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Understanding the microstructural characteristics of materials, such as lattice defects, increasingly relies 
on the analysis of large numbers of images from electron and scanning probe microscopy [1]. It is now 
becoming routine to record series of atomic‐resolution images, resulting in the generation of massive 
datasets. The new challenge is then analysing this data. The workflow for such analyses typically 
comprises the identification of atomic positions and subsequent derivation of physical quantities, such as 
defect concentration and strain. Conventionally, this analysis is done manually, which is slow and 
laborious, and the results are prone to human errors and bias. 
 
We demonstrate an automatic method for extracting information from atomically resolved images. We 
take advantage of GPU acceleration and fast graph-based algorithms to enable real-time structural 
analysis. The method is capable of extracting high-level information such as defect type, lattice orientation 
and strain, as well as characteristics of the electron probe. Our method is based on two algorithms, building 
on recent advances in deep-learning and on computational geometry and graph theory.  
 
The deep learning recognition model is similar to recently published results [2, 3]. A neural network is 
trained to identify the smallest distinguishable repeated substructures within the image, i.e. atoms or 
atomic columns of a particular species. We take advantage of the recent finding that deep neural networks 
trained using simulated data can generalise to experimental data [2]. Furthermore, by using randomisation 
in the generation of the synthetic images, the neural network is capable of making predictions with 
minimal prior assumptions of the types of defects present. Fig. 1 shows the results of the neural network 
applied to a noisy image of graphene with a silicon substitutional defect. A simple routine converts the 
predictions of the neural network to a set of 2D points representing the centres of the detected 
substructures, each point associated with a substructure class. We further explore the precision of the 
detected atom locations and their sensitivity to the imaging parameters including noise. 
 
The geometric relationship between these points encodes further information, for example, whether the 
substitutional silicon atom in graphene has three or four carbon neighbours. To facilitate fast geometric 
analysis, we create a geometric graph from the detected points. It is crucial that the graph is stable to small 
perturbations of the atomic positions. We identified a type of geometric graph, called a stable Delaunay 
graph [4], fulfilling this criterion while being fast to construct for large numbers of points. Using simple 
rules localised segments of the graph can be extracted representing an atom and its surrounding 
neighbourhood. Each segment of the graph is compared to a library of known graph templates, 
representing, for example, different defect types. The similarity between a segment and a template is 
calculated using the symmetry invariant root-mean-squared-deviation [5]. After identifying the best 
matching template, further geometric analysis can be performed, such as calculating the strain. 
 
The algorithm is invariant to scale and rotations, and effectively parameterless for a given set of structures, 
allowing it to operate without user input. Fig. 2 illustrates the algorithm applied to a set of points 
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representing a grain boundary in graphene. In this example, the algorithm identifies the individual grains 
by their orientation and distinguishes between different types of defects along the grain boundary. 
We have implemented the method in the open source microscope control software Nion Swift [6], 
allowing the user to overlay the results on top of the images as they are recorded, thus providing easily 
understandable feedback, from which the human operator can adjust the characterisations in response. 
Furthermore, in an effort to enable large-scale atom manipulation [7], we are working towards an 
increasingly self-driving microscope, where the output of the present method is used to guide the 
microscope to make the necessary actions, e.g. move the scan frame or the probe position, similar to the 
way a self-driving car would adjust the steering wheel upon encountering an obstacle on the road [8]. 
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Figure 1.  (a) Noisy STEM/MAADF image of graphene with a substitutional silicon defect. (b) Corresponding 
output of our deep learning recognition model. The white and red areas indicate positions of high likelihood for 
finding a carbon and a silicon atom, respectively. 
 

Figure 2.  (a) A set of points representing the atomic positions at a grain boundary in graphene. (b) The stable 
Delaunay graph of the points. (c) The carbon rings of the graphene sheet are color-coded according to the 
orientation, assisting easy identification of different grains. (d) The carbon rings of the graphene sheet are color-
coded according to their number of members. Further graph-based analysis can be used to automatically identify 
for example Stone-Wales defects. 
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