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Abstract. Let E be a Banach space such that its dual E∗ is separable. We show
that there exists a hypercyclic bounded operator T on E such that its adjoint T∗ is
also hypercyclic on E∗. We also exhibit a new kind of dual hypercyclic operator. Thus
answers affirmatively two of the questions raised by Henrik Petersson in a recent paper.
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1. Introduction. Pelczyński, in his review of Rolewicz’s paper [16] wrote “In a
separable Hilbert space H the author constructs a bounded linear operator, say A,
with the following strange property: there exists an element x in H such that the set
{Anx : n = 0, 1, . . . } is dense in H”. This “strange” property is what nowadays is called
hypercyclicity and can no longer be described with this adjective.

A good place to learn the basic subject matter and its rich roots is the paper by
Godefroy and Shapiro [8]. The survey by Grosse-Erdmann [11] is quite comprehensive.
It also has an extensive bibliography which he updates regularly on his website.

In a preliminary version of [14], Herrero posed as Problem 2 whether or not
there exists an operator T on a Hilbert space such that T and its adjoint T∗ are both
hypercyclic. This was answered affirmatively in [17] and such an operator was a bilateral
weighted shift. In [15], Petersson studied this property in the more general context of
Banach spaces. Naturally, if the topology of the dual space is given by its norm, one
should restrict the attention to Banach spaces with separable duals. Petersson called
operators T with this property, that both T and T∗ are hypercyclic, dual hypercyclic
operators. He showed that any Banach space with a shrinking symmetric basis supports
such an operator; which is, essentially, a bilateral weighted shift with respect to such
a basis. He observed that one also obtains such operators on spaces with a symmetric
basis if one considers the dual space endowed with the weak∗ topology.

In Section 2 we obtain some preliminary results. In Section 3 we answer Question 2
of [15]: Does every infinite dimensional separable Banach space with separable dual
support a dual hypercyclic operator? In Section 4 we answer Question 1 of [15]: Does
there exist a dual hypercyclic operator that is not of the form of Theorem 1? Finally,
in Section 5, we indicate some questions and problems.

2. Preparation. Let E be a separable complex Banach space and let B(E) be the
set of bounded linear operators on E. Let {xn : n ∈ �} be a subset of E. For a subset A
of the integers, the set [xj : j ∈ A] denotes the closed subspace spanned by {xj : j ∈ A}.
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The system {(xn, x∗
n) : xn ∈ E, x∗

n ∈ E∗, n ∈ �} is called biorthogonal if x∗
n(xm) =

δm
n . If, in addition, [xn : n ∈ �] = E and E∗ is the weak∗ closure of the linear span of {x∗

n :
n ∈ �}, then {xn : n ∈ �} is called a Markushevich basis. Note that the (biorthogonal)
functionals {x∗

n : n ∈ �} are unique for such a basis {xn : n ∈ �}.
Ovsepian and Pelczyński (see p. 44 of [13]) showed that every separable Banach

space has a Markushevich basis in which

||xn|| = 1 for all n and supn||x∗
n|| < ∞. (OP)

Moreover, when E∗ is separable, {xn : n ∈ �} may be chosen so that [x∗
n : n ∈ �] =

E∗.
When E∗ is separable, we will always consider that property (OP) includes [x∗

n : n ∈
�] = E∗.

Recall that for y ∈ E and y∗ ∈ E∗, the tensor product y∗ ⊗ y ∈ B(E) is defined by
y∗ ⊗ y(x) = y∗(x)y, and ||y∗ ⊗ y|| ≤ ||y∗||||y||. Also (y∗ ⊗ y)∗ = y ⊗ y∗ if we identify y
with i(y) where i : E −→ E∗∗ is the canonical injection.

PROPOSITION 2.1. Let E be a Banach space with Markushevich basis {xn : n ∈ �}
which satisfies (OP). Let wn > 0 for all n and

∑
n∈� wn < ∞. Then the “bilateral

weighted shift” T = ∑
n∈� wnx∗

n ⊗ xn−1 is compact and quasinilpotent. Its adjoint T∗

is
∑

n∈� wnxn−1 ⊗ x∗
n.

Proof. T is the norm limit of finite rank operators and therefore compact. Thus if
λ �= 0 is in the spectrum of T, σ (T), then λ is an eigenvalue. Let x be a corresponding
eigenvector. Then x /∈ [xj : j ∈ A] whenever A is a finite set.

