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EXTENSION WITH LARGER NORM AND
SEPARATION WITH DOUBLE SUPPORT

IN NORMED LINEAR SPACES

IVAN SINGER

We prove, in normed linear spaces, the existence of extensions of

continuous linear functionals from linear subspaces to the whole

space, with arbitrarily prescribed larger norm. Also, we prove

that under an additional boundedness assumption, in the known

separation theorems for convex sets, there exist hyperplanes

which separate and support both sets.

1. Introduction

If G is a linear subspace of a normed linear space E and cp a

continuous linear functional on G , the classical Hahn-Banach theorem

states that there exists an extension of cp to a continuous linear

functional $ on the whole space E (that i s , $|G = (p ) , with the same

norm ||$|| = ||<p|| . Since obviously every extension 4> of <p , to the whole

space E , has norm ||*|| 2 ||cp|| , this theorem states, in other words, the

existence of an extension $ of <p , to the whole space E , with the

smallest possible norm; however, no information is given about the

existence of an extension * with a prescribed norm X , where A > ||(p|| ;

that i s , of an extension with a prescribed larger norm. Furthermore, the

known separation theorems for convex sets do not give information about

"how non-strict" separation can be, more precisely, about the existence of

functionals or hyperplanes which not only separate, but at the same time

also support, both sets (such a property may be called "separation with
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double support"); for a survey of known results on separation and support

properties of convex sets, see [4].

In the present paper we shall show that the answer to the above

extension problem and, under a certain additional boundedness assumption,

the answer to the above problem on separation with double support, are

affirmative. Let us point out that we have been led to these results by

the study of an optimization problem, namely, that of the minimization of

continuous linear functionals on caverns and that we have applied our

Corollary 2 to solve this problem ([£], Theorems 2.2 and 3.3).

In order to be able to apply our results on extension with larger norm

to separation with double support, we shall give these extension theorems

for an arbitrary asymmetric norm. We recall (see, for example, [6], [2])

that a non-negative functional x -»• ||x|| on a linear space E is called an

asymmetric norm on E , if

(a) Hxll = 0 if and only if x = 0 ;

(b) Hx-H/ll 5 ||x|| + ||2/1| (x, y € E) ;

(c) ||ax|| = a||x|| (x € E, a > 0) ;

property (c) i s cal led the positive homogeneity of ||*|| . Thus, in

p a r t i c u l a r , every norm in the usual sense, that i s , every "symmetric" norm

( tha t i s , such that ||ax|| = |a| | |x| | for a l l x d E and a 6 R , the r ea l

l i ne ) i s an asymmetric norm. We shall say that an asymmetric norm ||*|| on

a normed l inear space E = (E, | * | ) i s equivalent to the i n i t i a l norm

on E (or , b r i e f l y , ||«|| i s an equivalent asymmetric norm on E ) , i f

there ex is t two constants C , C > 0 such that C \x\ 5 ||x|| 2 C \x\

(x € E) ; then, c lea r ly , | « | and ||*|| generate the same topology on

E , v ia the (usual) distance d i s t i i (x , y) = \x-y \ and the asymmetric

distance distn M(X, y) = ||x-j/|| respectively. For a l inear space E , &n

asymmetric norm || • || on E , and any l inear functional $ on £ , we

sha l l consider the asymmetric norm ||<i>|| = sup i>(x) and we shal l denote
xiE

IWIS1

by E* the set of all linear functionals * on E such that ||*|| < **> .

