subsample of participants who answered both comprehension questions correctly:
M = 0.297, 95% CI [0.116, 0.479], t(41.02) = 3.31, p = .002.
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Fig. 4 Average payoffs in Experiment 1. Each dot represents the average payoff of one (fixed) pair. Red triangles represent
the mean aggregate average payoffs in each game. Blue marks show the expected payoffs under pure strategies in each
game. The stage-game equilibrium prediction, in both games, is (OUT, RIGHT)

time in both games. Yet, while in Game Rare Treasures the average payoffs are equalizing (perhaps
suggesting ex-post fairness considerations are at play in this game), in Game Rare Disasters, where
underweighting of rare events implies lower average payoffs for P1s, the average payoff difference
remains significantly and strongly below zero over time, with P1s’ payoffs lower on average than P2s.
That is, P1s continue to choose IN throughout the game despite getting much worse payoffs than
the payoffs obtained by their counterparts, which implies ex-post fairness considerations are less
relevant.

Table 1 presents the choice rates of P1s in a particular round t contingent on P2s choice and
the lottery outcome in the previous round t − 1. Most clearly, it shows that P2’s play in t − 1 is
strongly associated with P1’s play in round t: P1s play IN much more after P2s play LEFT than
after they play RIGHT. This supports the stance that P1s prefer P2s to play LEFT although altruism
and efficiency seeking would predict otherwise. More importantly, Table 1 further shows behav-
ior consistent with underweighting of the rare events is not eliminated even after players directly
observe the rare events being generated by the risky lottery. In Game Rare Disasters, P1s choose
IN immediately after observing the −100 event in 86 of the 128 (67.2%) instances in which they
see it occur. This IN rate is significantly greater than chance in a sign test, p < .001. In Game
Rare Treasures, in contrast, P1s play IN in only 13 of the 35 (37.1%) rounds that immediately
follow a +100 event, a rate which is not significantly lower than 50% (p = .18). Finally, Table 1
also shows that despite the round-by-round independence, and the full information available, the
outcome of the lottery in t − 1 is associated with the choice rates at t. This suggests that play-
ers used the feedback on previous choices to inform their future ones, perhaps because they do
not understand or believe the objective probability information, and the outcomes can then speak
to the actual probability of payoffs. Interestingly, however, in Game Rare Treasures, P1s play IN
less often after seeing the lottery provide a large win (+100) than after it provides a smaller loss
(−10). This type of behavior, which does not emerge in Game Rare Disasters here, contradicts com-
mon models of learning in games, like reinforcement learning (Erev & Roth, 1998) and directional
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Fig. 5 Choices and outcomes over time in Experiment 1. (a) Mean aggregate off-equilibrium choice rates (IN-rates for P1s
and LEFT-rates for P2s) over time. (b) Mean aggregate average payoff difference between players in the same pair over time
(negative numbers indicate higher payoff of P2). Results are shown in blocks of 12 rounds each. Game Rare Disasters is
shown in Figure 1 and Game Rare Treasures is shown in Figure 2. Error bars correspond to 95% CI for the mean

Table 1 Choice rates contingent on events in previous round

At round t − 1 P(IN) at round t

P2’s play Lottery outcome Rare Disasters Rare Treasures

LEFT Loss (−100 or −10) 67.2% (n = 128) 44.1% (n = 705)

LEFT Gain (+5 or +100) 75.2% (n = 1299) 37.1% (n = 35)

RIGHT Unknown 41.2% (n = 833) 22.6% (n = 1049)

Note: Cells in bold font mark the choice rates following the rare events; n marks the number of rounds in which the contingency occurred.
Outcomes −100 and +5 pertain to Game Rare Disasters, whereas outcomes −10 and +100 pertain to Game Rare Treasures. In rounds in which
P2 chooses RIGHT, P1 does not get information on the outcome of the lottery.

learning (Selten & Stoecker, 1986), but may be consistent with some type of a gambler’s fallacy or
pattern seeking (e.g., Plonsky & Teodorescu, 2020b; Plonsky et al., 2015), or with ex-post fairness
considerations.
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P2s behavior, while of lesser focus in the current study, is also striking (see Figure 3). In GameRare
Disasters, P2s mean LEFT-rate was 63.2%, significantly higher than chance, t(38) = 2.62, p = .012,
despite the fact that LEFT is strictly dominated by the alternative. This behavior suggests that P2s
strategically choose a dominated action in an effort to get P1s to play IN. This interpretation is sup-
ported by the learning curve in Figure 5a, suggesting that in this game, P2s learn to play LEFT more
often. In particular, the LEFT-rate in the first block (49.9%) is lower than the LEFT-rate in the last
block (65.8%), and the difference is significant: t(38) = −2.96, p = .005. In Game Rare Treasures,
P2s mean LEFT-rate was 41.8%, which is not significantly lower than chance (p = 0.11), but it is sig-
nificantly different than the LEFT-rate in Game Rare Disasters: M = 0.214, 95% CI [0.072, 0.356],
t(67.06) = 3.01, p = .003. Notably, however, it is not clear how P2s should behave in this game under
the assumption that P1s underweight rare events and hence are unlikely to play IN regardless of P2s
actions.

Figures S1 and S2 in the SM show the choice rates over time for each pair of players separately.They
show most pairs in Game Rare Disasters (but not in Game Rare Treasures) are converging toward the
profile (IN, LEFT), in which both actions are off-equilibrium of the stage game.

3.3. Discussion
The results show that in Game RareDisasters, P1s tend to play INwith high rates, even though choos-
ing IN leads to losses on averagewhile their outside option provides zerowith certainty.This tendency
is robust throughout 60 rounds and is not eliminated even in the rounds that immediately follow
rounds in which the lottery from IN generates a catastrophic −100 payoff. This type of behavior can-
not be explained bymany popularmodels, but it is consistent with the assumption that people behave
as if they underweight rare events. Most diagnostically, underweighting of rare events predicts higher
IN rates inGameRareDisasters than inGameRare Treasures, and the results indeed show a large and
significant difference between the IN-rates in the two games. Recall that the only difference between
these two games is the risky lottery P1s get when playing IN, and therefore alternative explanations
for P1s behavior like boredom, altruism, risk loving preferences, or efficiency concerns cannot fully
capture the results.