Since λx = ∑
n∈� wnx∗

n(x)xn−1 it follows that λx∗
n−1(x) = wnx∗

n(x). But x is not zero
and there is n, say n = 0, for which x∗

n(x) �= 0. Therefore

x∗
n(x) = λn

w1 . . . wn
x∗

0(x) �= 0

for all n > 0. This is impossible since supn||x∗
n|| = M < ∞ but

||x∗
n|| ≥ |λ|n

w1. . .wn

|x∗
0(x)|
||x|| → ∞

because
∑

wn < ∞.

The last part follows from

⎛
⎝ ∑

|n|≤N

wnx∗
n ⊗ xn−1

⎞
⎠

∗

=
∑
|n|≤N

wnxn−1 ⊗ x∗
n

and taking limit for N → ∞. �
REMARK 2.2. Let T be a bilateral weighted shift with respect to an orthonormal

basis of a Hilbert space. The spectrum of T is always centered at the origin. There are
these three possibilities (i) σ (T) = {0}, (ii) σ (T) is a disc, or (iii) σ (T) is an annulus.
This is due to Kelley [19, p116]. These possibilities are also the only ones in the case
that T is a bilateral weighted shift with respect to the canonical basis of �p(�), with
1 ≤ p < ∞, or c0(�).
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Recall that a Schauder basis {en : n ∈ �} of a Banach space E is unconditional if
and only if {eπ(n) : n ∈ �} also forms a basis for any permutation π of �. It is a symmetric
basis if, in addition, all {eπ(n) : n ∈ �}, where π is a permutation, are equivalent, p113
of [13].

PROPOSITION 2.3. Let {en : n ∈ �} be a symmetric basis of E with corresponding
biorthogonal functionals {e∗

n : n ∈ �} and let {wn : n ∈ �} be a positive bounded sequence.
If T = ∑

n∈� wne∗
n ⊗ en−1, then σ (T) has circular symmetry.

Proof. T is bounded by Lemma 1 of [15]. Since σ (T) consists of the union of the
approximate spectrum and the compression spectrum, it is enough to see that each
of these sets has circular symmetry. Let λ be an approximate eigenvalue of T and let
||(T − λI)

∑
n∈� anen|| < ε with ||∑n∈� anen|| = 1.

Let K be the symmetric basis constant (which is greater than or equal to the
unconditional basis constant) and |z| = 1. Then, by Proposition 1.c.7 of [13],

(2K)−1 ≤ ||
∑
n∈�

znanen|| ≤ 2K

and

||(T − zλI)
∑
n∈�

znanen|| < 2Kε.

Since 0 < ε is arbitrary, zλ ∈ σ (T).
We now show that if the range of T − λI is dense in E, so is the range of T − zλI

for |z| = 1. It is enough to show that if z−k−1ek is in the closure of the range of T − λI ,
then ek is in the closure of the range of T − zλI. But if∣∣∣∣∣

∣∣∣∣∣(T − λI)

(∑
n∈�

anen

)
− z−k−1ek

∣∣∣∣∣
∣∣∣∣∣ < ε,

then ∣∣∣∣∣
∣∣∣∣∣(T − zλI)

(∑
n∈�

znanen

)
− ek

∣∣∣∣∣
∣∣∣∣∣ < 2Kε. �

We still need a few more observations.

PROPOSITION 2.4. Let F be a finite dimensional Banach space with basis {ej : 0 ≤
j ≤ 2k+1 − 1}. Define L : F −→ F by L(e0) = 0 and L(ej) = wjej−1 for 0 < j and wj > 0.

Let x1, . . . , xk−1 and zk be in [e0, . . . , e2k−1]. Then for each pair δ > 0 and ε > 0 there
exist xk in [e2k , . . . , e2k+1−1] and n ∈ � such that

||xk|| < δ and

∣∣∣∣∣∣
∣∣∣∣∣∣(I + L)n

⎛
⎝ k∑

j=1

xj

⎞
⎠ − zk

∣∣∣∣∣∣
∣∣∣∣∣∣ < ε. (1)

Proof. When F is a Hilbert space this is the key step in the proof of Theorem 3.3
of [18]. Since all norms are equivalent on a finite dimensional space the result follows
at once. �
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COROLLARY 2.5. Let T ∈ �2(�) be a unilateral backward weighted shift with positive
weights. Then the k direct sum (I + T) ⊕ . . . ⊕ (I + T) is hypercyclic.

