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We study structure formation in two-dimensional turbulence driven by an external force,
interpolating between linear instability forcing and random stirring, subject to nonlinear
damping. Using extensive direct numerical simulations, we uncover a rich parameter space
featuring four distinct branches of stationary solutions: large-scale vortices, hybrid states
with embedded shielded vortices (SVs) of either sign, and two states composed of many
similar SVs. Of the latter, the first is a dense vortex gas where all SVs have the same sign
and diffuse across the domain. The second is a hexagonal vortex crystal forming from this
gas when the linear instability is sufficiently weak. These solutions coexist stably over a
wide parameter range. The late-time evolution of the system from small-amplitude initial
conditions is nearly self-similar, involving three phases: initial inverse cascade, random
nucleation of SVs from turbulence and, once a critical number of vortices is reached,
a phase of explosive nucleation of SVs, leading to a statistically stationary state. The
vortex gas is continued in the forcing parameter, revealing a sharp transition towards the
crystal state as the forcing strength decreases. This transition is analysed in terms of the
diffusivity of individual vortices using ideas from statistical physics. The crystal can also
decay via an inverse cascade resulting from the breakdown of shielding or insufficient
nonlinear damping acting on SVs. Our study highlights the importance of the forcing
details in two-dimensional turbulence and reveals the presence of non-trivial SV states in
this system, specifically the emergence and melting of a vortex crystal.

Key words: turbulence simulation, instability, pattern formation

1. Introduction

The study of two-dimensional (2-D) and quasi-2-D turbulence has a long history (Boffetta
& Ecke 2012), from the discovery of the dual inverse energy, forward enstrophy cascade
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phenomenology (Fjørtoft 1953; Kraichnan 1967) to early numerical simulations (Lilly
1969) and laboratory experiments (Sommeria 1986). Such problems are of interest as
idealized models of geophysical fluid dynamics (Pedlosky 1987) and, more recently,
active fluid flows where energy-consuming microswimmers can drive vortices and jets
(Dombrowski et al. 2004). In a finite system, the nonlinear transfer of kinetic energy
from small to large scales in an inverse cascade generates large-scale coherent structures,
typically vortices or jets, called condensates (Smith & Yakhot 1993). Inverse energy
cascades are also observed in simulations of highly anisotropic three-dimensional (3-D)
flows within thin layers (Smith, Chasnov & Waleffe 1996; Celani, Musacchio & Vincenzi
2010), rapidly rotating turbulence (Deusebio et al. 2014), strongly stratified flows (Sozza
et al. 2015) and can arise in magnetohydrodynamic systems as well (Seshasayanan,
Benavides & Alexakis 2014; Dallas & Alexakis 2015; Pouquet et al. 2019). Such quasi-2-D
inverse energy cascades can also lead to large-scale condensation if large-scale damping is
weak (Seshasayanan & Alexakis 2018; van Kan & Alexakis 2019; Musacchio & Boffetta
2019). Moreover, condensation is known to occur in rapidly rotating convection (Julien
et al. 2012; Favier, Silvers & Proctor 2014; Guervilly, Hughes & Jones 2014; Rubio et al.
2014) and convection driven by an imposed heat flux (Vieweg, Scheel & Schumacher
2021), and has been reported in active fluid flows (Linkmann et al. 2019, 2020; Puggioni,
Boffetta & Musacchio 2022). There is also extensive literature on experimental studies
of quasi-2-D large-scale condensation (Sommeria 1986; Paret & Tabeling 1997; Xia
et al. 2011; Xia & Francois 2017; Fang & Ouellette 2021). Recent reviews of quasi-2-D
turbulence are provided by Alexakis & Biferale (2018) and Alexakis (2023).