4. Modelling P1s behavior: The REALS model
As discussed above, it is hard to qualitatively account for the observed behavior in the two games
presented above without assuming P1s behave as if they underweight rare events. Yet, it is possible
that other factors also come into play. To better understand the different factors that affect behavior in
these settings, we decided to develop a computational model that can capture the observed behavior
not only qualitatively but also quantitatively.

Our search for such a model starts with the assumption that it must include a mechanism that
implies underweighting of rare events. In the literature on individual decision making with feedback,
a common modelling approach is to assume participants behave as if they rely on small samples of
past experiences (Barron&Erev, 2003; Plonsky et al., 2015).This “reliance on small samples” assertion
is the basic tenet in choice models that performed best in a series of competitions to predict human
choice behavior (Chen et al., 2011; Erev et al., 2017; Erev et al., 2010; Plonsky et al., 2019), and can
explain many behavioral phenomena, including underweighting of rare events (Chater et al., 2020;
Erev et al., 2023; Fiedler, 2000; Hertwig & Pleskac, 2010; Kareev, 2000; Osborne & Rubinstein, 1998;
Rakow & Newell, 2010; Selten & Chmura, 2008). To see why, consider a simplistic “reliance on a
sample of 5” model (Erev et al., 2023; Erev & Roth, 2014) in which agents randomly draw five past
experiences from memory and then choose the option with the highest payoff average in this (small)
set of five experiences. This model captures underweighting of rare events because, for example, 59%
of samples of size five that are drawn from a distribution yielding Event E with probability .1 will
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not include Event E at all, and thus, in most cases, choice will reflect the “neglect” of Event E. Simple
models of reliance on small samples, like the sample-of-5 model, have been shown to capture well
behavior in symmetric games with rare events (Plonsky et al., 2021; Roth et al., 2020), although they
are indifferent to the existence of other interacting agents.

Motivated by this extensive literature, we decided to examine the predictions of several sim-
ple models that assume reliance on small samples (see SM). Our examination confirmed that such
models capture the main qualitative prediction based on underweighting of rare events: higher
IN-rates in Game Rare Disasters than in Game Rare Treasures. Quantitatively, the simple reliance
on small sample models are also much more accurate than models that assume agents choose
to maximize expected value or choose actions that have a higher running average based on the
observed outcomes. However, these simple models also all heavily underpredict the IN-rates in
both games. That is, participants in Experiment 1 played IN much more than would be expected
under simple models of reliance on small samples. Our analysis suggests that this happens because
of the social-strategic setting: Playing IN does not guarantee P1s a draw from the risky lottery;
their payoffs also depend on the choices of P2. Hence, our results seem to imply that the behav-
ior of P1s is sensitive to the existence of another player in the game, and specifically, that P1s are
“friendlier” toward P2s (play IN more frequently) than simple reliance on small sample models
assume.

We therefore developed a simplistic model that assumes P1s’ behavior is driven both by a ten-
dency to rely on small samples and by sensitivity to the existence and the behavior of P2s. The model
Reciprocal Altruistic Sampler (REALS) assumes P1s’ behavior is a function of three components:
payoff-based behavior, social-based behavior, and strategic behavior. Payoff-based behavior is the
part of the behavior that is driven directly by the payoffs the player herself obtains in the game. In
REALS, this component reflects reliance on small samples (and thus underweighting of rare events).
Social-based behavior is the part of the behavior that is driven by the payoffs that the other player
can obtain in the game. In REALS, this component reflects “friendliness” toward the other player, or
some level of altruism. Strategic behavior is the part of the behavior that is the result of the player’s
strategic response to the choices that the other player makes. In REALS, this component reflects a
tendency to reciprocate the actions of the other player (Bolton & Ockenfels, 2000).

Specifically, REALS computes U (a)it , the utility of agent i from taking action a in round t, as
follows:

U (a)it = Upayoff (a)it + Usocial (a)it + Ustrategic (a)it
Here, Upayoff (a)it is the average payoff that agent i observed action a providing in kit rounds that

are drawn, at random with replacement, from all rounds 1,…, t − 1. The sample size kit is uniformly
drawn: kit ∼ Uni [1, 𝜅] and 𝜅 is a positive integer free parameter to be estimated8; Usocial (a)it is the
utility of agent i that is associatedwith the level of altruism or “friendliness” involved in playing action
a in round t; and Ustrategic (a)it is the utility of agent i associated with the level of reciprocity involved
in playing action a in round t given the behavior of the other player in rounds 1,…, t − 1. The agent
then randomly chooses among actions that maximize U (a)it .

9

In the current games (Figures 1 and 2), we assume for simplicity that for actionOUT, in all rounds,
all three components are equal to zero. Further, since the payoff of P2s is strictly negative when P1s

8Previous studies of decisions from experience have suggested that the sample size likely changes from round to round and
from agent to agent (Erev et al., 2023; Plonsky et al., 2015), and we follow this assumption. Note however that for the purpose
of deriving predictions for the mean aggregate behavior, the sample size can also be assumed to be fixed across rounds for the
same agent.