Proof. We sketch the proof when k = 2.

In Proposition 2.4 for x1, . . . , xk−1, zk and y1, . . . , yk−1, ẑk, we can, again by
looking at the proof of the above mentioned Theorem 3.3, obtain xk and yk and
the same n such that (1) holds for L = T and

||yk|| < δ and

∣∣∣∣∣∣
∣∣∣∣∣∣(I + T)n

⎛
⎝ k∑

j=1

yj

⎞
⎠ − ẑk

∣∣∣∣∣∣
∣∣∣∣∣∣ < ε.

If {zk ⊕ ẑk : k ∈ �} is dense in �2(�) ⊕ �2(�) and the xj’s are chosen with disjoint
support (and the same for the yj’s), then we proceed as in Theorem 3.3 of [18] to obtain
a hypercyclic vector of the form

∞∑
i=1

xi ⊕
∞∑

i=1

yi. �

COROLLARY 2.6. Let T ∈ �2(�) be a unilateral backward weighted shift with positive
weights. Then I + T satisfies the Hypercyclicity Criterion.

Proof. Bès and Peris showed the equivalence of the Hypercyclicity Criterion with
the hypercyclicity of the direct sums, see Theorem 2.3 of [6]. �

REMARK 2.7. In Section 4 of [12], León-Saavedra and Montes-Rodrı́guez proved
directly that I + T satisfies the Hypercyclicity Criterion. Moreover, Grivaux in Lemma
2.3 of [10] proved that I + T is mixing.

The following lemma will be used in the inductive step of the next theorem. Observe
that any backward bilateral weighted shift can be seen as a forward bilateral weighted
shift by relabelling the vectors in the basis (via n → −n for n ∈ �). Thus Lemma 2.8
can also be applied to forward bilateral shifts.

LEMMA 2.8. Suppose that E is a Banach space with Markushevich basis {en : n ∈ �}
which satisfies (OP). Let wn > 0 for all n and

∑
n∈� wn < ∞. For s fixed, let x1, . . . , xk−1

and zk be in [es, . . . , es+2k−1]. Then for each pair δ > 0 and ε > 0 there exist xk in
[es+2k , . . . , es+2k+1−1] and n ∈ � and 0 < vs ≤ ws such that xk and the bilateral weighted
shift

T =
∑

n∈�\{s}
wne∗

n ⊗ en−1 + vse∗
s ⊗ es−1

satisfy

||xk|| < δ and

∣∣∣∣∣
∣∣∣∣∣(I + T)n

(
k∑

i=1

xi

)
− zk

∣∣∣∣∣
∣∣∣∣∣ < ε.

Proof. Set for a moment vs ≤ ws and consider the operator T − vse∗
s ⊗ es−1. Call

L the restriction of this operator to the invariant subspace [es, . . . , es+2k+1−1]. By
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Proposition 2.4 we have xk in [es+2k , . . . , es+2k+1−1] and n ∈ � such that

||xk|| < δ and

∣∣∣∣∣
∣∣∣∣∣(I + L)n

(
k∑

i=1

xi

)
− zk

∣∣∣∣∣
∣∣∣∣∣ <

ε

2
. (2)

Let P be the projection whose kernel is [es, . . . , es+2k+1−1] and range is
[es−n, . . . , es−1]. Then P((I + T)n(

∑k
i=1 xi) − zk) is

s+2k+1−1∑
j=s

n∑
m=j−s+1

(
n
m

)
Tm

(
k∑

i=1

e∗
j (xi)ej

)
.

(P ∈ B([es−n, . . . , es+2k+1−1]) where dimension of [es−n, . . . , es+2k+1−1] is n + 2k+1.)
Set Q = 1 + supnwn. Then for j − s < m we have ||Tm(ej)|| < vsQm−1. Set also

M = max{|e∗
j (xi)| : s ≤ j < s + 2k+1; 1 ≤ i ≤ k}.

Finally, let vs be such that vskM2k+1(1 + Q)n < ε
2 .

