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EXTENSION WITH LARGER NORM AND
SEPARATION WITH DOUBLE SUPPORT
IN NORMED LINEAR SPACES

IvaN SINGER

We prove, in normed linear spaces, the existence of extensions of
continuous linear functionals from linear subspaces to the whole
space, with arbitrarily prescribed larger norm. Also, we prove
that under an additional boundedness assumption, in the known
separation theorems for convex sets, there exist hyperplanes

which separate and support both sets.

1. Introduction

If G 1is a linear subspace of a normed linear space £ and ¢ a
continuous linear functional on G , the classical Hahn-Banach theorem
states that there exists an extension of ¢ to a continuous linear

functional ¢ on the whole space FE (that is, ®|G =9 ), with the same

norm ||&]| = llpll . Since obviously every extension & of ¢ , to the whole
space E , has norm ||®|| 2 |l¢|l , this theorem states, in other words, the
existence of an extension ¢ of ¢ , to the whole space E , with the
smallest possible norm; however, no information is given about the
existence of an extension ¢ with a prescribed norm X , where X > |o| ;
that is, of an extension with a prescribed larger norm. Furthermore, the
known separation theorems for convex sets do not give information about
"how non-strict" separation can be, more precisely, about the existence of
functionals or hyperplanes which not only separate, but at the same time

also support, both sets (such a property may be called "separation with
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double support"); for a survey of known results on separation and support

properties of convex sets, see [4].

In the present paper we shall show that the answer to the above
extension problem and, under a certain additional boundedness assumption,
the answer to the above problem on separation with double support, are
affirmative. Let us point out that we have been led to these results by
the study of an optimization problem, namely, that of the minimization of
continuous linear functionals on caverns and that we have applied our

Corollary 2 to solve this problem ([8], Theorems 2.2 and 3.3).

In order to be able to apply our results on extension with larger norm
to separation with double support, we shall give these extension theorems
for an arbitrary asymmetric norm. We recall (see, for example, [6], [Z1)
that a non-negative functional &« = [|x|| on a linear space E is called an

asymmetric norm on E , if
(a) Jix[l = 0 if and only if =z = 0 ;
() Myl = llll + llyll (z, y € E) 3
(c) lloz|l =allz)l (x € E, a=0);

property (c) is called the positive homogeneity of ||*|| . Thus, in
particular, every norm in the usual sense, that is, every "symmetric" norm
(that is, such that Jlox| = |a|llzfl for all = € E and & € R , the real
line) is an asymmetric norm. We shall say that an asymmetric norm || on
a normed linear space E = (E, |+|) is equivalent to the initial norm

on E (or, briefly, ||*ll is an equivalent asymmetric norm on E ), if

there exist two constants (,, C, > 0 such that Cl|x| = Jxfl = 02|x|

2
(x € E) ; then, clearly, |*| and |*|| generate the same topology on

E , via the (usual) distance diSt|‘|(x’ y) = |z-y| and the asymmetric
distance dist”.”(x, y) = |lx-yll respectively. For a linear space E , an

asymmetric norm ||*]l on E , and any linear functional ¢ on E , we

shall consider the asymmetric norm ||®|| = sup &(x) and we shall denote
L 43
flcll<1

by E* the set of all linear functionals @& on E such that ||&] < 4= .

If G 1is a linear subspace of E , we shall denote

¢ ={2 cE* | 2|, =0}
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We also recall some other notations and notions which we shall use in
) , we shall

the sequel. For a subset A of a normed linear space (B,
denote by 4 and Int A the closure and the interior of 4 respectively
(in the norm topology of E ). A linear manifold V in E 1is a subset of

the form V = Zy*+ G = {x0+g | g € G} , where G 1is a linear subspace of

E and =z, € E . A hyperplane H (by "hyperplane" we shall always mean a

closed hyperplane) is said to support a set A in E , if 4 1lies in one
of the two closed half-spaces determined by H and

distl.I(H, A) = inf |y-z| = 0

y€H

3 €A
(thus, we do not require that H nA # @ ). For H ={y € E | &(y) = e} ,
where ® € E* , & # 0 and ¢ € R, this happens if and only if either
e = sup $(4) or ¢ = inf ®(4) , so every hyperplane H supporting A can
by written (replacing, if necessary, ¢ by -% ) in the form
H=1{y €¢E | ®(y) = sup #(4)} , where ® € E* , & # 0 (and, conversely,
every hyperplane of this form, with sup ®(4) < +o , supports 4 ).