9For completeness of specification, we assume that in the very first round both Upayoff (a)1 and Ustrategic(a)1 are equal to
zero for all actions. However, it is likely that before getting feedback in the first round, participants do consider the potential
payoffs, and also have beliefs regarding the actions of the other player. We reserve a more thorough analysis of the differences
between behavior prior to getting feedback and following it to future studies.
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play OUT, and strictly positive when P1s play IN, we assume Usocial (IN)it = 𝜑i for all t, with 𝜑i ∼
Uni (0, 𝜙) a property of agent i, and 𝜙 ≥ 0 a free parameter capturing the population’s tendency to
play altruistically in these games. To compute Ustrategic (IN)it = 𝜑i, we first assume that P1s want P2s
to play LEFT (otherwise, playing IN results in a guaranteed negative payoff), and reciprocate such
play (or punish alternative play). Specifically, our implementation assumes:

Ustrategic (IN)it = { −𝜃i, if aP2t−1 = RIGHT
0, if aP2t−1 = LEFT

Where aP2t−1 is the action chosen by P2 in round t − 1, 𝜃i ∼ Uni (0, 𝜗) a property of agent i, and 𝜗 ≥ 0
is a free parameter capturing the population’s tendency to reciprocate (or punish) in these games.That
is, we assume P1s have a disutility from playing IN following rounds in which P2s choose RIGHT.10

In total, REALS includes three free parameters, one for each mechanism that it assumes drives
behavior. It is easy to find values for these three free parameters that would make it capture well the
two aggregate IN-rates of P1s in Experiment 1.11 However, we chose instead to examine the model’s
main assertions experimentally, using Experiments 2 and 3.

5. Experiments 2 and 3
5.1. Method
The goal of Experiments 2 and 3 was to evaluate the different factors driving the behavior of P1s in
the games above, as per the assumptions of REALS. To that end, both experiments included three
conditions: Strategic, Dictator, and Individual. Condition Strategic was a within-subject conceptual
replication of Experiment 1. In Condition Dictator, we eliminated the strategic component of the
decisions of P1s. While P2s were still part of the game, they were passive players, assigned to play
LEFT in every round. Hence the difference between the behavior of P1s in Condition Strategic and
Condition Dictator should reflect the strategic component of the utility of P1s from playing IN. In
Condition Individual, we further eliminated the social component of the decisions of P1s. In this
condition, P1s were engaged in an individual choice task, without having their choices impact the
payoff of another player. Hence the difference between the behavior of P1s in Condition Dictator
and Condition Individual should reflect the social component of the utility of P1s from playing IN.
By comparing the behavior of P1s across the three conditions we could thus disentangle the three
factors that REALS assumes drive choice in these games. The two experiments were identical to
one another, with the exception that Experiment 2 was run online using a crowdsourcing platform,
whereas Experiment 3 was run in a physical lab with a student population.

5.1.1. Procedure
The procedures used in Experiments 2 and 3 are identical. Participants played variants of both
the Rare Disasters game (Figure 1) and the Rare Treasures game (Figure 2) in one of three con-
ditions: Strategic, Dictator, and Individual. A session included either only Condition Strategic or
both Condition Dictator and Condition Individual. Sessions of Condition Strategic were similar to
Experiment 1,with the exception that players played both gameswithin-subject in a counter-balanced
order. As in Experiment 1, participants in these sessions were randomly allocated to the role of P1 or
the role of P2. They remained in that role for both games. However, partners were replaced between
the two games, such that each participant played each game with a different fixed partner.

10This assumption is motivated by the fact that the observed correlation between choice of IN by P1 in round t and choice
of RIGHT by the corresponding P2 in round t−1 in Experiment 1 is −0.33.

11For example, with 𝜅 = 5, 𝜙 = 15, 𝜗 = 18, REALS predicted IN-rates are 61.9% for the Rare Disasters game and 33.3%
for the Rare Treasures game, whereas the observed IN-rates are 62.7% and 32% respectively.
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In sessions that included the other two conditions (Dictator and Individual), participants were
randomly allocated to play in either Condition Dictator or Condition Individual. In Condition
Dictator, all participants (all playing as P1) were aware that their decisions affect both their own
payoffs and the payoffs of another passive player they were paired with. The games in this condition
were equivalent to the Rare Disasters and Rare Treasures games from Condition Strategic, under
the constraint that P2s are obligated to choose LEFT. For example, in the Rare Disasters game here,
every IN choice resulted in a payoff of “5 with probability .9 and −100 otherwise” for P1 and +5 for
(passive) P2. In Condition Individual, the payoff structure of P1s was identical to that of Condition
Dictator, however, participants (again, all P1s) played alone and were not paired with another player.
To avoid deceit, all participants allocated to Condition Individual were also automatically assigned
as P2s in the Dictator condition (i.e., each person was paired with a player from Condition Dictator
that determined part of their payoff). Participants knew that their final bonus will also depend on
the decisions made by another person participating in that experiment, but did not know how this
additional payoff was determined.

Other than the allocation to the different conditions, we implemented several modifications to
the experimental paradigm from that of Experiment 1. First, we added the current round number on
screen at all times. This ensured that participants could easily know exactly how many rounds they
have left in the game. Second, participants were required to answer one (open text) comprehension
question concerning the payoff structure before each game (for a total of two such questions in the
session), and were unable to progress to the game without answering the question correctly (i.e.,
when inserting a wrong answer, they were prompted to read the instructions again and provide a new
answer). This helps ensure that all participants understand the described payoff structure before the
games start. Participants failed to correctly answer the comprehension question on their first attempt
in 14.1% and 15.6% of the cases in Experiment 2 and Experiment 3 respectively. Before providing
the correct answer that allowed them to progress, they gave 0.4 wrong answers in Experiment 2 and
0.24 wrong answers in Experiment 3, on average. Third, we changed the names of the actions of P1s
from IN and OUT to HEADS and TAILS, respectively. This helps ensure a more neutral framing
of these actions. Note however, that in our analysis we continue to call these actions IN and OUT
for consistency. Finally, we increased the penalty provided when not adhering to the deadline to 3
points. The increase in penalty may have been effective: While in Experiment 1, participants did not
respond in time in 2.2% of the rounds, in Experiments 2 and 3, these rates dropped to 0.8% and 0.4%
of the rounds respectively (0.8% and 0.5% when considering Condition Strategic only). The median
time for completion of the experiment in full (including wait times) was 34.5 (IQR = 10.1) and 29
(IQR = 5.8) minutes in Experiments 2 and 3 respectively.