If G is a linear subspace of E , we shall denote

G1 = {* e E* | $| = o} .
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We also r eca l l some other notations and notions which we shal l use in

the sequel. For a subset A of a normed l inear space (E, |« |) , we shal l

denote by A and Int A the closure and the in te r io r of A respectively

(in the norm topology of E ) . A linear manifold V in E i s a subset of

the form V = x + G = {^0
+g I 9 e ^} > where G i s a l inear subspace of

E and x. € 2? . A hyperplane # (by "hyperplane" we shal l always mean a

closed hyperplane) i s said to support a set A in E , i f A l i e s in one

of the two closed half-spaces determined by H and

d i s t i >(H, A) = inf \y-z\ = 0

ziA

(thus, we do not require that H n A ? 0 ) . For # = {j/ € E | $(;/) = e} ,

where $ £ £* , * ^ 0 and a € i? , t h i s happens i f and only i f ei ther

o = sup #(4) or a = inf $(/4) , so every hyperplane # supporting A can

by writ ten (replacing, i f necessary, $ by -$ ) in the form

5 = {y € £ | *(j/) = sup *(/4)} , where # € 2f* , * # 0 (and, conversely,

every hyperplane of th i s form, with sup §{A) < +00 , supports A ) .

Finally, we note tha t , while many of the known theorems on separation

of convex sets are given in topological l inear spaces, in the case of our

resu l t s on separation with double support this would yield no gain in

generality, since by vi r tue of Kolmogorov's theorem on nonliability (see,

for example, [ ? ] , Chapter I , %k, (12) ( c ) ) , every topological l inear space

E in which there exists a bounded convex subset with non-empty in te r io r ,

must be normable. Therefore, we shal l give our r e su l t s on separation with

double support only in normed l inear spaces {E, |* | ) (although, in the

f i r s t parts of these r e su l t s , the norm |* | wi l l not occur exp l i c i t l y ) .

2. Extension with larger norm

THEOREM 1. Let E be a linear space, ||*|| an asyrrmetria norm on

E , G a linear subspace of E with G~ t {0} , cp € G* and X > ||(p|| .

Then there exists * € E* such that

( 1 ) * | c = <P , 11*11 = X .

Moreover, if A > ||<p|| , then there exist at least two distinct

functionals * € E* satisfying ( l ) .
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Proof. By the Hahn-Banach theorem for asymmetric norms (see, for

example, [ 5 ] , Chapter I I I , §17)> there exis ts * € E* such that

(2) * i l C = » ' H*iII = 11*11 •

Furthermore, since G # {0} , there exists *_ € E* such that

(3) * 2 I G = <p , *2 * \ ;

i n d e e d , o n e c a n t a k e 3> = * + * . , w h e r e * . € G , *_ # 0 . L e t

(U) 4^ = a*x + ( l - a ) * 2 = a(*x-*2) + * 2 (a € tf) ,

(5) X(a) = PJ (a € J?) .

Then X i s continuous on R , x( a ) "* +a> a s a "*" ±0° » and, by (2) ,

X(l) = ll^ll = II*. || = ||<p|| S X < +<*> . Consequently, there exis ts a € i?

such tha t x(a-,) = ^ and, i f X > ||<p|| , then there exist a. > 1 and

a < 1 such tha t x(°O = x(c"2) = X . Then, c lear ly , the functional

* = ¥a (respectively, i f X > ||ip|| , then both * = ¥ and * = f J

s a t i s f i e s ( l ) , which completes the proof of Theorem 1.

Even when there are an inf in i ty of d i s t i nc t functionals $ € E* such

t h a t * I G = ip , ||*|| = ||(p|| , i t may happen that for each X > ||<p|| there

ex i s t exactly two d i s t i n c t functionals * £ E* satisfying ( l ) , as shown by

EXAMPLE 1 . Let E = l2 , the two-dimensional space with the norm

IK?!, Z^\\ = m a x f l ^ l , |C2I) , l e t G = {(C^ ?2J € B | ^ = £2} and

define <p t G* by c p f ^ , .C^) = C-L ( C ^ , C2) € c) . Then ||cp|| = 1 and

each * € £"* satisfying * | „ = <p i s of the form

for some a € if . Since for any such * we have ||* || = | a | + 11—a| , i t

i s c lear that ||* || = 1 for a l l a with 0 5 a 5 1 , but for each X > 1

there exist exactly one a > 1 and one a < 0 such that
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||*a || = ||#a || = X (namely, c^ = (X+l)/2 and a2 = (l-X)/2 ) .