Finally, we note that, while many of the known theorems on separation
of convex sets are given in topological linear spaces, in the case of our
results on separation with double support this would yield no gain in
generality, since by virtue of Kolmogorov's theorem on normability (see,
for example, (7], Chapter I, §4, (12) (c)), every topological linear space
E 1in which there exists a bounded convex subset with non-empty interior,
must be normable. Therefore, we shall give our results on separation with

*|) (although, in the

double support only in normed linear spaces (E,

first parts of these results, the norm I'I will not occur explicitly).

2. Extension with larger norm
THEOREM 1. Let E be a linear space, ||*ll an asymmetric norm on

1
E, G a linear subspace of E with G # {0} , ¢ € G* and X = |lof .
Then there exists ¢ € E* such that

(1) el,=0, lol=2.

Moreover, if X > lloll , then there exist at least two distinct
functionals & € E* satisfying (1).
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Proof. By the Hahn-Banach theorem for asymmetric norms (see, for

example, (5], Chapter III, §17), there exists @l € E* such that

(2) s lp=0, lel=loll .
L

Furthermore, since G # {0} , there exists %, ¢ E* such that
(3) ®2|G=q>, e, # 2 3
i $, =3 + & h € Gl $ 0
indeed, one can take > =% 0 ° where 0 N 0 # . Let
(L) v, = + (1-a)e, = afe-2,) + &, (a €R),
(5) x(a) = ¥ I (o €Rr)

Then X 1is continuous on R, X(a) > +o as o = %= , and, by (2),

x(1) = ”Wl” = ”@l” = |lp]] = A < 42 . Consequently, there exists o) €R
such that x[al) = A and, if A > |l¢|| , then there exist a, >1 and
a2 < 1 such that x[al) = x(ae] = A . Then, clearly, the functional ~
& = Wal [respectively, if A > [lo]l , then both ¢ = Wal and & = Waz )

satisfies (1), which completes the proof of Theorem 1.

Even when there are an infinity of distinect functionals ¢ € F* such

that @IG =¢ , @l = lloll , it may happen that for each X > [lp]| there

exist exactly two distinect functionals ¢ € E* satisfying (1), as shown by

(o]

EXAMPLE 1. Let E = I,
ey, eIl = max(lg ], I&,1) , 1et ¢ ={(g), &) €E | & =&} ana

define ¢ € G* by ¢((€1"£2)) = El ((Els 52) €G). Then |lofl =1 and

the two-dimensional space with the norm

each & € E* satisfying @IG = ¢ 1is of the form

2, ((6,, £)) =at, + (1), ((5, &) €B) ,
for some @ € R . Since for any such ¢a we have HQ&” = o] + [1-a| , it

is clear that Héa” =1 for all a with 0 =<=qa =1 , but for each A > 1

there exist exactly one al > 1 and one a2 < 0 such that
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"@"‘1“ = ”q’az” = A (namely, a) = (M+1)/2 and a, = (1-1)/2 ).

Let us observe that such an example is possible only for codim G = 1
more precisely, if codim G = 2 , then for each ) > |lp|| there exist an

infinity of functionals & € E* satisfying (1). Indeed, in this case, for

0} we have

Gl={\l’€E‘* | ¥l,

1
dim ¢ = dim E/G = codim G = 2 ;

1l
o} = &, + G , vhere & €E* , & , and hence,

but {& € B* | 2, 0

olg =9

1 1
since §>0 + G is a linear manifold with dim[‘bod-(? ) > 2 and

1
dist[o, &,*G ) = inf |[|®]l = llell , it follows that for each A > |lp] the
@E¢O+G

set

{& ¢ B* | @[G =g, |8l = A} = [q>o+cl) n{® cE* | [l&fl =2}

is infinite, which proves our assertion.

Similar examples and remarks can be also given for the results below,

but we shall not mention them again in the sequel.

COROLLARY 1. LILet E be a linear space, ||*|| an asymmetric norm on

E , G a linear subspace of E , x, an element of E with

0
(ce® [aco])l # {0} and with d = ;gg lzy-gll >0, and let Az 1/d . Then
there exists ¢ € E* such that
(6) #(g) =0 (g €q),
(1) @(xo) =1,
(8) el = x .

Moreover, if X > 1/d , then there exist at least two distinet
functionals & € E* satisfying (6)-(8).

Proof. Define a functional ¢ on G @ [xo] = {gﬁxxo | g € G, a € R}

by
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(9) tp(g+orxo) =a (g €G a€R) .