In addition to structure formation at the largest scales, another type of self-organisation
widely observed in fluid flows is the vortex crystal, a regular array of smaller-scale
vortices. For instance, such structures are observed in rotating convection (Boubnov &
Golitsyn 1986, 1990; Zhong, Ecke & Steinberg 1991; Vorobieff & Ecke 2002; Boubnov &
Golitsyn 2012), in rotating body-forced turbulence (Di Leoni et al. 2020), in experiments
on magnetised electron columns (Driscoll et al. 1999; Schecter et al. 1999) and quantum
fluids (Tosi et al. 2012), as well as in active fluids, including dense suspensions of
microswimmers such as sperm cells (Riedel, Kruse & Howard 2005). The polar vortices
on Jupiter (Adriani et al. 2018; Siegelman, Young & Ingersoll 2022) provide another
particularly compelling example. Vortex crystals have also been found in 2-D turbulence
subject to spectral truncation at large scales (Smith & Yakhot 1994) or forced with a
mixture of random and deterministic forcing (Jiménez & Guegan 2007). The emergence
and melting of active fluid vortex crystals has already been investigated (James et al. 2021),
with a focus on the 2-D case. More generally, 2-D chiral lattices, which also arise in the
study of active solids (Baconnier et al. 2022), are currently of great interest in physics
because they support topologically protected edge states (Nash et al. 2015; Mitchell 2018;
Mitchell, Nash & Irvine 2018), and fluid dynamical vortex crystals provide, in principle, a
simple laboratory realisation of such systems.

Sustaining any fluid flow in a stationary state against dissipation requires the injection
of energy by a forcing mechanism. To facilitate a detailed analysis of the complexities
of turbulence, highly idealized forcing functions are often considered. For instance, one
can choose a time-independent forcing, as in the case of Kolmogorov flow (Arnol’d
& Meshalkin 1960; Meshalkin & Sinai 1961; Borue & Orszag 1996; Gallet & Young
2013), or a stochastic forcing with a constant energy injection rate (Novikov 1965). The
latter choice in particular has been widely adopted in numerous studies of forced 2-D
turbulence, see e.g. Smith & Yakhot (1993), Boffetta (2007), Chan, Mitra & Brandenburg
(2012), Laurie et al. (2014) and Frishman & Herbert (2018). In both cases, the forcing
is specified independently of the flow state, a property that makes the problem more
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amenable to a comprehensive analysis. However, many real fluid flows result from
instabilities, for instance of convective, shear or baroclinic type (Chandrasekhar 1961;
Salmon 1980; Vallis 2017), which are explicitly flow-state dependent. Similarly, models
of active fluid flows feature scale-dependent viscosities which can be negative at certain
scales (Słomka & Dunkel 2017), a fact consistent with the measured rheology of such
flows (López et al. 2015). Such scale-dependent viscosities also arise in eddy viscosity
modelling, where the molecular viscosity ν is modified by terms involving small-scale
velocities to represent the effect of smaller-scale motions on larger-scale motions. Eddy
viscosity, including that with a negative sign, has been studied in a variety of 2-D and
3-D flows (Kraichnan 1976; Sivashinsky & Yakhot 1985; Bayly & Yakhot 1986; Yakhot
& Sivashinsky 1987; Dubrulle & Frisch 1991; Gama, Vergassola & Frisch 1994; Alexakis
2018). Negative eddy viscosities are also encountered in applications within the context of
backscatter parametrisations (Prugger, Rademacher & Yang 2022, 2023). Schemes of this
type are used in ocean modelling (Jansen & Held 2014; Juricke et al. 2020). In addition,
negative-viscosity forcing has been considered in a study of axisymmetric turbulence (Qin
et al. 2020), while linearly forced isotropic turbulence at moderate Reynolds numbers has
been studied by Bos, Laadhari & Agoua (2020).

