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Abstract

Let X; be transient §;-stable processes on R% i =1, 2. Assume further that X 1 and X, are independent.
We shall find the exact Hausdorff measure function for the product sets Rj(1) x Ra(1), where R;(1)
X Ro(1) ={(X1(t1), X2(12)) | 0 < t1, 1o < 1}. The result of Hu generalizes [Some fractal sets determined
by stable processes, Probab. Theory Related Fields 100 (1994), 205-225].
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1. Introduction

A Lévy process {X (¢) |+ > 0} on R? is called an «-stable process with « € (0, 2] if
the distribution of X (1) is not degenerate (that is, it cannot be supported on any proper
subspace of R?) and for any 7 > 0,

X)) =t"Y"X(1)

in law. An a-stable process on R is transient if and only if « < d. It is well known
that X (1) has a bounded continuous density p(1, x) (see [5]). An «-stable process on
R is said to be of type A if p(1, 0) > 0; and type B otherwise. If an a-stable process
with o # 1 is of type B, then 0 < o < 1.

Before we give the main result, we recall briefly the definition of the Hausdorff
measure function by referring to Falconer [1].

A function ¢ is said to belong to the class ® if there exists a § > 0 such that ¢ is a
right continuous and increasing function on (0, ) with ¢(0+) = 0 and there exists a
finite constant K > 0 such that

¢(2s)
¢ (s)
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1
<K, f0r0<s<55.
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For ¢ € ®, the ¢-Hausdorff measure of E C R is defined by

¢-m(E) = lim inf{z ¢ (diam(E;)) ‘ E c | J Ei. diam(E)) < g},
&= i=1 i=1

where diam(FE;) denotes the diameter of E;. A function ¢ € @ is called an exact
Hausdorff measure function for E if 0 < ¢-m(E) < oo.

We recall some previous results concerning Hausdorff measure related to stable
processes. It was proved in [5] that for a transient «-stable process X with o # 1, 2, an
exact Hausdorff measure function of R(¢) is ¢ (a) = a® log log 3—1 if X (¢) is of type A
or ¢(a) = a*(loglog %)1_“ if X is of type B, where R(¢t) = {X (s) | s € [0, ¢]}. Then,
in 1994, the product of range of two independent stable subordinators (or one-sided
stable processes) was considered in [2]. Specifically, it was shown that

1\2-A1—h
¢ (a) = aP1P (log log —)
a
is an exact Hausdorff measure function for the product set

Ri(1) x Ry(1) = {(X1(r), X2(2)) |0 =11, 12 < 1},

where X; are independent §;-stable subordinators on R with0 < 8; < 1,i =1, 2.

In this paper, we consider the more general case by a different method. We
aim to find the exact Hausdorff measure function for Ri(1) x R>(1), where X; are
independent transient B;-stable processes on R% with g; € (0, 2) and g; # 1,i =1, 2.
The main result is the following theorem.

THEOREM 1.1. Let X; be transient Bj-stable processes on R% with B; # 1,2,
i =1, 2. Assume that X1 and X, are independent and let ¢;(a) = aPi log log % if X;
is of type A or ¢; (a) = aP (log log é)l_ﬂi if X; is of type B. Then, with probability 1,

0 <¢-m(Ri(1) x Ry(1)) < o0,

where ¢ (a) = ¢1(a)$2(a).

We note that any stable subordinator on R with index 0 < @ < 1 is of type B (see, for
example, [5]). Therefore the result in [2] is a special case of Theorem 1.1. The proof
of Theorem 1.1 is divided into two parts. In Section 2 we prove the lower bound and
in Section 3 we prove the upper bound for ¢-m (R (1) x R(1)). Though our result
is stated for two independent stable processes, its method is valid for finitely many
independent stable processes. Throughout this paper, we use cy, ¢2, ... to denote
positive finite constants whose values may or may not be known.
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2. Lower bound for ¢-m(R1(1) x R;(1))

We start with the following lemma. It can be easily derived from the results in [4],
which gives a way to get a lower bound for ¢-m(E). For any Borel measure x on RY
and ¢ € @, the upper ¢-density of i at x € R? is defined by

—¢ . w(B(x,r))
Pu)=InsP =5 an

where B(x, r) denotes the closed ball with radius r and center x.