5.1.2. Participants
Participants in Experiment 2 were recruited from Prolific. In total, 180 participants (113 males, 66
females; Mage = 40.1, SDage = 11.8) started the experiment. Of these, 46 were assigned to Condition
Individual, 46 were assigned to Condition Dictator, and 88 were assigned to Condition Strategic (44
to the role of P1 and 44 to the role of P2). Two participants in Condition Dictator, paired with each
other, stopped respondingmidway through the experiment. Further, as in Experiment 1, we excluded
from the analyses data from games in which a participant timed out in more than 10% of the rounds.
In Condition Strategic, but not in the other conditions, this implied the exclusion of data from both
players of the pair in that game. After these exclusions, we were left with: (a) in Condition Strategic,
data for 43 pairs in Game Rare Disasters and for 42 pairs in Game Rare Treasures; (b) in Condition
Dictator, data for 45 players in Game Rare Disasters and for 46 players in Game Rare Treasures; and
(c) in Condition Individual, data for 45 players in both games. Participants received a show up fee of
£5.50, and an additional bonus composed of an endowment of 105 points and the payoff received in
one randomly selected round, at a conversion rate of 44 points to £1. The average bonus was £2.33
(SD = 0.27).
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In Experiment 3, we recruited 128 students from theTechnion (77males, 51 females;Mage = 24.03,
SDAge = 2.5) through a centralized experiment system (Sona). They were randomly assigned to one
of the three conditions: 32 participants in Condition Individual, 32 in Condition Dictator, and 64
in Condition Strategic (32 to the role of P1 and 32 to the role of P2). In this experiment, none of
the participants dropped out or timed out in more than 10% of the rounds, and thus all partici-
pants were included in the analyses. Participants received course credit. In addition, participants were
paid the equivalent of the sum of an initial endowment of 100 points and the points they earned in
one randomly selected round, with each point worth 0.2 NIS. The average payment was 20.35 NIS
(SD = 4.83), equivalent to approximately $5.50.

5.1.3. Data analysis
As in Experiment 1, we computed, for each participant, the IN-rate (or the LEFT-rate), which is
the proportion of rounds in which the participant chose IN (LEFT) out of all rounds in which the
participant made a choice in time. To analyze the difference between the behavior of P1s in the
three conditions, we implemented, using restrictedmaximum likelihoodmethods and packages lme4
(Bates et al., 2014) and lmerTest (Kuznetsova et al., 2017) in R, linear mixed-effects models with ran-
dom factor for participant and fixed effects for game (2 levels), for condition (3 levels), and for their
interaction. To analyze the interaction, we used estimatedmarginal means using R package emmeans
(Lenth, 2018), making pairwise comparisons of conditions within game, and report p-values adjusted
for multiple comparisons using Tukey method.

5.2. Results
5.2.1. Experiment 2
We start by presenting the results of Condition Strategic alone, as it serves as a within-subject replica-
tion of Experiment 1. Figure 6 shows the rates of off-equilibrium play for both players in both games.
The pattern from Experiment 1 is largely replicated, although the effects are smaller. Specifically, in
Game Rare Disasters, the mean IN-rate was 56.3%, which is not significantly greater than chance,
t(42) = 1.18, p = .244. In Game Rare Treasures, the mean IN-rate was 37.3%, which is significantly
lower than chance, t(41) = − 2.09, p= .043. More importantly, however, is the fact that when consid-
ering the within-person difference between the IN-rates of the two games, the average difference is
large and significant:M = 0.206, 95%CI [0.079, 0.332], t(40) = 3.28, p= .002, suggesting the average
participant chose to play INmore often in the RareDisasters game than in the Rare Treasures game, as
is predicted by a tendency to underweight rare events. This observation is particularly striking given
that the average observed payoff from playing IN in Game Rare Disasters (M = −6.14, which is itself
significantly lower than the outside payoff of zero, p< .001) was lower than the average observed pay-
off from playing IN in Game Rare Treasures (M = −4.66, also significantly lower than zero, p< .001),
and this (within-person) difference is significant: t(40) = −3.15, p= .003. That is, participants played
IN more frequently in Game Rare Disasters, although the average payoff they saw IN generates in
that game was lower.

The somewhat lower IN-rate in Game Rare Disasters here (compared to Experiment 1) may be
explained by the fact that P2s in this game exhibited mean LEFT-rates of 50.6%, notably lower than
the LEFT-rate in the same game in Experiment 1. However, this still implies that about half of the
choices were deviations from a dominant strategy. In Game Rare Treasures, P2s mean LEFT-rate was
42.9%. Both LEFT-rates are not significantly different than 50% (ps > .20).

We also analyzed Condition Strategic in this experiment for the average obtained payoff tuples,
for behavior over time, and for participants’ sequential behavior contingent on last round’s events.
Given that the results parallel the main findings of these analyses in Experiment 1, we present them
in the SM.
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Fig. 6 The IN-rates (P1s) and LEFT-rates (P2s) in Condition Strategic of Experiment 2. Each dot is the choice rate of one
person. Diamonds represent the mean aggregate choice rates and error bars correspond to 95% CI for the mean

We next turn to the comparison of the IN-rates across the three conditions. Figure 7 shows these
rates for each of the conditions in each of the games. Consistent with the idea of underweighting of
rare events, the results of a linear mixed-effects model (see SM for full regression table) show a main
effect for game, 𝜒2(1) = 74.9, p < .001, with a large and significant difference between the IN-rate
in the Rare Disasters game (M = 66.7%) and the IN-rate in the Rare Treasures game (M = 37.1%)
when averaging across conditions, t(130) = 8.59, p < .001. The statistical model also shows a main
effect for condition, 𝜒2(2) = 6.83, p = .033. Averaging over the two games, the IN-rate in Condition
Dictator (M = 60.3%) is higher than inCondition Strategic (M = 46.9%) and inCondition Individual
(M = 48.1%), although the pairwise differences are onlymarginally significant (p= .056 and p= .082
respectively). Yet, the effect of condition is different in the two games, as indicated by a significant
interaction between game and condition 𝜒2(2) = 6.61, p = .037. Post-hoc tests show that in Game
Rare Disasters, the IN-rate in Condition Strategic (M = 56.3%) is significantly different than the IN-
rate in Condition Dictator (M = 74.7%), t(239) = −2.51, p = .034. This difference suggests that in
this game, the additional strategic element of the game (the fact that the players’ payoffs depend also
on the choices of another player) lowers the IN-rate. Note that this is consistent with the conjecture
that in the Rare Disasters game P1s prefer to play IN as long as their outcome is a draw from the
bad (negative EV) lottery. Yet, the IN-rate of Condition Individual (M = 68.7%) is not significantly
different than the IN-rates in the other two conditions (ps > .22). Specifically, this suggests that the
addition of the social component (the fact the players’ choices impact the payoff of another person)
does not influence behavior in the Rare Disasters game.