Then ∣∣∣∣∣∣
∣∣∣∣∣∣
s+2k+1−1∑

j=s

n∑
m=j−s+1

(
n
m

)
Tm

(
k∑

i=1

e∗
j (xi)ej

)∣∣∣∣∣∣
∣∣∣∣∣∣

≤ vskM2k+1
n∑

m=1

(
n
m

)
Qm ≤ vskM2k+1(1 + Q)n <

ε

2
. (3)

Therefore (2) and (3) imply that∣∣∣∣∣∣
∣∣∣∣∣∣(I + T)n

⎛
⎝ k∑

j=1

xj

⎞
⎠ − zk

∣∣∣∣∣∣
∣∣∣∣∣∣ <

∣∣∣∣∣∣
∣∣∣∣∣∣(I + L)n

⎛
⎝ k∑

j=1

xj

⎞
⎠ − zk

∣∣∣∣∣∣
∣∣∣∣∣∣

+
∣∣∣∣∣∣
∣∣∣∣∣∣
s+2k+1−1∑

j=s

n∑
m=j−s+1

(
n
m

)
Tm

(
k∑

i=1

e∗
j (xi)ej

)∣∣∣∣∣∣
∣∣∣∣∣∣ < ε. �

3. Existence of dual hypercyclic operators. We now have all the ingredients for
proving the main result. This answers affirmatively Question 2 of [15]. The idea of the
proof is to start out with an operator like the one given in Proposition 2.1, say L0,
and then modify the weights, one at a time, in the order suggested in the statement of
the theorem. Call the operator so obtained T. Our candidate for a dual hypercyclic
operator is I + T.

THEOREM 3.1. Suppose that E is a Banach space whose dual is separable and
with Markushevich basis {en : n ∈ �} which satisfies (OP). Let wn > 0 for all n and∑

n∈� wn < ∞. Then there exists a dual hypercyclic operator

I +
∑
n∈�

vne∗
n ⊗ en−1 = I + T
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such that all vn > 0 and vn = wn except, possibly, for v0 ≤ w0, v4 ≤ w4, v−4 ≤
w−4, v12 ≤ w12 and for k > 2

v−(4+∑k−1
i=2 22i) ≤ w−(4+∑k−1

i=2 22i) and v4+∑k
i=2 22i−1 ≤ w4+∑k

i=2 22i−1 .

Proof. Since (OP) is in force, we have that ||en|| = 1 for n ∈ � and supn||e∗
n|| < ∞

and also [e∗
n : n ∈ �] = E∗. Let L0 = ∑

n∈� wne∗
n ⊗ en−1, then

max{||L0||, ||L∗
0||} ≤ supn||e∗

n||
(∑

n∈�

wn

)
= M. (4)

Let {zk : k ∈ �} be dense in E such that z1 ∈ [e0, e1] and z2 ∈ [ej : −4 ≤ j ≤ 3] and
for 2 < k

zk ∈
[

ej : −
(

4 +
k−1∑
i=2

22i

)
≤ j ≤ 4 +

k−1∑
i=2

22i−1 − 1

]
.

In an analogous fashion we choose {z∗
k : k ∈ �} to be dense in E∗ with z∗

1 ∈ [e∗
0, e∗

1]
and so forth.

Notice that zk is a linear combination of at most 22k−1 consecutive vectors of
{en : n ∈ �}. (Similarly for z∗

k.)
In the sequel we will denote by ui the weights of Lj and by vi the weights of the

new operator Lj+1.

By Lemma 2.8 there exist x1 ∈ [e2, e3] and n1 ∈ � and bilateral backward shift L1

such that

||x1|| < 2−1 and ||(I + L1)n1 (x1) − z1|| < 2−1

where the weights are the same for operators L0 and L1 except, possibly, v0 ≤ u0 = w0.

For L∗
1, which is a bilateral forward shift on E∗, there exist, by applying Lemma

2.8 again, y∗
1 ∈ [e∗

−4, e∗
−3, e∗

−2, e∗
−1] and n2 and L∗

2 such that

||y∗
1|| < 2−1 and ||(I + L∗

2)n2 (y∗
1) − z∗

1|| < 2−1

where the weights of L1 and L2 are the same except, possibly, that v4 ≤ u4 = w4.

Observe that we also have

||(I + L2)n1 (x1) − z1|| < 2−1.