Let us observe that such an example i s possible only for codim G = 1 ;

more precisely, if codim G 2 2 , then for each X > ||cp|| there exist an

infinity of funationals <£> € E* satisfying ( l ) . Indeed, i n t h i s c a s e , fo r

Gl = {V € E* | V| = 0} we have

dim (3 = dim £/G = codim G > 2 ;

but {*€£•* | * | G = <p} = $ 0 + G , where $ 6 E* , * Q | G = cp , and hence ,

1 C i\
since $ + G is a linear manifold with dim $ +G > 2 and

dist 0, $n+G = inf ||$|| = ||<p|| , i t follows that for each X > ||cp|| the
I u ; 1

*e* +G

set

{# € ff* | * | G = cp, ||$|| = X} = kj+G1] n {*€£"* | ||4>|| = X}

is inf ini te , which proves our assertion.

Similar examples and remarks can be also given for the results below,

but we shall not mention them again in the sequel.

COROLLARY 1. Let E be a linear space, ||«|| an asymmetric norm on

E , G a linear subspace of E 3 x an element of E with

(G © [x ]) / {0} and with d = inf ||x -£|| > 0 , and let X > 1/d . Then
g(.G

there exists * € E* such that

(6) <*>(<?) = 0 {g (. G) ,

(7) *(xQ) = 1 ,

(8) ||$|| = X .

Moreover, if X > 1/d , then there exist at least two distinct

functionals * € E* satisfying (6)-(8).

Proof. Define a functional cp on G © [x ] = {g+ax \ g € G, a € /?}

by
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(9) <p(g+axQ) = a (g Z G, a (. R) .

Then cp i s l i n e a r o n G ® [x ] and (fig) = 0 {g € G) , <i>[xn) = 1

Now l e t g+axQ £ C © [ x 0 ] , Hg'+cuCgll S I . I f a > 0 , t h e n

o | | > ad = ^ )

on the other hand, if a 2 0 , then

1 > lb-wixo|| > 0 2 ad = <s>[g+axQ)d ,

whence, since g+ax € (7 © [#_] with ||̂ +aa; || ^ 1 was a rb i t r a ry , we

obtain ||ip|| ~ X/d ( ac tua l ly , we shal l see in Remark 1 (a) tha t

||<p|| = X/d , but we do not need, th i s here) . Then, since

[G © [*0])~ # {0} , X > X/d > j|cp|| , by Theorem 1 there exis ts $ € E*

sa t is fy ing *U,2)r). T = <P . 11*11 = X , whence also (6) - (8) . Final ly , i f

X > 1/d (> ||(p||) , then, again by Theorem 1 there exist at l eas t two

d i s t i n c t functionals * € E* with these propert ies , which completes the

proof of Corollary 1.

REMARK I . (a) The assumption tha t G i s not a hyperplane i s

necessary only for the case when X > X/d . Indeed, when G i s a hyper-

plane and X = X/d , the above proof yields cp € [G © [«„])* = E*

sa t i s fy ing <p(g) = 0 (g € G) , cp [x ) = 1 and ||cp|| 5 l/<2 . But, taking

g € G such tha t \\xQ-g \\ -*• d , we obtain

whence ||ip|| > l/<f , and thus ||<p|| = X/d = X .

(b) From Remark 1 (a) it follows that if H is a hyperplane in E

given by

(10) H = {y € E | *0(2/) = e} ,

where # 6 £"* , * ^ 0 , e € i? and i / x € £" i s swe/i

$0(x0) 2 e j #zen t/ze "asymmetric distance" from x to H is

(11) distn JxQ, H) = inf ||*0-i,|| = (*0(x0)-e)/||$0|| .
y£H
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Indeed, assume f i r s t that c = 0 . Then, by Remark 1 ( a ) , there

exists * € E* satisfying Hy) = 0 (y € H) , *(xQ) = 1 and

||$|| = 1/(distn ii ( x , H)) . By the f i r s t one of these re la t ions and (10)