For flows driven by instabilities, the driving explicitly depends on the velocity field and
the injection rate of kinetic energy is proportional to the squared velocity amplitude of
the forcing-scale modes. Flows resulting from instabilities can differ starkly from flows
driven by random stirring. For instance, it is known that the transition to two-dimensional
turbulence is non-universal and depends qualitatively on the choice of the forcing function
(Linkmann, Hohmann & Eckhardt 2020). Moreover, instability-driven turbulence can
deviate significantly from Kraichnan’s picture of the inverse cascade and condensation.
For instance, active flows typically do not display an inverse cascade, but form mesoscale
vortices (Wensink et al. 2012). Such coherent vortices are observed to form spontaneously
in 2-D turbulence driven by a negative eddy viscosity forcing (Gama, Frisch & Scholl
1991) and are often associated with screening (Grooms et al. 2010; Jiménez 2021). In
nearly inviscid, inertial fluid flows, the resulting shielded vortices typically evolve into
tripoles (Carton, Flierl & Polvani 1989) consisting of a central vortex and two satellite
vortices of opposite sign 180◦ apart, as seen in both laboratory experiments (Van Heijst,
Kloosterziel & Williams 1991) and direct numerical simulation (DNS) (Orlandi & van
Heijst 1992). In instability-driven 2-D turbulence, the formation of such tripolar shielded
vortices has been found to facilitate the spontaneous suppression of the inverse cascade
(van Kan et al. 2022).

A particular challenge for flows driven by spectrally localised negative viscosities is
that the resulting linear instability may grow without bound despite the presence of
an advective nonlinearity. This fact was remarked upon in the context of early direct
numerical simulations of 2-D turbulence (Gama et al. 1991; Sukoriansky et al. 1996),
and continues to be discussed in the context of geophysical fluid models with backscatter
(Prugger et al. 2022). In the presence of a nonlinear damping term, this unphysical
unbounded growth is readily saturated. Different physical considerations may lead to
such nonlinear damping terms depending on the application. In the context of active
matter, a cubic damping term appears in the classical Toner–Tu model of flocking (Toner
& Tu 1998), derived from symmetry considerations and renormalization arguments.
The Toner–Tu model, which continues to be the subject of theoretical and numerical
investigations (Gibbon et al. 2023), was later adapted to the study of active fluid flows by
the addition of a fourth-order spatial derivative term reminiscent of the Swift–Hohenberg
equation (Dunkel et al. 2013a,b). The resulting Toner–Tu–Swift–Hohenberg model
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describes active stresses in terms of a scale-localised negative viscosity and has been
of great interest (James et al. 2021; Puggioni et al. 2022; Kiran et al. 2023). A review
of recent progress based on these and other models of active turbulence is given by
Alert, Casademunt & Joanny (2022). In the geophysical context, many studies of nearly
two-dimensional turbulence assume a linear Rayleigh drag law to model the effect of
bottom friction (Boffetta & Ecke 2012). However, there is also a large body of work
which considers a quadratic (turbulent) bottom drag law, see e.g. Jansen et al. (2015) and
Gallet & Ferrari (2020). Such a quadratic drag law may be obtained from dimensional
considerations and is widely used in theoretical and numerical ocean models (Gill 1982;
Willebrand et al. 2001; Egbert, Ray & Bills 2004; Couto et al. 2020).

Following earlier work of Jiménez & Guegan (2007), a recent study (van Kan et al.
2022) investigated 2-D turbulence driven by a hybrid forcing that interpolates between a
spectrally localised negative viscosity forcing and a random driving force acting on the
same length scales while injecting energy at a constant rate. This combination of two
well-established forcing mechanisms, each of which has separately led to fundamental
insights into turbulence, allows for an exploration of new aspects of non-universality in
2-D turbulence. With a cubic nonlinear damping term to saturate the linear instability,
extensive DNS by van Kan et al. (2022) revealed a number of transitions as the forcing
function varies from stochastic to instability-like, from a large-scale condensate to a hybrid
state consisting of large-scale circulation patterns with embedded mesoscale shielded
vortices, and finally to a gas of shielded vortices characterised by a spontaneously
broken symmetry, with all vorticity extrema in the core of the same sign at late times.
Here and in the following, we use the term mesoscale to indicate a scale intermediate
between the small forcing scales and the system size. This usage differs somewhat
from the established definition in the geophysical literature. For instance, in the context
of the Earth’s atmosphere, the scales most unstable to baroclinic instability (comparable
to the Rossby radius of deformation), are typically of the order of 1000 kilometres (the
synoptic scale of weather systems), while the atmospheric mesoscales are substantially
smaller (tens to hundreds of kilometres). In contrast, the oceanic mesoscale is the analogue
of the atmospheric synoptic scale (Cushman-Roisin & Beckers 2011).