Then ¢ is linear on G @ [xo] and ¢(g) =0 (g €q), cp(xo) =1 .

Now let g+ox, € G @ [xo] » llg+oxyll =1 . If & >0, then
12 |lgrozll = all(L/a)g+zyll = od = ¢{graxy)d 3

on the other hand, if o = 0 , then

1z lgrozxyll 2 02 ad = ¢(graxy)d ,

whence, since g+ax, € G @ [xo] with “g+otx0l| < 1 was arbitrary, we

0
obtain Jlol| = 1/d (actually, we shall see in Remark 1 (a) that
llell = 1/d , but we do not need this here). Then, since

_]_ .
ce® L’Jco]) # {0} , x=1/d = |loll , by Theorem 1 there exists ¢ € E*
satisfying élG@[x ] =¢ , J||®li = A , whence also (6)-(8). Finally, if
0
A >1/d (= llol]) , then, again by Theorem 1 there exist at least two

distinct functionals & € E* with these properties, which completes the

proof of Corollary 1.

REMARK 1. (a) The assumption that G 4is not a hyperplane is
necessary only for the case when X > 1/d . Indeed, when G is a hyper-
plane and X = 1/d , the above proof yields ¢ € (G ) [xo]]* = E*
satisfying o¢(g) =0 (g € G) , cp(:x:o) =1 and e}l £1/d . But, taking
€ ¢ such that ”xo-gn” +d , we obtain

In

1 = o(zy-g,) = lolllley-g, I + llolld ,
whence |l¢l| = 1/d , and thus o]l =1/d = X .

(b) From Remark 1 (a) it follows that <¢f H <s a hyperplane in E ,
given by

(10) H={y €E | &)(y) =c},

where d>OEE'*, <1>O¢O, ¢ € R and if xOGE’ 18 such that

@0(3:0] 2 ¢ , then the "asymmetric distance” from xz, to H is

(11) dist » H) = inf |x -yl = (¢ ) /e |l .
ity (eos #) = int llngyll = (8(e)-e) /i
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Indeed, assume first that e = 0 . Then, by Remark 1 (a), there
exists ¢ € E* satisfying ®(y) =0 (y € H) , @(xo] =1 and

1| =1/ (dist”_” (xo, H)) . By the first one of these relations and (10)

with ¢ =0, it follows that 4>o = b for some o € R . But then,
( ) ( 0] = o , whence H¢0” = éoﬁro)ﬂéﬂ and
dlSt”.” (xO’ H) = 1/llell = fbo(xo]/ll%ll 2
which proves (11) for ¢ =0 . Now, if ¢ € R is arbitrary, then, from

the result for ¢ = 0 , proved above, we obtain, taking any yo €H (thus,

H - Yy = {y €& | @O(y) = 0} and @O(xo-yo) = éo(xo) -e¢20), that

which completes the proof of (11). Let us observe that (11) can be also
proved directly, similarly to the particular case of (symmetric) norms
(see, for example, [7], Chapter I, Lemma 1.2). Note also that Zif

<
@0(:::0] = ¢ , then

(12) dist”,”(xo, H) = (e-2, (=)} /12,

Indeed, by (10), we have H = {y € E | (-@O](y) = —¢} and, by
é’o(:x:o) < ¢ we have (-‘I’O] (xo) > ¢, so we can apply (11) to -$, and -c

and thus obtain (12). As was already mentioned, in general ”—@oll # ||d>0||

REMARK 2. By Remark 1 (b), we can give the following geometric
interpretation of Corollary 1: <f E 1is a linear space, |*|| an

asymmetric norm on E , G a linear subspace of E , and if Xy is an
1
element of E , with (G @& [xo]) # {0} andwith d = dist”.”(xo, ¢) >0,

then for every A € R with 0 < 1/A = d there exists a hyperplane H
econtaining G and such that dist”.”[xo, H) =1/x (or, equivalently,

containing G and supporting the "asymmetric ball"
B(xo, 1/A) ={y € £ | ley-yll = 1/2} }; moreover, if 0 < 1/\ < d, then

there exist at least two such hyperplanes H . 1Indeed, if ¢ € E* is as
in Corollary 1, then the hyperplane '
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(13) H={y €E | &y) = 0}

contains G and, by Remark 1 (b), dist”.”(xo, H} = @Lro)/ﬂéﬂ =1/x .