Before going to the inductive step, let us see how x2 and y2 are chosen.
We choose x2 ∈ [ei : 4 ≤ i ≤ 11] and n3 ∈ � and L3 such that

||x2|| < 2−2(1 + M)−n1−n2

and

||(I + L3)n3 (x1 + x2) − z2|| < 2−2,

where the weights of L2 and L3 are the same except possibly that v−4 ≤ u−4 = w−4 and
M is as in (4).
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We choose y∗
2 ∈ [e∗

i : −20 ≤ i ≤ −5] and n4 ∈ � and L4 such that

||y∗
2|| < 2−2(1 + M)−n1−n2−n3

and

||(I + L∗
4)n4 (y∗

1 + y∗
2) − z∗

2|| < 2−2,

where the weights of L3 and L4 are the same except possibly that v12 ≤ u12 = w12.

Assume that we have already chosen x1, . . . , xk−1 and y∗
1, . . . , y∗

k−1 with norms
adequately small and n1, . . . ., n2k−2 ∈ � and also L1, . . . , L2k−2.

By applying Lemma 2.8 once again we can find xk as a linear combination of at
most 22k−1 consecutive vectors of {en : n ∈ �}. More precisely

xk ∈
[

el : 4 +
k−1∑
i=2

22i−1 ≤ l ≤ 4 +
k∑

i=2

22i−1 − 1

]

and n2k−1 and L2k−1 such that

||xk|| < 2−k(1 + M)−
∑2k−2

j=1 nj (5)

and ∣∣∣∣∣
∣∣∣∣∣(I + L2k−1)n2k−1

(
k∑

i=1

xi

)
− zk

∣∣∣∣∣
∣∣∣∣∣ < 2−k, (6)

where L2k−2 and L2k−1 might differ only in that

v−(4+∑k−1
i=2 22i) ≤ u−(4+∑k−1

i=2 22i) = w−(4+∑k−1
i=2 22i).

We then find that

y∗
k ∈

[
e∗

l : −
(

4 +
k∑

i=2

22i

)
≤ l ≤ −

(
4 +

k−1∑
i=2

22i + 1

)]

and n2k and L2k such that

||y∗
k|| < 2−k(1 + M)−

∑2k−1
j=1 nj

and ∣∣∣∣∣
∣∣∣∣∣(I + L∗

2k)n2k

(
k∑

i=1

y∗
i

)
− z∗

k

∣∣∣∣∣
∣∣∣∣∣ < 2−k,

where L2k−1 and L2k might differ only in that

v4+∑k
i=2 22i−1 ≤ u4+∑k

i=2 22i−1 = w4+∑k
i=2 22i−1 .

Let T be the bilateral backward shift that is the limit in the norm operator topology
of Lj when j goes to infinity.

https://doi.org/10.1017/S0017089507003692 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003692
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To finish the proof we have to check that x = ∑∞
i=1 xi is hypercyclic for I + T while

y∗ = ∑∞
i=1 y∗

i is hypercyclic for I + T∗.
We prove it just for x. We have that

||(I + T)n2k−1 (x) − zk||

≤
∣∣∣∣∣
∣∣∣∣∣(I + T)n2k−1

(
k∑

i=1

xi

)
− zk

∣∣∣∣∣
∣∣∣∣∣ +

∣∣∣∣∣
∣∣∣∣∣(I + T)n2k−1

( ∞∑
i=k+1

xi

)∣∣∣∣∣
∣∣∣∣∣

≤ 2−k +
∞∑

i=k+1

||(I + T)n2k−1 (xi)||

≤ 2−k +
∞∑

i=k+1

(1 + M)n2k−1 (||xi||) ≤
∞∑

i=k

2−i.

Thus (I + T)n2k−1 (x) − zk → 0 as k → ∞; since {zk : k ∈ �} is dense, this implies that
x is hypercyclic for I + T. The second inequality is because of (6), whereas the last
inequality is because of (5). �

Recall that a hypercyclic subspace for an operator T is an infinite dimensional
closed subspace whose nonzero vectors are hypercyclic.

REMARK 3.2. Corollaries 2.5 and 2.6 are also true for the bilateral shifts constructed
in Theorem 3.1, and therefore I + T satisfies the Hypercyclicity Criterion. Since σ (I +
T) = {1}, the essential spectrum of I + T meets the unit disk. Then a theorem of
González, León-Saavedra and Montes-Rodrı́guez asserts that I + T has a hypercyclic
subspace [9, p178 ].