In contrast, in Game Rare Treasures, the IN-rate in Condition Individual (M = 27.4%) is sig-
nificantly different than the IN-rate in Condition Dictator (M = 46.3%), t(237) = 2.64, p = .024.
One potential reason for the discrepancy between the games in the impact of the addition of the
social component is a ceiling effect in the Rare Disasters game. The IN-rate of Condition Strategic
(M = 37.3%) is not significantly different than the IN-rates in the other two conditions in the Rare
Treasures game (ps > .37), implying that here the addition of the strategic component has little
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Fig. 7 The In-rates in Experiment 2. Each dot is the in-rate of one person. Diamonds represent the mean aggregate IN-rates
and error bars correspond to 95% CI for the mean

influence on P1s behavior. A possible explanation here would be that P1s who choose to play IN
in this game are relatively indifferent to P2s choices, as with any P2 choice their payoff is unfavorable.

5.2.2. Experiment 3
Again, we start with the results of Condition Strategic alone. Figure 8 shows the rates of off-
equilibrium play for both players in both games. The IN-rates of P1s in this experiment are
markedly lower than in the other experiments. In Game Rare Disasters, the mean IN-rate was 38.7%,
and in Game Rare Treasures, the mean IN-rate was 18.9%, both significantly lower than chance:
t(31) = −2.19, p = .036, and t(31) = −9.61, p < .001, respectively. This result suggests that in this
experiment, participants played much more in accordance with the prescribed action in equilibrium
of the stage game. Importantly, however, they did not play similarly in the two games. Consistent with
the prediction of an impact to underweighting of rare events, the average within-person difference
between the IN-rates of the two games is large and significant: M = 0.198, 95% CI [0.088, 0.307],
t(31) = 3.69, p < .001. This suggests P1s chose IN more when such choice allowed for a (bad) lot-
tery with frequent good outcomes than when it allowed for a (also bad, but slightly better) lottery
with large but rare good outcomes. Again, this is despite the fact that the average observed payoff
from playing IN in Game Rare Disasters (M = −5.55) was lower than the average observed payoff
from playing IN in Game Rare Treasures (M = −4.42), with a marginally significant within-person
difference, t(31) = −1.83, p = .076.

P2s in this experiment exhibited very similar LEFT-rates to those from Experiment 2: 50.2% in
Game Rare Disasters and 44.6% in Game Rare Treasures. Both rates are not statistically different
from chance (ps> .36). Again, we present the analysis of tuple payoffs, of learning, and of contingent
sequential play in the SM.
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Fig. 8 The IN-rates (P1s) and LEFT-rates (P2s) in Condition Strategic of Experiment 3. Each dot is the choice rate of one
person. Diamonds represent the mean aggregate choice rates and error bars correspond to 95% CI for the mean

Figure 9 shows the comparison of IN-rates between the three conditions. The results of a linear
mixed-effectsmodel (see SM) show, again consistent with underweighting of rare events, a significant
main effect for game, 𝜒2(1) = 69.8, p< .001, with a large and significant difference between the IN-
rate in the RareDisasters game (M = 53.5%) and the IN-rate in the Rare Treasures game (M = 24.4%)
when averaging across conditions, t(93) = 8.36, p< .001. In addition, the results show a main effect
for condition, 𝜒2(2) = 9.73, p = .008. Averaging over the two games, the IN-rate in Condition
Strategic (M = 28.9%) is significantly different than the IN-rate in Condition Dictator (M = 44.1%),
t(93) = −2.71 p = .021, and also significantly different than the IN-rate in Condition Individual
(M = 43.9%), t(93) = −2.70 p = .023. The difference between conditions Dictator and Individual is
non-significant (p > .99). Furthermore, the interaction between game and condition is not signif-
icant, 𝜒2(2) = 4.0, p = .135. This suggests that in this experiment, the strategic component of the
games had an influence on P1s behavior, reducing their IN-rates, but the social component of the
games did not appear to make much of a difference.

5.3. REALS model
Weuse a cross-validation procedure to fit themodel REALS to some of the data in Experiments 2 and
3, and use the fitted model to predict the aggregate choice of out-of-sample participants. Specifically,
we divided the participants in each experiment to five mutually exclusive folds and iterated over the
folds, each time using four of the folds as training data and the held-out fold as the test data. That is,
in each iteration, we fitted the model’s parameters to data of 80% of the participants and generated
the fitted model’s predictions for the behavior of the other participants. Our estimates for the best-
fit parameters are the median (for κ, an integer) or average (for φ and θ, real numbers) of the best
fit values across the five iterations, and the model’s predicted choice rates are the aggregated out-of-
sample predictions.

Recall that the model REALS assumes players’ behavior in the type of games we present here is
driven by three separable and independent components, Upayoff, Usocial, and Ustrategic, which involve
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Fig. 9 The IN-rates in Experiment 3. Each dot is the in-rate of one person. Diamonds represent the mean aggregate IN-rates
and error bars correspond to 95% CI for the mean

each one free parameter to estimate. Together with the experimental design of Experiments 2 and
3, this property allows us to fit REALS to the (training) data in these experiments in a sequential
manner (see similar approach inMarchiori et al., 2015). Specifically, we first use the data in Condition
Individual to estimate 𝜅, the parameter involved in settingUpayoff. Then, with 𝜅 fixed, we use the data
in Condition Dictator to estimate 𝜙, the parameter involved in settingUsocial. Finally, with both 𝜅 and
𝜙fixed, we use the data inCondition Strategic to estimate𝜗, the parameter involved in settingUstrategic.
By using this sequential procedure, we enforce (and test) the independence of the three components
of the model.12