o (if zy€d,
then dist”.”(xo, H) =0), is of the form (13) for some & € E* with

Conversely, every hyperplane H containing G , but not =z

@on) # 0 , so we may assume (considering (l/@(xo])@ instead of &% , if
necessary) that &(x) =1 . Tms, if dist”_”(xo, H) =1/x , then, by
Remark 1 (b), 1/@ll = @(xo)/llqoll = dist"_" (xo, H) =1/x , vhence |&] =1 ,

so ¢ satisfies (6)-(8). This result may be regarded as a complement to a
theorem of Eidelheit [3), which states (for symmetric norms, but the result

remains valid for asymmetric norms, too) that
1k dist x., G] = sup dist x. ., H
(1) o o> G = sup distyy(zg, &)
HeH
HG

where H dJdenotes the collection of all hyperplanes in E .

3. Separation with double support

'

THEOREM 2. et (E, |*|) be a normed linear space, U a bounded
convex subset of E with Int U# @ , and V a linear manifold in E for

which V 1is neither E , nor a hyperplane, such that
(15) Vnanlnt U=g.
Then there exists & € E* with & # 0, such that
(16) d(y) = sup (V) (y € V)
Moreover, if diStl'l(V’ U) > 0, then there exist at least two
distinet functionals & € E* with & # 0, satisfying (16).

Proof. We may assume that 0 € Int / . Indeed, if the theorem is
true in this case, then, since for any z € Int U we have O € Int(U-z)

and (V-z) n Int(U-z) = @ [respectively, diStl‘l(V_z’ U-z) >0 ), we

obtain & € E* (respectively, at least two ® € E* ), with & #£ 0 s, such
that ®(y-z) = sup ¥(U-z2) (y € V) , whence & satisfies also (16).

Thus, assume that O € Int U . Then the Minkowski functional
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(17) lzll = inf u (x € E) ,
u>0
xepl

of U , is an asymmetric norm on & , and, since

Int U=1{x €E | llzll <1} # ¢

and U 1is bounded, ||*|| is equivalent to the initial norm || on & .
Furthermore, since V 1is a linear manifold, we can write V = x + G,

where z, €V and G 1is a linear subspace of E . Then, since V is

1
neither E , nor a hyperplane, we have (G C)Ero]) # {0} . Also, by (15),
we have d = inf on-gn = inf |lyll = 1 . Hence, by Corollary 1 above (with
gec yev
A=1=2>1/d }, there exists & € E* satisfying (6), (7) and ||®|| =1 .
Then, by (7) and (6), we have &(y) =1 (y € zg + G =V) . On the other
hand, sup ®(U) = sup &(xz) = [|®]]| =1 and hence (16) holds.

3
lxfl<1

Finally, if dist; ,(V, U) > 0 , then, since |l¢|| and |-]| are
-

equivalent, we have dist, ((V, {x € E | llx|| < 1}) > 0 , whence
[l

d = inf |z gl = inf |lyl > 1 . Consequently, by Corollary 1 (with
geac . yev
A =1>1/d ), there exist at least two distinct functionals & € E*

satisfying (6), (7) and |[|#Jl =1 . But then, as above, both of these &
satisfy (16), which completes the proof of Theorem 2.

REMARK 3. (a) Theorem 2 admits the following geometric interpre-
tation: 1if U <s a bounded convex subset, with Int U # § , of a normed
linear space (E, |*|) and V a linear manifold in E , with V neither
E , nor a hyperplane, such that (15) holds, then there exists a hyperplane
H supporting U and containing V ; moreover, if diSt|'l(V’ Uy >0

then there exist at least two distinet hyperplanes H supporting U and
containing V . Indeed, if ¢ € E* is as in Theorem 2, then the hyper-

plane
(18) H={y ¢E | ¢(y) = sup &(1)}
supports U and contains V . Conversely, every hyperplane H which

supports U is of the form (18) for some & € E* , & # 0, so if V< H ,
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then we must have (16).

(b) Theorem 2 is a complement to Mazur's separation theorem, which
asserts (see, for example, [5], Chapter III, §17) that if U is a convex
subset (not necessarily bounded) of £ , with Int U# @ , and if V is a
linear manifold in E , with V$+E , for which (15) holds, then there
exist ® € E* , ®# 0, and ¢ € R, such that &(y) = ¢ = sup (V)

(y € V) , or, equivalently, thereexists a hyperplane H containing V and
such that H nInt U =¢ .