with a = 0 , i t follows that $ . = a* for some a € R . But then,

0 = c < *ofco) = a*fc0) = a , whence ||$0|| = *Q (a?0) ||$|| and

d i s t | H | ( z 0 , H) = 1/||#|| = *0(a:0)/ | |*0 | | ,

which proves ( l l ) for a = 0 . Now, i f a € R i s a rb i t r a ry , then, from

the resu l t for c = 0 , proved above, we obtain, taking any y. € H (thus,

B - yQ = {h « E | 4>0(y) = 0} and #Q (*0-J/0) = * 0 (^ 0 ) - e> o), tha t

d i s t , , . , ! ^ , ff) = d i s t | M | ( V V H-yQ) = *0(^0-^0)/il*0H = (*o(*o)-<0/ll*oll •

which completes the proof of ( l l ) . Let us observe that ( l l ) can be also

proved directly, similarly to the particular case of (symmetric) norms

(see, for example, [7 ] , Chapter I , Lemma 1.2). Note also that if

*0(*0) - e , then

(12) d i s t ( H | ( z 0 , H) = M o ( x o ) ) / | | - # o l | .

Indeed, by (10), we have H = {y t E \ (-*J(y) = -a] and, by

* J i J - c we have (~*Q) (^Q) - -C , SO we can apply ( l l ) to -* and -c

and thus obtain (12). As was already mentioned, in general ll-*nll ^ ||4>OJ| .

REMARK 2. By Remark 1 (b), we can give the following geometric

interpretation of Corollary 1: if E is a linear space, ||*|| an

asymmetric norm on E , G a linear subspaae of E , and if x is an

element of E , with [G © [xQ]) * {o} and with d = dist,, ,,(x G) > 0 ,

then for every X € R with 0 < 1/X s d there exists a hyperplane H

containing G and such that dist,, ,,(x , H) = I/A [or, equivalently,

containing G and supporting the "asymmetric ball"

B[XQ, 1/X) = {y € E | \\xQ-y\\ < I/A} ) ; moreover, if 0 < I/A < d , then

there exist at least two such hyperplanes H . Indeed, if * € E* is as

in Corollary 1, then the hyperplane
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(13) H = {y € E | #(j,) = 0}

contains G and, by Remark 1 (b), dist,, ,, [xQ, H) = #(a;0)/||*|| = 1/X .

Conversely, every hyperplane H containing G , but not X- (if x 0 6 H ,

then dist,, # I, ( x , H) = 0 ) , is of the form (13) for some * € £* with

*(x ) # 0 , so we may assume (considering [l/$(xQ))$ instead of # , if

necessary) that $(a; ) = 1 . Thus, if distn .Ax , H) = 1/X , then, by

Remark 1 (b), 1/||#|| = *(xo)/||*|| = disty. ̂  {xQ, H) = 1/A , whence ||*|| = X ,

so $ satisfies (6)-(8). This result may be regarded as a complement to a

theorem of Eidel he it [3], which states (for symmetric norms, but the result

remains valid for asymmetric norms, too) that

(lU) dist | |# | |(ar0, G) = sup d i s " t | | . j| (^Q' E^ '

where H denotes the collection of all hyperplanes in E .

3. Separation with double support

THEOREM 2. Let {E, |«|) be a normed linear space, U a bounded

convex subset of E with Int U t 0 , and V a linear manifold in E for

which V is neither E , nor a hyperplane, such that

(15) V n Int U = 0 .

Then there exists $ € E* with * # 0 , such that

(16) *(j/) = sup $(£/) {y € 7) .

Moreover, if dist • Av, U) > 0 , then there exist at least two

distinct functionals $ € E* with * ? 0 , satisfying (l6).

Proof. We may assume that 0 € Int U . Indeed, if the theorem is

true in this case, then, since for any s € Int U we have 0 € Iat(.U-z)

and (V-z) n Int(U-z) = 0 (respectively, dist, ,(7-s, U-z) > 0 ) , we

obtain $ € E* (respectively, at least two $ € E* ), with $ # 0 , such

that *(z/-s) = sup $(l)-z) (y € 7) , whence * satisfies also (l6).