We used a grid search over the parameter space, aiming to minimize the mean squared deviation
of the model from the training data. To derive the model’s predictions under a given set of parameter
values, we simulated, for each participant, 1000 REALS agents observing the actual sequence of pay-
offs observed by the participant (recall the feedback includes both the obtained and forgone payoffs
of players), and in Condition Strategic, also the actual choices P2made in each round. REALS predic-
tionwas then the average behavior of these 1000 agents.The best fit parameters and the out-of-sample

12Had we simultaneously fitted all parameters (e.g., using OLS), the estimated value of the parameters that are relevant to
more than one of the experimental conditions (e.g., 𝜅, involved in all three conditions) could have turned out to imply behav-
ior that deviates from that observed under the conditions in which they alone should determine the model (e.g., Condition
Individual). That is, although the simultaneous fitting procedure would have provided a globally better fit, the model would
be less likely to give proper explanation for the data. Further, MLE estimation is infeasible in our case because the likelihood
of certain observed behaviors under the model is exactly zero. For example, under REALS, it is impossible that a player would
choose IN in Condition Individual of Game Rare Treasures before the first time the rare +100 event occurs (other than in the
very first trial); yet this behavior is indeed observed in the data. This issue is a consequence of the fact that the model is too
simplistic: it does not consider at all the fact that participants have a full description of the payoffs that they can potentially get
from choosing each action, and does not assume any exploration or noise. Nevertheless, as we show, the model can provide
useful predictions to choice behavior and qualitatively explain the patterns of choice across conditions.
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Table 2 Observed and predicted in-rates in Experiments 2 and 3

Exp. Estimated parameters Experimental condition
IN-rate

REALS prediction Observed

2 (online) κ = 10 Rare Disasters

φ = 14.4 Individual 0.671 0.687

θ = 10.9 Dictator 0.696 0.747

Strategic 0.539 0.563

Rare Treasures

Individual 0.212 0.274

Dictator 0.464 0.463

Strategic 0.387 0.373

3 (lab) κ = 10 Rare Disasters

φ = 0.1 Individual 0.611 0.622

θ = 0.2 Dictator 0.685 0.596

Strategic 0.373 0.387

Rare Treasures

Individual 0.188 0.257

Dictator 0.244 0.286

Strategic 0.135 0.189

Note: REALS is the Reciprocal Altruistic Sampler model presented in Section 4. Estimated parameters are the median (for κ) or average (for φ
andθ) of thebest fit values in the training sets of a 5-fold cross validationprocedure. REALSpredictions the aggregate out-of-samplepredictions
on the validation sets of that procedure.

predictions of the fitted model are shown in Table 2. It shows REALS captures the results of all
conditions in both experiments (2 & 3) very well. We now turn to discuss each component of REALS
separately with respect to the data.

The first component of REALS, Upayoff, assumes reliance on the outcomes obtained in a sample of
K i
t ≤ 𝜅 past experiences. When κ is small, Upayoff will reflect behavior that is consistent with under-

weighting of rare events. Indeed, κ here is estimated to be only 10 in both experiments, implying that
the average sample size is less than six. In particular, REALS correctly predicts the large observed dif-
ference in behavior between Game Rare Disasters and Game Rare Treasures, with higher IN-rates in
the former (where underweighting of rare events implies choice of IN) than in the latter (where under-
weighting of rare events implies choice of OUT). This is particularly true for Condition Individual
where REALS assumes Upayoff determines choice.

The second component of REALS, Usocial, implies a tendency to play altruistically when decisions
impact another player. Here, this is formulated as an added utility 0 ≤ 𝜑i ≤ 𝜙 from choos-
ing IN. Hence, this component predicts higher IN-rates in Condition Dictator than in Condition
Individual (for positive 𝜙). Furthermore, REALS implies that this effect would be stronger in games
like Game Rare Treasures than in games like Game Rare Disasters. To see why, consider the fol-
lowing. First, note that the addition of Usocial will only impact the choice behavior of the agent
when Upayoff (IN) ≤ 0 (otherwise, the agent selects IN regardless of Usocial). Second, in the Dictator
and Individual conditions of Game Rare Disasters, Upayoff (IN) ≤ 0 only happens when the sam-
ple of past experiences that is selected includes the rare and very bad event (−100), which would
almost always result in Upayoff (IN)that is negative and large in absolute value. In contrast, in the
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Dictator and Individual conditions of Game Rare Treasures, Upayoff (IN) ≤ 0 occurs frequently
(many past experiences’ payoffs are −10), but this component of utility is often small in absolute
value. Hence, for a given 𝜑i > 0, the addition of Usocial will change behavior (prescribe choice of IN
although Upayoff (IN) ≤ 0) in many cases in Game Rare Treasures but in only few cases in Game
Rare Disasters. Interestingly, this asymmetric prediction of the model is confirmed by the data of
Experiment 2 (see Section 5.2.1.). In Experiment 3, there is very little difference between Condition
Individual and Condition Dictator in both games. Congruently, the estimate of 𝜙 in this case is
near zero.

The third component of REALS implies reciprocation for the actions of the other player, formu-
lated here as decreased utility 0 ≤ 𝜃ti ≤ 𝜗 from playing the “friendly” or pro-social action IN after the
other player plays its “unfriendly” or selfish action RIGHT. Notably, since in Condition Strategic the
payoffs P1 gets from playing IN strongly depend on the choices made by P2, our experimental design
does not allow distinguishing between P1’s choices that are a result of a process of reciprocation of
P1 to the actions of P2 and P1’s choices that are a result of P1 replying to the different payoffs she
obtains. Specifically, P1s behavior in Condition Strategic can be very different than their behavior in
Condition Dictator even if P1s do not try to reciprocate at all, but only try to respond to the payoffs
they get. The model REALS, however, does allow accounting for both processes. Because we fit the
model on the payoffs that P1s observe and because we perform the fitting procedure sequentially
(as explained above), the model already accounts for the payoff-based utility in Condition Strategic
when it aims to estimate the strategic-based utility (i.e., reciprocation). Indeed, in Experiment 3, we
get best fit with 𝜗 = 0.2 implying virtually no process of reciprocation. This is despite the very
different behavior observed in Condition Strategic and the other conditions in this experiment, a
difference which is apparently due to the different payoffs P1s get in this condition. In contrast, in
Experiment 2, REALS’ assumption of reciprocation appears to be of significant value. Specifically,
because of the relatively high estimated value of 𝜙, which implies high levels of altruism, a model
without reciprocation would predict high IN rates even when P2 chooses RIGHT in every round: In
such cases, the payoff-based utility of P1 would be equal to −5 (all past experiences from IN imply
this payoff), and the social-based utility will likely be sufficient to make the total utility positive.13
Thus, if we assume P1 prefers P2 to choose LEFT over RIGHT, the model must explicitly account
for it.