LEMMA 2.1. For a given ¢ € ®, there exists a positive constant C1 such that for any
Borel measure jn on R¢ and every Borel set B C R?,

¢-m(E) = Ci(E) - inf —5—.
xeE Dll«(x)

We now give the proof for the lower bound for ¢-m(Ri(1) x Ry(1)) in
Theorem 1.1.

PROOF. Define the random Borel measure p on R417% and p; on R4 with i =1, 2
by

1 1
®w(B) = f / Ig(X1(t1), X1(t)) dt; dty, B C RUT%;
0 0
1
wi(Bi) = / Ip, (Xi (1)) dt;, B, CR% i=1,2,
0

where I 5 is the indicator function of the set B. For any fixed (s1, s2) € [0, 112,

pn(B((X1(s1), X2(s52)), 1))

lim sup
r—0 o (r)
<l w(B1(X1(s1), r) X Ba(X2(s2), 1))
< lim sup
r—0 o)
< Jim sup w1(B1(X1(s1), 1)) Jim sup w2 (B2 (X2(s2), r))’ 2.0
r—0 o1(r) r—0 ¢ (r)

where B((X1(s1), X2(s2)), r) denotes the closed ball of radius r and center
(X1(s1), X2(s2)), while B; (X;(s;), r) denotes the closed ball of radius » and center
Xi(s;),i =1, 2. Define

o JXiGi) — Xi(si —1) if0<t<s;,
Y’(”‘{Xi(r) if1 > s,
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and
Yi®) =X;(si +1) — X;(s;), t=0.

Then Y; and ¥; are Bi-stable processes, i = 1, 2. By (2.1),

w(B((X1(s1), X2(52)), 7))

lim sup
r—0 ([5(}’)
T . TN (. T . Ty
= <hr,n§3 Py T lmsup ¢1(r>> ' (hrrnfél Py T lmsup ¢z<r>>’

where T;(r) and T} (r) are the sojourn times of Y; and Y; in the closed ball B; (0, r) C
R% respectively, i = 1, 2. Applying [5, Theorems 4 and 5], it follows that there exists
a constant K such that with probability 1,

w(B((X1(s1), X2(52)), 7)) -

li K. 2.2
ot () =M 2
Let
E ={(X1(s1), X2(s52)) | 51, 52 € [0, 1] and (2.2) holds}.
Then

1,1
Ew(E) =E/o/o Ie(X1(s1), X2(s2)) ds1 ds»
1 el
= /0 /0 P{(X1(s1), X2(s2)) € E} ds1 ds>
= 1’

which implies that w(E) =1 almost surely. By Lemma 2.1, ¢-m(E) > C1/K; >0
almost surely. Since E C R (1) x Ry(1), then with probability 1,

¢-m(Ri(1) x Ry(1)) = ¢-m(E) > 0.

That completes the proof for the lower bound. O

3. Upper bound for ¢-m(R{(1) x R;(1))
Before we give the proof for the upper bound, we prove an important lemma.

LEMMA 3.1. Under the condition of Theorem 1.1, put P;(a) =inf{t : | X; (¢)| > a},
where i = 1, 2. Then there are positive constants K>, K3, yy such that
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1/8
P( sup w < K2> < exp{—K3 (log l) }
y<a<$ ¢(a) Y

provided that 0 <y <ygand § > yl/s.

PROOF. We only consider the case where X (¢) is of type A and X;(¢) is of type B,
the proofs for the other cases being similar. By [5, Lemmas 5 and 6] it can be seen
directly that there exist positive constants c3, c4, Ag such that for 0 < A < A,

P{ sup |X1<r>|sr1/ﬁ'x}Zexp<—c3rﬂ1> 3.1)
O<t<t
and
P{ sup | X2(1)] gr‘/ﬂzx} > exp{—cyr /1P, (3.2)
0<t<t

We consider the sequence
ak =exp (—k?), k=1,2,...

which tends to zero very rapidly as k — oco. Put

Bi 1
1k = ¢1(ar) = a; loglog @

and

1 1-B1
B
b = ¢2(ar) = a (log log £> .