4. New dual hypercyclic operators on Hilbert spaces. A similar argument to the
one given in the proof of Theorem 3.1 also proves the following theorem, which is
also valid for �p(�) and c0(�) where 1 < p < ∞. The shifts below are considered with
respect to the canonical basis. Since L may not be compact, V is the limit in the strong
operator topology of the intermediate operators Lj.

THEOREM 4.1. Let L be a bilateral backward weighted shift on �2(�), with positive
bounded weight sequence {wn}. Then there exists another bilateral backward shift V on
�2(�), with positive weight sequence {vn} such that I + V and I + V∗ are hypercyclic and
the corresponding weights of L and V are the same except, possibly, for v0 ≤ w0, v4 ≤
w4, v−4 ≤ w−4, v12 ≤ w12, v−20 ≤ w−20, v44 ≤ w44, v−84 ≤ w−84, . . .

We are now in a position to answer affirmatively Question 1 of [15].

COROLLARY 4.2. The operators considered in Theorem 3.1 and Theorem 4.1 are
different from the ones considered in Theorem 1 of [15].

Proof. If T is as in Theorem 3.1, then σ (I + T) = {1} by Proposition 2.1. Let V be
as in Theorem 4.1. By Remark 2.2, σ (I + V ) is one of the following: (i) {1}, (ii) a disk
centered at {1}, or (iii) an annulus centered at {1}.

On the other hand, the dual hypercyclic operators considered in [15] are bilateral
shifts, although not necessarily with respect to an orthonormal basis. So, in principle,
those shifts are not necessarily similar to shifts with respect to an orthonormal basis.
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In any event, Proposition 2.3 asserts that these operators have spectra with circular
symmetry and therefore cannot be similar to I + T nor to I + V. �

5. Final Comments. Probably it is possible to give another proof of Theorem 3.1
by showing directly that I + T and I + T∗ satisfy the Hypercyclicity Criterion; Section
4 of [12] might be relevant for doing this.

The third question of [15] whether there exists a dual hypercyclic operator on a
non-normable Fréċhet space remains unanswered. The papers by Ansari [2] and Bonet
and Peris [7] might be relevant in this regard. The proof of Theorem 3.1 is more in the
spirit of what Bernal-González did in [5]. (By using just L2k−1, the proof of Theorem
3.1 shows that I + T, where T = limk L2k−1, is hypercyclic whenever E is separable.)

The dual hypercyclic operator T in [17] also satisfies that T ⊕ T is dual hypercyclic.
Is T ⊕ T also a new kind of dual hypercyclic operator? It might be so; however, in this
case the spectra argument above does not rule out the possibility that T ⊕ T be similar
to the dual hypercyclic operators considered in [15].

Let B ∈ �2(�) be the backward shift B(e0) = 0 and B(en) = en−1, where {en : n ∈ �}
is the canonical orthonormal basis. In [1], Abakumov and Gordon showed that the
family λB with |λ| > 1 has a common hypercyclic vector. It is possible that in Theorem
3.1 all the operators

I +
∑
n∈�

µne∗
n ⊗ en−1

such that all µn > 0 and µn = vn except, possibly, for µ0 ≤ v0, µ4 ≤ v4, µ−4 ≤
v−4, µ12 ≤ w12, µ−20 ≤ w−20, µ44 ≤ w44, µ−84 ≤ w−84. . . are hypercyclic and have
a common hypercyclic vector. Moreover, they might have a common hypercyclic
subspace. There have been a few papers studying common hypercyclic subspaces,
see for instance the one by Bayart, [4], and the paper by Aron, Bès, León and Peris, [3].
See also Proposition 3 of [15].

Recall that a chaotic (and thus hypercyclic) operator T has a dense set of periodic
points [8, p263], and therefore the point spectrum σ0(T) �= ∅. On the other hand, it
is well known that σ0(T∗) = ∅ whenever T is hypercyclic [14, p180]. (This fact was
observed for Hilbert spaces, but it is well-known that it is true in general.) Since
σ0(T) ⊂ σ0(T∗∗), there cannot be dual hypercyclic operators which are also chaotic.

The following problems are intriguing.
Problem 1: Are there any other dual hypercyclic operators other than direct sums

of the ones known so far?
Problem 2: Characterize the bilateral shifts T such that I + T is hypercyclic.
Problem 3: Characterize the bilateral shifts T such that I + T is dual hypercyclic.
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