In the SM, we present the results of a sensitivity analysis for the model’s assumptions. Specifically,
we implemented three reduced and simplified versions of REALS. Each reduced model captures two
of the three main assumptions embedded in REALS, and includes only two of the full model’s three
free parameters. Note that we compare the models based on their out-of-sample predictive accuracy,
so the removal of a parametermay lead tomore accuratemodels.The results of this sensitivity analysis
show that the removal of either parameter greatly reduces both the qualitative and the quantitative
accuracy of the model. This suggests that all components of REALS are useful for both explaining
and predicting behavior in our experiments.

5.4. Discussion
The results of both experiments (2 & 3) and the modelling exercise are consistent with the hypothesis
that players in these games behave as if they underweight rare events. Specifically, we find consis-
tent experimental evidence that players play IN more frequently in Game Rare Disasters than in
Game Rare Treasures, where the only difference is the lottery they can obtain when playing IN. This
difference is qualitatively predicted by a tendency to underweight rare events, but is hard to explain

13Furthermore, the model would specifically predict higher IN rates in Game Rare Treasures when P2 always plays RIGHT
than when P2 always plays LEFT: when P2 always chooses RIGHT, Upayoff (IN) = −5 as above, but when P2 always chooses
LEFT, Upayoff (IN) will in most cases be smaller than −5, simply because in 95% of the rounds in this case, P1 gets −10. Hence,
here, a given 𝜑i > 0 is more likely to get P1 to choose IN when P2 always plays RIGHT than when she always plays LEFT.
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with classicalmodels of choice. Furthermore, themodel REALS that implies reliance on small samples
(and underweighting of rare events) quantitatively captures well all the experimental results.

The IN-rates in Experiment 3 could probably all be predicted very well using a one-parameter
model that assumes reliance on small samples and implies underweighting of rare events: The best
fit parameters for the social-based and the strategic-based utilities are near zero (and see sensitivity
analysis in the SM). Congruently, the experimental results in that experiment do not suggest partic-
ipants in Condition Individual and those in Condition Dictator behave differently. The difference of
these conditions from Condition Strategic can thus be attributed to the different payoffs P1s observe
from playing IN that are due to their co-dependency in P2s’ choices. Note this also helps explain why
the fact that the IN-rate in the Strategic condition of Game Rare Disasters in this experiment is below
50% does not imply that participants do not behave as if they underweight rare events.

Our results seem to imply that in Experiment 3 participants are not too concerned with the fact
that their actions impact another person. Experiment 2 is different. In that experiment, we get a higher
IN-rate in Condition Dictator than in Condition Individual, at least in Game Rare Treasures, and the
model REALS implies strong social-based utility. This difference between the two experiments sur-
prised us. If anything, we expected the opposite result based on the ideas that higher social distance
(Bohnet & Frey, 1999) and higher levels of anonymity (Bolton & Zwick, 1995) decrease prosocial
behavior. Indeed, a recent study showed higher levels of prosocial behavior in a physical vs. a vir-
tual lab (Prissé & Jorrat, 2022). One possible explanation for this result is a difference in populations.
In Experiment 3, all participants were students and generally younger than the non-student sample
used in Experiment 2. Congruently with our results, recent studies suggest that young student par-
ticipants are generally more selfish than older non-student participants (Belot et al., 2015; Kettner &
Waichman, 2016).

6. General discussion
To successfully implement interventions and policies in various domains, it is imperative we have a
good understanding of the major factors that influence decisions whose outcomes depend both on
chance and on decisions of other people. Yet, basic research on these types of decisions is uncommon.
In this study, we aim to start filling this gap by focusing on the impact of rare events in repeated
games with probabilistic payoffs.This focus on rare events stems from the fact that a similar approach
led to significant theoretical and empirical advances in individual decision making. Specifically, that
approach has highlighted that human learning diverges from that assumed inmany classical learning
models that converge toward maximization. Rather, it has uncovered a highly robust tendency to
choose as if rare events are underweighted and given rise to a class of surprisingly accurate learning
models that assume reliance on small samples of past experiences. Our results demonstrate that a
tendency to behave as if rare events are underweighted extends to 2-player asymmetric games and
that a model that assumes reliance on small samples can capture successfully choice behavior in these
games.

In Experiments 2 and 3, we manipulated the level of social/strategic uncertainty involved in the
decisions of P1s. The level of environmental uncertainty P1s face is mainly manipulated between
the two games that the participants play. The results highlight the strong impact of the latter: much
higher IN-rates in the Rare Disasters than in the Rare Treasures game. In line with previous claims
that compare the two forms of uncertainty (Rapoport et al., 1992), the effects we find formanipulating
the social uncertainty across the Strategic, Dictator, and Individual conditions are far more modest.
This observation highlights the importance of considering the environmental uncertainty involved
when analyzing strategic situations that very rarely do not involve any form of risk or chance.

Our results also reveal interesting interaction effects between environmental and social
uncertainties, challenging the common practice of studying these factors in isolation. For instance, in
Experiment 2, we observed an asymmetric effect when increasing the level of social influence: adding
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a social element to an individual choice setting significantly impacted behavior in the Rare Treasures
game, but not in the Rare Disasters game, while making a social game strategic was significant in
the Rare Disasters game, but not in Rare Treasures. This suggests that examining environmental and
social uncertainties independently may limit our understanding and ability to predict behavior in
such contexts. Interestingly, the model REALS assumes independence of the impact of the two forms
of uncertainty; yet, its predictions concerning choice capture well these non-trivial interaction effects.