Let c1 = (6¢3) /Pt and ¢y = (6¢4)1~PD/P2. For any 1 > 0, let ¥; = 2¢; X; ((2ci) " Pir)
with i =1, 2. Then Y;(¢) = X;(¢) in law for i = 1, 2. Therefore {Y;(z), t > 0} is still
a f;-stable process on R%  {Y; (1)} is of type A, {Y2(t)} is of type B, and they are also
independent. Further, for 0 < A < A9, (3.1) and (3.2) hold respectively for Y and Y5.

For any k > 1, let

Dix =1 sup [|Yi(H)] = 2Ciak},
0<t=<tix

Gik = sup  |Yi(®) = Yi(tiprD)| = Ciak},
ti k+1=I=lik

Hix = sup |Yi(®)| > ciak}.
0<t=t; j41
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Then D; x C G;x U H; y withi =1, 2. Consequently,

2m 2m
P{ N (Dl,kUDz,k)} <pP{ N [(Gl,kUHl,k)sz,kUHz,k)]}
k=m+1 k=m+1

2m
=P{ () [(G1.xUGai) U (Hi U Hz,k)]}
k=m-+1

2m 2m
<P} [) (GixUG20U ( U GHixu H2,k))}

k=m+1 k=m+1
2m 2m
< [[ PGixuGa)+ D PHIxU Hayp),
k=m+1 k=m+1

where the events {G x U G2 | kK > 1} are independent.
Put P(G;x)=1— pix and P(H; ) =gq;x with i =1,2. Then by (3.1), for
sufficiently large k,

Plk = P( sup |Y1(8)] <Clak)

0<t<n
:P( sup |Y1(t)|<11/kﬂlclakt1 ll/ﬂ])
O0<t=nk
> exp{—csleraer; P17
_ B

Simultaneously, by [3, Lemma 4.3] and [5, Lemma 7], for sufficiently large k,

q1.k = P( sup  [Y1(0)| > Clagly k_/,ﬁltl//ﬁl_l)

0<t=t] k41

18, .1
< 2d1P(IY1(t1 k+1)| > 1a Kkt k-/i-ﬂllt] /kﬂ-il-1>

—1/B1 —p
cragt 1
cao(2510)

= cotr (@) !

= cs exp{—(k + 1)*B1} log(k + 1)” exp (k*B1)

< exp (—kB1).
Similarly, for the B,-stable type B process Y,, by (3.2), [3, Lemma 4.3] and
[5, Lemma 7], we obtain, for sufficiently large k,

pak > k13 g <exp (—kBo).

https://doi.org/10.1017/5S0004972708001081 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708001081

[7] Product fractal sets determined by stable processes 207

Thus there exists mq such that for m > my,

2m
Pi N (Dl,kUDZ,k)}

k=m+1
2m 2m
< [] PGxUG+ Y P(HixUHw)
k=m-+1 k=m-+1

2m 2m
[T O=priare+ D @x+a0

k=m+1 k=m-+1
2m 00 00
SeXP<— Z pl,kpz,k>+ Z exp (—kp1) + Z exp (—kp2)
k=m+1 k=m+1 k=m+1
< exp(—2-2/31/3 _ _
=exp(=2"""m ") + c7 exp (=pim) + cg exp (—pam)

<exp(—m'/*).

Recall that P;(a) =inf{t > 0:|X;(t)| > a} withi =1, 2. Then

2m
P{ N (Dl,kUDz,k)}

k=m+1

2m
=pP! [( sup |Y1<r>|22c1ak)u< sup |Y2(t)|22c2ak>]}
k=m+1L \0=r=tix 0<r<tr

2m
=P ﬂ [( sup |X1(t)|zak)u< sup |X2(t)|zak>:|}
k=m+1L N0<t<2c)) P11y, 0<t<Qc2) P2ty g