Thus, assume that 0 € Int U . Then the Minkowski functional
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(17) \\x\\ = inf u (x € E) ,
u>0

xi\iU

of V , i s an asymmetric norm on E , and, since

Int U = (x € E1 | ||x|| < 1} # 0

and U i s bounded, ||»|| i s equivalent to the i n i t i a l norm |» | on E .

Furthermore, s ince V i s a l inea r manifold, we can wri te V = x + G ,

where x. £ V and G i s a l inea r subspace of E . Then, since V i s

neither E , nor a hyperplane, we have (G © D O ) # {0} . Also, by (15) ,

we have d = inf ||xn-<7l| = inf \\y\\ > 1 . Hence, by Corollary 1 above (with
glG U yiV

X = 1 > 1/d ) , t h e r e e x i s t s * € £* s a t i s f y i n g ( 6 ) , ( 7 ) and | |$ | | = 1 .

T h e n , b y ( 7 ) and ( 6 ) , we h a v e $(y) = 1 [y € x + G = v) . On t h e o t h e r

hand, sup 4>(t/) = sup $(x) = ||<i>|| = 1 and hence (l6) holds.
xiE

NISI

Fina l ly , i f d i s t i i(K, y) > 0 , then, since | |-| | and | - | a re

equivalent , we have dist , , AV, {x € E \ \\x\\ < l } ) > 0 , whence

d = inf \\x -g\\ = inf ||^|| > 1 . Consequently, by Corollary 1 (with
giG U yZV

X = 1 > 1/d ) , there exist at least two dis t inct functionals * € E*

satisfying (6), (7) and ||<£>|| = 1 . But then, as above, both of these *

satisfy ( l6) , which completes the proof of Theorem 2.

REMARK 3. (a) Theorem 2 admits the following geometric interpre-

tation: if U is a bounded convex subset, with Int V ± 0 , of a normed

linear space {E, \'\) and V a linear manifold in E , with V neither

E j nor a hyperplane, such that (15) holds, then there exists a hyperptane

H supporting II and containing V ; moreover, if dist i # p (V, U) > 0

then there exist at least two distinct hyperplanes H supporting V and

containing V . Indeed, if * € E* i s as in Theorem 2, then the hyper-

plane

(18) H = {y € E | *(j/) = sup *(£/)}

supports U and contains V . Conversely, every hyperplane H which

supports U is of the form (l8) for some * € E* , $ f 0 , so if V c H ,
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then we must have (l6).

(b) Theorem 2 is a complement to Mazur's separation theorem, which

asserts (see, for example, [5], Chapter III, §17) that if I) is a convex

subset (not necessarily bounded) of E , with Int U t 0 , and if V is a

linear manifold in E , with V f E , for which (15) holds, then there

exist * £ E* , * * 0 , and c I R , such that *({/) = e > sup ${U)

(y € V) , or, equivalently, there exists a hyperplane H containing V and

such that H n Int U = 0 .

In the particular case when V is a single point, from Theorem 2 we

obtain

COROLLARY 2. Let E be a normed linear space, U a bounded convex

subset of E with Int U # 0 , and x € £\(Int U) . Then there exists

* € E* with * * 0 , such that

(19) *(a;) = sup *(£/) .

Moreover, if x £ E\U , then there exist at least two distinct

functionals § £ E* with $ ^ 0 , satisfying (19).

REMARK 4. (a) Corollary 2 admits the following geometric

interpretation: if U is a bounded convex subset, with Int U # 0 3 of a

normed linear space E and if x € ffXdnt U) , then there exists a hyper-

plane H supporting U and containing x ; moreover, if x € E\U , then

there exist at least two distinct hyperplanes H supporting U and

containing x .