While REALS can capture the aggregate choice rates across experiments and conditions well, it
is clearly too simplistic to provide a full valid account of players’ behavior in these settings. For
example, it assumes payoff-based behavior is only a function of the realized outcomes although
participants have full access to the payoff structure of the game before they ever see any outcomes real-
ized. Similarly, the level of altruism participants are assumed to exhibit does not change throughout
the game, although participants probably change it as a function of the payoffs and of their part-
ners’ behavior. REALS also cannot capture the intriguing conditional choice rates showing higher IN
rates immediately after a small loss than immediately after a large win in Game Rare Treasure (see
Table 1 and SM). Further, the analysis of the conditional choice rates in Experiments 2 and 3 (see
SM) shows that this pattern differs across experimental conditions, suggesting additional interaction
effects between the forms of uncertainty that REALS cannot capture. Nevertheless, REALS is useful
for interpreting the main impacts of environmental and social uncertainties.

Previous studies that combine social and environmental uncertainty have commonly demon-
strated that the addition of environmental uncertainty to a strategic context diminishes cooperation
(e.g., Aoyagi & Fréchette, 2009; Bereby-Meyer &Roth, 2006; Levati et al., 2009; Rapoport et al., 1992).
In the current study, we do not directly compare behavior in our games to equivalent games without
environmental uncertainty. However, this comparison can be made using a simple thought exper-
iment. Assume that we replace the lottery options of P1 with their expected values. In Game Rare
Disasters (Figure 1), this implies P1 would have to choose between an outside option of zero and
playing IN that pays either −5.5 or −5 (depending on the choice of P2). It is hard to imagine that
the IN-rates in such a game would be anywhere near the IN-rates we see in the probabilistic payoff
version of the game that we run. Lower IN-rates in a deterministic version of this game would then
provide a counterexample for the common finding that adding environmental uncertainty reduces
cooperation.

Our demonstration of the relevance of the phenomenon of underweighting of rare events in strate-
gic games is limited to the games and the design we used. Future research should aim to investigate
the robustness and generality of the phenomenon in more games and using different designs. For
one, in our design, pairs were fixed throughout the entire sequence of each game. This design has the
advantage of allowing players to learn and respond to the preferences of their partners. For example,
in a typical pair, P2 could learn that P1 behaves as if she underweights rare events and adjust his
choices accordingly. In turn, this allows us to directly examine the reaction of P2s to such behavior.
Yet, a design in which players change partners in each round also has advantages. Specifically, it more
carefully examines the one-shot interaction between the players who do not need to worry about
their actions impacting future partner behavior. This may lead P2s to play LEFT in lower rates, and
the IN rates would thus also be reduced. We plan to extend the current research to this setting in
future research.

Another design choice worthy of further examination concerns our use of potential losses in the
games, which is somewhat uncommon in experimental strategic games. This design choice allowed
us to use zero payoff as P1’s outside option, thus maintaining a neutral reference point with respect to
this outside option. Future studies can examine the impact of adding a constant to all payoffs so that
all payoffs are positive. Such a change would on one hand increase the attractiveness of P1s’ outside
option and thus can decrease the tendency to behave as if underweighting rare events. On the other
hand, it is possible that in our games, P1s were actually more hesitant to play IN because they were
averse of the potential losses. Moreover, adding a constant to the payoffs of P2s may decrease the
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perceived attractiveness of P2s’ dominant action (RIGHT) relative to the dominated one. In turn,
this may increase the attractiveness of P1s playing IN. Hence, there are contradictory predictions
regarding the potential impact of the addition of a constant to all payoffs, and it is unclear how such
a change would impact the apparent tendency of P1s to behave as if they underweight rare events.

Finally, in our experiments, stakes were relatively low, with choice-contingent bonus payments
averaging no more than $5.50. Future studies should examine if the results replicate when stakes are
higher. Notably, however, studies suggest that stake size has limited impact on behavior in choice
experiments (Amir et al., 2012; Brañas-Garza et al., 2021). We thus expect that an increase in stakes
will not impact our results considerably.

The importance of studying strategic games with rare events is not purely theoretical. Although
our games are abstract, they can be used to explain certain patterns of real-world interactions. For
example, Game Rare Disasters can be thought of as an abstraction of an interaction between service
providers and potential clients like patients and physicians. In every round, the patient (P1), who has
a minor illness that will pass without treatment, decides whether to go to the physician (IN) or to
stay at home (OUT). If she goes, the physician (P2), who correctly diagnoses that treatment is unnec-
essary, decides whether to tell that to the patient and ask her to go home (RIGHT) or to give her
unnecessary treatment or unnecessary further testing (LEFT). The game payoffs reflect the ideas that
(a) the patient is happier if the physician acknowledges her pain by providing treatment, (b) most
of the time, unnecessary treatment does no harm, but it might lead to a disaster, and (c) the physi-
cian prefers not to give any unnecessary treatments but prefers to prescribe such treatments over not
getting clientele. Seen within this framework, the dynamics of the abstract game provide a sufficient
explanation for the emergence of medical overtreatment: a tendency of patients to underweight the
rare adverse effects of unnecessary tests and treatments, and (some) physicians’ response to this ten-
dency. Similarly, the game may also abstract interactions between clients and other service providers
like financial advisors, private tutors, or auto mechanics.

In conclusion, the study of the joint impact of both environmental and social uncertainty can
lead to important insights and improve our understanding of many real-world situations. Our study
adds to this rather small literature by directly considering the role of rare events in such interactions.
We find significant evidence that, as in individual choice settings, rare events are underweighted in
repeated strategic choice, but also that the transition from individual to social and strategic settings
changes behavior even in the presence of rare events. Our study thus highlights the importance of
continued efforts to explore the under-explored world of games with both types of uncertainty.
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