2m
=P ) [(Pl(ak)S(zcl)_ﬂlfl,k)U(Pz(ak)5(202)_'32f2,k)]}
k=m+1

2m
>P ﬂ [M < (2¢1)” IBI(ZCZ)_’B{”

fmmo1 L P1(@) P2 (ar

>p|  sup M5<2c1)—ﬂ1<2c2)—ﬂ2}.

ayp=a=am ¢ (a)

Therefore

P< sup MSIQ) <exp(—m'/*),

aym=<a=<apm ¢(a)

where K> = (2¢1)P1(2¢2) 2. Choose 0 > 0 such that

1
10g——1> 10g—>m0
2 Y0
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Forany 0 <y <ypand§ > y!/3,

(G-l = G s

and hence there is a positive integer

G(l ) 1 1 ! 1)
m — [log —, = [log — ).
NG y 2 Y
1 ) 1> 1 ) 1
m> — [log — > — [log — > my
NG Y 5 Y0

and y < aoy, < ay, < y'/° <. Thus

P( qup wm)g( sup _P1<“>P2<a>51<2)
VS“SS d)(a) ayp=a=<apy ¢(a)

1/8
1/4 1
<exp(—m/") <expy —K3z| log — )
14

It follows that

where K3 = . The lemma is proved. O

R
We may actually prove that Lemma 3.1 holds for finitely many independent
transient stable processes. The proof of Lemma 3.1 has a direct consequence.

COROLLARY 3.1. Under the conditions of Theorem 1.1, let

|
Ti(a, 1)2/0 I8,0,0)(Xi (1)) dt

be the sojourn time of X; in the closed ball B; (0, a)(C Ré) up to time 1. Then there
exist positive constants Ky, K3, ygy such that

1/8
P( sup —Tl(a’ DERICRY < K2> < exp{—Kg(log l) }
y<a<$ ¢ (a) Y

provided that 0 < y < yy and 8 > y'/.
Now we introduce another lemma, which is exactly [5, Lemma 9].

LEMMA 3.2. If E =J/L, I;, where each 1; is an interval of A for some integer k.
Here Ay is the collection of cubes of side 27 and center at a lattice point
G1/2K, j2/2k, ..., ja/2%), where j; are integers, closed on the left and open on right.
Then we can find a subset { j.} such that E =\ 1, and no point of E is in more than 24
of the intervals I ;.
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We now come to the proof of the upper bound for ¢-m(Ri(1) x Ry(1)) in
Theorem 1.1.

PROOF. Let A(i) be the collection of cubes closed on the left and open on right of
side 2!~ with centers at a lattlce point (j1/2", j»/2", ..., ja;/2") where the j; are
integers, { = 1, 2. Consider A , the collection of cubes of side 27" and centers the
same as those ofA,(f),z =1,2. PutA, = A,(ql) X Ag,z) and A, = K,(?l) X Xflz). Suppose
8 =27 is given where r is a positive integer, and y, = 27" < min{yp, 27>"}. We say
that a cube 1; in=1; (1) (2) ,, of A, is bad if the following conditions hold.

T att; <1 with j=1,2. In

J<1.

(1)  Ri(1) x Ry(1) meets I, n» Where R;(1) meets /

detail, for j =1,2,7; =inf{r > 0| X;(¢) € I(j)
(2) For all a satisfying y, <a <,

71+1 n+1
/ Ipx,(11).0)(X1(t)) dty / IB(x5(12).0)(X2(22)) dt2 < K29 (a),
7] (%]
where the closed ball B(X;(t;), a) € R% withi =1, 2.
If (1) holds and (2) does not, then we say that Ti,n is good. For any cube 71,,1 of A,
P(I; ,isbad |0 < r1 n<1)

P{ f,l LB(x,(1)),a)(X1(11)) dty ftzerl IB(X,(1y),a) (X2(12)) d1y
= su
Yn Sapffs ¢(a)

§K2|0§f1,fzsl}

sup

_ P{ ffll+ Ig,0,a) (X1(t1) — X1(71)) d1y fr2+ Ig,(0,a)(X2(t2) — X2(12)) dip
a Yn<a<s ¢(a)

§K2|0§f1,T251}

_P{ up Jo Ipy 0.0y X101 + 71) = X1.(21) dt [ Ipy0,0)(Xa(t2 + 12) — Xo(12)) di
Yn<a<é o (a)

§K2|O§T]v7-'2§1},

where the closed ball B; (0, a) € R4 and B»(0, a) € R%. Put
i) =X1t+ 1) — Xi(r1), Yo(t) =Xo(t +12) — X2(12), t=0.