(b) Corollary 2 is a complement to Mazur's support theorem, which

asserts (see, for example, [ / ] , Chapter I , §6, Theorem 3) that if U is a

convex subset (not necessarily bounded) of S , with Int V # 0 , and if

x € £\(lnt U) , then there exists * € E* with $ # 0 , such that

${x) i sup $(U) , or, equivalently, there exists a hyperplane H

containing x and such that H n Int U ? 0 .

THEOREM 3. Let (E, |» | ) be a normed linear space, A a bounded

convex subset of E with Int A i- 0 , and B a bounded convex subset of

E , such that B ± 0 and

(20) B n Int A = 0 .

Then there exists 4> € F* wifc/z * ?f 0 ^ sweft
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(21) sup HA) = inf $(S) .

Moreover, if d is t i . i(B, A) > 0 , then there exist at least two

distinct functionals * € E* with * t 0 , satisfying (21).

Proof. Let

(22) V = (Int A) - B = {y-z \ y € Int A, z f 5} , x = 0 .

Then, c lear ly , !/ i s a 'bounded convex subset of E and U i s open

(since £/ = U {int A-z) ) , so £/ = In t V t 0 . Also, by (20), we have
ziB

x = 0 € £\{/ . Hence, by Corollary 2, there exis ts # € £* with * # 0 ,

such that 0 = #(0) = sup ${(lnt A)-B] , so in order to prove (21), i t w i l l

be enough to show that

(23) sup ${(lnt A)-B) = sup $( ln t A) - inf #(S)

(since sup *(i4) = sup $( ln t A) ) . Now, since $(y) £ sup #( ln t A)

(y € Int A) , *(s) > inf #(B) (s € B) , we have the inequalty 5 in

(23). On the other hand, for each e > 0 there exist y € Int A and

z EB such that #(# ) > sup *U) - e , $(s ) £ inf #(B) + e , whence,

since e > 0 was arb i t ra ry , we obtain the inequality > in (23). Thus

(23) holds, which proves (21). Final ly, if d i s t i ,(B, A) > 0 , then

dis t i i(S, Int A) > 0 , whence 0 f ( in t A) - B . Thus, by Corollary 2,

there exist a t leas t two d is t inc t functionals # € E* with * # 0 ,

satisfying 0 = <Ho) = sup ${(lnt A)-B} , whence also (21), which completes

the proof of Theorem 3.

REMARK 5. (a) Theorem 3 admits the following geometric i n t e r -

pretation: if A, B are bounded convex subsets, with Int A £ 0 ,

B t 0 , of a normed linear space (E, |*|) and if (20) holds, then there

exists a hyperplane H separating A and B and supporting each of

these sets; moreover, if disti i(5, A) > 0 , then there exist at least

two distinct hyperplanes H with these properties. Indeed, if 4> € E* is

as i n Theorem 3 , then t h e hyperplane H def ined by

(21+) H = {y € E | *(j/) = sup # ( 4 ) }

s e p a r a t e s A and B and suppor ts A and B . Conversely , every hyper -

plane H which suppor t s A i s of t h e form (2l*) for some <*>€£"*,
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* + 0 . If H supports also B , then we must have either

sup $ U ) = sup #(S) , or sup *U) = inf *(S) ; but, if H also separates

A and B , then we can have only the second equality, so (21) holds.

(b) Theorem 3 is a complement to Eidelheit's separation theorem,

which asserts (see, for example, [/], Chapter I, §6, Theorem k) that if

A, B are convex subsets (not necessarily bounded) of E , with Int A # 0 ,

B * 0 , and such that (20) holds, then there exists * € E* with * t 0

such that sup $(/l) 5 inf *(B) , or, equivalently, there exists a hyper-

plane H separating A and S .

REMARK 6. (a) As shown by simple examples (for example, half-

spaces), the assumptions of boundedness cannot be omitted in the results of

§3-

(b) Naturally, one can also give direct proofs of the geometric

results of §3 (without using §2). Moreover, as in the classical theory

(see, for example, [5]) one can show that the results of §2 and §3 are

equivalent.
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