In the shielded vortex gas, the inverse energy cascade was found to be suppressed at
large scales, while the number of shielded vortices in the domain slowly increased via a
random nucleation process (van Kan et al. 2022). Owing to the significant numerical effort
required to investigate the ultimate saturation of this process, the late-time limit of this
slow evolution was not studied and remains an open problem. Here, we employ extensive
DNS of this system with very long integration times to advance significantly beyond the
results presented by van Kan et al. (2022) and investigate in detail the late-time evolution
of the broken symmetry shielded vortex gas state, revealing an approximately self-similar
evolution towards a dense, statistically stationary state. This state is shown to persist over
a wide range of forcing strengths, and to undergo a crystallisation transition at a critical
parameter threshold.

The remainder of this paper is structured as follows: in § 2, we describe the numerical
set-up for our simulations, followed in § 3 by a discussion of the late-time evolution of
the shielded vortex gas and the convergence to a statistically stationary state. Next, in § 4,
we describe the crystallisation transition observed at weak instability growth rates and
quantify it using tools from statistical physics and crystallography. In § 5, we describe
the dependence of the vorticity profile of the shielded vortices and the number of such
vortices on the forcing parameters. In § 6, we discuss the conditions required to suppress
the expected inverse cascade, thereby leading to the vortex crystal state, while in § 7, we
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provide an overview of the state space including all stable stationary solutions we have
identified in the system. The paper concludes in § 8 with a discussion of our results in the
context of existing and future research on instability-driven turbulence.

2. Set-up

We study the 2-D Navier–Stokes equation governing the evolution of an incompressible
velocity field u = (u, v) on the flat torus [0, 2π]2 with nonlinear damping, hyperviscosity
and a hybrid forcing function fγ , namely

∂tu + u · ∇u = −∇p − νn(−∇2)nu − β|u|mu + fγ , (2.1)

∇ · u = 0, (2.2)

where the integers n and m control the order of the hyperdiffusion and damping operators,
respectively, with n, m ≥ 1, and

fγ = γL[u] + (1 − γ )fε. (2.3)

Here, the forcing control parameter γ ∈ [0, 1], and L[u] is a linear operator whose Fourier
transform is given by

L̂[u](k) = ν∗k2û(k), ν∗ > 0, (2.4)

for wavenumbers k in the annulus k = |k| ∈ [k1, k2], and L̂[u](k) = 0 otherwise. We
denote the largest length scale in the forcing range by �1 ≡ 2π/k1. This linear forcing
term is associated with a maximum growth rate σ ≡ ν∗k2

2. An important non-dimensional
number characterising this system is the ratio

r(γ ) = γ σ

νnk2n
2

(2.5)

between the maximum instability growth rate, which occurs at the wavenumber k = k2,
and the rate of hyperviscous energy dissipation rate at that wavenumber. We choose ν∗
such that r(γ ) varies from r(0) = 0 to r � 1 as γ increases from 0 to 1 (in all the runs
described below, we take ν∗ = 0.002, k2 = 40, n = 4, ν4 = 10−14, such that r(γ = 1) ≈
48.8, see table 1 for details of the parameters used). We note that the ratio r has also
been identified as a key control parameter in models of active turbulence (Linkmann et al.
2019, 2020), where the case n = 1 (regular viscosity) was considered. The second term in
(2.3) involves the solenoidal zero-mean white-in-time stochastic force fε(x, t) with random
phases acting within a thin shell of wavenumbers centred on the most linearly unstable
wavenumber k = k2, injecting kinetic energy at a rate ε.

