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POSITIVE /^-SUMMING OPERATORS, VECTOR MEASURES
AND TENSOR PRODUCTS
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Introduction

In this paper we shall introduce a certain class of operators from a Banach lattice X
into a Banach space B (see Definition 1) which is closely related to p-absolutely
summing operators defined by Pietsch [8].

These operators, called positive p-summing, have already been considered in [9] in
the case p = 1 (there they are called cone absolutely summing, c.a.s.) and in [1] by the
author who found this space to be the space of boundary values of harmonic B-valued
functions in hp

B(D).
Here we shall use these spaces and the space of majorizing operators to characterize

the space of bounded p-variation measures VP
B and to endow the tensor product H®B

with a norm in order to get IF(B) as its completion in this norm.

Some definitions and previous results

Throughout this paper X will denote a Banach lattice and B a Banach space. Given
1 ?£p^ oo we shall always write p' for such a number that (l/p)+(l/p') = 1.

Definition 1. An operator T belonging to L(X, B) is called positive p-summing
( l ^ p < o o ) if there exists a constant C > 0 such that for all positive elements x1 >x2 , . . . ,xn

in X we have

1/P / n \1 /P

sup M

We shall denote by AP(X, B) the space of such operators and the infimum of the
constants will be the norm on it.

A duality argument allows us to write the following equivalent formulation of (1):

( n \1/P r

I IMS ZC-sup]
f = i / I

n

if = i x i = i
(10

Obviously the space of p-absolutely summing operators HP{X, B) is included in
AP(X, B) and the same techniques as for p-absolutely summing operators lead us to see
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that for p^q, \P(X, B)<= A,(AT, B) and

foralirinAp(*,B). (2)

Definition 2 (see [9]). An operator T belonging to L(B, X) is called majorizing if
there exists a constant C > 0 such that for every jels x2,..., xn in B

sup |Tx,j sup ||x,.||B. (3)

We shall denote by M(B,X) the space of such operators and we shall set the
following norm on it:

T|m = supj|sup | r J | :{x1.}eB)
(. | l SiSn \]x

If we consider A <S)B as a subspace of L(A*, B), that is u = £?= t a,- (g) bt[ represents the
operator Tu defined by Tu(̂ ) = ̂ "= 1 <^,a,>fe,, then it is easy to see that A®B is
included in AP(A*,B) and M(/1*,B). Let us denote by A®pB and A®mB the
completion of the space A®B endowed with the norms induced by AP(A*,B) and
M(A*, B) respectively.

Applications to tensor products and vector measures

Let (Q,,@,(i) be a finite measure space and l^p<oo. We shall denote by IF(n,B) the

(4)

space of measurable functions such that ||/||J, = (Jn| |/(t)| |p^)1/ ' '< +oo.
The following result can be found in [9].

This fact can be extended in the following way:

Theorem 1. Let l^p<co, then for all l^r^p

Proof. Let 1 ^ r ̂  p. Since simple functions are dense in IF(fi, B), it suffices to show
that for each s = £"= j x, • %E w e have that the operator Ts(ip) = Jn s(i) • \l/(t) dfi(t) satisfies

kHlfL , , , , , , ,
Since ||s]|p = |Ts|Ai and |rs |A;>g|rs |A^|rs |Ai then it is enough to prove that

1/P
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1/P

• sup j | £ a,•

=lT«lv a
We can give another representation of AP(Z? (/i), B) in terms of vector measures.
Let us recall a space of B-valued measures, introduced by Bochner [2] in the scalar-

valued case, which is a good substitute for I?(fi, B) in several cases, for example for the
duality (Zf(/x, B))* = V$. or for boundary values of functions in h?B(D) [1].

Definition 3. A finitely additive vector measure G:3S-*B is said to have bounded p-
variation if

where the "sup" is taken over all finite partitions of £2 and

(p = oo). (5')

We shall denote by V\ the space of such measures and its norm is given by (5) or (5')
provided l<p<oo orp=oo.

Let us recall some properties of this space.

(a) Every measure in V\ is countably additive, /^-continuous and with bounded
variation.

(b) IE{\i, B) is isometrically embedded in Fg.

Dinculeanu [4] characterized the space V% in terms of £C(lP'{(i), B), the space of
operators in L{n\n), B) such that

><+oo.
l l f

The author proved in [1] that if (Lp'{fi), B) = Ap(If'(n), B), hence we have the following:

Theorem 2. For 1 <p ^ oo, Ap(L
p'(/z), B) = VP

B.

Now we shall characterize V\ by means of the space of certain majorizing operators.
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Theorem 3. For 1 < p < oo, M{B, Lp(n)) = Kg..

Proof. Let G be a measure of Kg. and take xeB with ||x||B=l. Consider now the
measure GX(E) — <G(£), x> for all measurable set £ and the positive measure |G|. Both
measures are countably additive, /z-continuous and with bounded variation. So, by the
Radon-Nikodym theorem, there exist fx and g^O in L*(/i) such that

= $fx(t)dn(t) for all £ 6 ^ , (6)
E

= $g(t)dfi(t) for all £ e ^ . (7)
EE

It is not difficult to show, since G belongs to Kg, that fx and g belong to H(n) and
moreover HifHpHGlp (see the argument in [1, Proposition 3]).

Due to (6) and (7) we have that

E

and from this we obtain

|/xM|^|«to| -̂a-e. (8)

Let us define T:

From (8) it is easy to show that TeM(B,Lp(fi)).
Indeed, if x1,x2,...,xn belong to B and ||XJ||B=1 then

sup \Tx,\

Conversely, given T in M(B, IF(fi)) and denoting by fx the function Tx, we can define
the measure G:3$->B* by

E

Now, let n be a partition of £1 Given £>0, for each Een there exists bEeB with
| |^E | |B = 1 s u c n that

H(E)-1IP-1| G(£) || g </i(£) -1/p'-G(£),fe£> + £/«1/p. (10)

From (10) the triangle inequality in (p implies

ki/p / _ . V / p

£e"n
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Now by using (9) we can write

183

J l f |
=1 (EeirE

^ sup

• S U P \ E «
LP Eaf = 1 (. |£en

+ £

Taking e arbitrarily small and the "sup" over the partitions we obtain
completing the proof.

This theorem allows us to prove the following result of [5].
•

Corollary. B ® B) for each 1 < p < oo.

Proof. Given a simple function s=^" = 1 x ,x £ . where x( belongs to B, we notice that
s clearly belongs to Lp(/i, B**) and therefore the measure GS(E) = J£ s(t) dn(t) belongs to
Kg,, = M(B*, Il(n)). So, denoting by Ts the operator associated with s we have ||s||p =
|Gs|p = |7^|m. Finally the density of simple functions in the space If(n,B) gives us the
corollary. •
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