In the particular case when V is a single point, from Theorem 2 we

obtain

COROLLARY 2. Let E be a normed linear space, U a bounded convex
subset of E with Int U# @, and x € E\(Int U) . Then there exists
& € E* with & # 0, such that

(19) &(x) = sup ®(U)

Moreover, if x € E\U , then there exist at least two distinet
funcetionals & € E* with & # 0, satisfying (19).

REMARK 4. (a) Corollary 2 admits the following geometric
interpretation: Zf U g a bounded convex subset, with Int U# @ , of a
normed linear espace E and if x € EN(Int U) , then there existe a hyper-
plane H supporting U and containing x ; moreover, if x € E\U , then
there exist at least two distinct hyperplanes H supporting U and

containing x .

(b) Corollary 2 is a complement to Mazur's support theorem, which
asserts (see, for example, [1], Chapter I, §6, Theorem 3) that if U is a
convex subset (not necessarily bounded) of % , with Int U # ¢ , and if
x € E\(Int U) , then there exists ¢ € E* with & # 0 , such that
&(xz) = sup ®(U) , or, equivalently, there exists a hyperplane H
containing & and such that HnInt U # ¢ .

THEOREM 3. Let (E, |+|) be a normed linear space, A a bounded
convex subset of E with Int A # @ , and B a bounded convex subset of
E , such that B # ¢ and

(20) BnIntd=¢g.

Then there exists & € E* with & # 0 , such that
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(21) sup $(4) = inf &(B)

Moreover, if dist| (B, 4) > 0, then there exist at least two

distinet functionals & € E* with & # 0, satisfying (21).
Proof. Let
(22) U= {(Int A) -B={y-z |y € Int 4, 2 €B} , =0 .

Then, clearly, U is a bounded convex subset of E and U 1is open

(since U= U {Int A-z} ), so U=1IntU# @ . Also, by (20), we have
z2€B

x =0 € E\U . Hence, by Corollary 2, there exists & € E* with & # 0 ,
such that 0 = &(0) = sup ®{(Int 4)-B} , so in order to prove (21), it will
be enough to show that

(23) sup ®{(Int 4)-B} = sup ®(Int A) - inf &(B)

(since sup #(4) = sup ®(Int 4) ). DNow, since &(y) =< sup ®(Int 4)
(y € Int A) , @(2) = inf ®(B) (2 € B) , we have the inequalty = in
(23). On the other hand, for each € > O there exist Ye € Int A and

3, € B such that @(ys) > sup ¥(4) - € , @(ze) < inf ®(B) + € , whence,

since € > 0 was arbitrary, we obtain the inequality = in (23). Thus
(23) holds, which proves (21). Finally, if distl.l(B, A) > 0, then

diStI'l(B’ Int 4) > 0 , whence O ¢ {Int 4) - B . Thus, by Corollary 2,
there exist at least two distinct functionals ¢ € E* with ¢ # 0 ,
satisfying 0 = ®(0) = sup ®{(Int 4)-B} , whence also (21), which completes
the proof of Theorem 3.

REMARK 5. (a) Theorem 3 admits the following geometric inter-
pretation: <If A, B are bounded convex subsets, with Int A # @ ,
B# @ , of a normed linear space (E, |*|) and if (20) holds, then there
exists a hyperplane H separating A and B and supporting each of

these sets; moreover, if diSt|'|(B’ A) > 0, then there exist at least

two distinct hyperplanes H with these properties. Indeed, if & € E* is
as in Theorem 3, then the hyperplane H defined by

(24) H={y €¢E | ¢(y) = sup ¢(4)}

separates A and B and supports 4 and B . Conversely, every hyper-
plane H which supports A is of the form (24) for some & ¢ E*
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®# 0. If H supports also B , then we must have either
sup $(4) = sup ®(B) , or sup ®(4) = inf $(B) ; bdut, if H also separates
A and B , then we can have only the second equality, so {21) holds.

(b) Theorem 3 is a complement to Eidelheit's separation theorem,
which asserts (see, for example, [/], Chapter I, §6, Theorem 4) that if
A, B are convex subsets {not necessarily bounded) of E , with Int 4 # @,
B # ¢ , and such that (20) holds, then there exists & € E* with & # 0
such that sup ®(4) < inf ®(B) , or, equivalently, there exists a hyper-
plane H separating A and B

REMARK 6. (a) As shown by simple examples (for example, half-
spaces), the assumptions of boundedness cannot be omitted in the results of

§3.

(p) Naturally, one can also give direct proofs of the geometric
results of §3 (without using §2). Moreover, as in the classical theory
(see, for example, [5]) one can show that the results of §2 and §3 are

equivalent.
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