Then Y7, Y, are independent and have exactly the same law as X; and X, respectively
by the strong Markovian property. Hence we may apply Corollary 3.1 to Yy, Y5 to
obtain

P(Y,-,n ishad |0<7, 1 <1) < exp(—c’gnl/g).
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Let M; , denote the number of cubes in KS) hit by the path X;(¢) in one unit of time,
i =1, 2. Then by [3, Lemma 6.1] and the fact that X is transient,

_ 2—n 1
EMy, < cio ET( 3 1>i|

1 n—n -1
— 10 / P(le(t)ls )dr}
A 3

Fo—n —-B1 00 —1
< 10 } U POXi ()] < 1) dr}
3 0

< cp2".

§imilarly, EM;, < c122"2. Now we can deduce that N,, the number of bad cubes
I; », has expectation

EN, <EM, ,EM,, exp(—C9n1/8)
< 0132'1(/314-52) exp(—c’gnl/g).

Then, by the Markov inequality,
P{N,, > 2"B1+P2) exp (—n'/19)} < ¢14 exp(—n'/19).
Furthermore, we obtain
Z P{N, > 2"P1¥62) exp (—n1/1%)} < 00.

n
Applying the first Borel-Cantelli lemma, there exists €2g such that P(2¢) = 1, and for
all w € Qq there exists an integer n1 = n1(w) such that for n > ny,

N, < 2"B1+8) exp(—n'/19).

It is easy to obtain
p(d'/?27") < 1527 PP (log n)?.
Thus for any n > nj,

Y diam(Tin) = Nap (@227 < cisexp (=n'/ ) logm*. (3.3)
1; »:bad

. - =) =2 —(1) _ -
Now consider the good squares I; , = Il(,z x Il(,z of the mesh A,(1 ' % Afl ). We have
to show that the set of all good squares can be covered economically. For each good

square 713,,, there exist a € [y, 27"] such that

T71+1 +1
¢(a) < —/ IB(x;(21),0)(X1(t1)) dty / IB(Xy(12),0)(X2(12)) dts.
K2 T1 12
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Furthermore, we can find an integer k; with 275 > 54 >2"%k~1 and a square
I, = Ii(l) X Il.(z) of Ay, such that Il.(l) contains 75‘1,1) and B(Xi(t1), a), while Ii(z)
contains 7., and B(X2(t2), a). Then k; > r — 4 and

¢ (diam(l;)) = ¢ (vd2!7") < ¢ (20Vda) < ci6¢(a)
2 2

617/ ]11.<1>(X1(t1))dt1/ I, (X2(12)) dt.
0 l 0 l

IA

Now (7, ..00q 1i is a finite collection of squares to which we can apply Lemma 3.2.
i,n-g00

Hence there is a subset, denoted by {/;};ca, which still covers all the good squares,

but no point is covered more than 2¢ times. For this subset, it must be the case that

2 2
Y ¢(diam() < 2017/0 Lo (X1(1) dll/O [0 (X2(12)) dn

ieA ieA
2 2
5017// Z]II,-((XI(II))’ X2(t2)) dty dtp
0J0 jea
< ¢1727%2, (3.4)

Using all the bad squares together with this covering of the good squares, we obtain a
covering of R{(1) x R>(1) by squares all of diameter less than Vd27 5 that is,

Ri(1) x Ry(1) € ( U Ti,n) U (U 1,»>.

1, n: bad i€A
On the other hand, for sufficient large n, by (3.3) and (3.4),
> ¢(diaml; ) + Y ¢(diam(ly) < 17277 + 1.

T;,: bad ien

Thus with probability 1,
¢-m[R(1) x Ra(1)] < oo.

That completes the proof. o
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