We record the domain-averaged kinetic energy (density) E ≡ 〈u2〉 and the enstrophy
(density) Ω ≡ 〈ω2〉, where 〈·〉 denotes the domain average, as well as the vorticity ω ≡
∂xv − ∂yu. A further important quantity used to characterise the structure of fluid flows is
the energy spectrum E(k), defined by

E(k) =
∑

q:k−1/2≤|q|<k+1/2

|û(q)|2, (2.6)

which characterises the distribution of energy across scales in terms of the Fourier
transform of the velocity field û(q). The system defined above is further characterised
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Set #runs γ Ren Reβ,m Initial condition Set-up

A 49 0–1.0 3.2 × 1011–1.2 × 1020 216–1360 random small-amp. standard
B 66 0–1.0 3.2 × 1011–1.2 × 1020 216–3600 vortex gas/crystal standard
C 4 0.05–1.0 8.2 × 1015–2.7 × 1020 1.7–8.5 small-amp. m = 1
D 10 0.05 1.2 × 1011–4.5 × 1011 — vortex crystal filtered damping,

m = 2
E 10 0.95 2.2 × 1011 1260 random small-amp. ε = 0
F 5 0.005–0.035 O(1015)–O(1017) �0.2 vortex crystal ε = 0

Table 1. Summary of the runs performed in this study. All runs were done at a moderate resolution, nx =
ny = 512, to facilitate long-time integration. The parameters for the standard set-up read ν∗ = 0.002, k1 = 33,
k2 = 40, ε = 1, β = 10−4, n = 4, ν4 = 10−14. Runs in set A are initialised from small-amplitude, random
initial conditions, while runs in set B are initialised in the vortex gas state obtained in set A or vortex crystal
states obtained from that by continuation in γ . In set C, the cubic damping term is replaced by a quadratic
term β|u|u with β = 0.1, all other parameters remaining the same. In set D, the cubic damping is spectrally
filtered to systematically assess its importance for the maintenance of the vortex crystal. The runs in set E are
identical to runs in set A, but with the random forcing set to zero. Set F similarly repeats runs from set B with
the random forcing term set to zero. Reynolds numbers given refer to the stationary state (except for set F) and
indicate the range observed within each set.

by two dissipation-related non-dimensional parameters

Ren = UrmsL2n−1
I /νn, Reβ,m = 1

β(Urms)m−1LI
, (2.7a,b)

with the r.m.s. velocity Urms =
√

〈u2〉 and the integral length scale LI , defined spectrally
as LI = ∑

k(2π/k)E(k)/E. Note that the Reynolds numbers thus defined can only be
evaluated a posteriori. In addition, the problem depends on the a priori parameter γ ,
which controls the relative amplitude of the random and deterministic forcing terms. An
alternative non-dimensional but a posteriori parameter Γ can be defined by the ratio of
the energy injection rates γ σU2

rms and (1 − γ )2ε associated with the deterministic and
stochastic forces, respectively:

Γ = γ σU2
rms

(1 − γ )2ε
. (2.8)

When this parameter is large, the instability forcing provides the dominant contribution to
the energy injection.

Equations (2.1)–(2.3) were solved using the MPI-parallelised, pseudospectral code
GHOST (Geophysical High-Order Suite for Turbulence), cf. Mininni et al. (2011). The
2/3 rule was used for dealiasing. We ensure that all simulations are well resolved by
checking that the enstrophy dissipation rate DΩ(k) = νnk2n+2E(k) decays towards the
grid scale. A total of 144 distinct simulations were performed, requiring approximately
1 million CPU hours in total. The runs are organised in six sets as described in table 1.
Cubic damping (m = 2) is considered in all runs except those in set C, which is shown
in Appendix A to yield states that are qualitatively similar to those discussed here with
quadratic damping (m = 1). All runs were done at a moderate resolution nx = ny = 512
to facilitate the long-time integration required to observe the phenomena of interest here.
The longest runs performed for this work (in set B) lasted approximately 40 000 time units
measured in terms of the time scale σ−1 associated with the linear instability growth rate,
corresponding to a walltime of approximately 90 days. In sets E and F, the random forcing
amplitude is set to zero to isolate the impact of the random force on the observed solutions.
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3. Late-time evolution near γ = 1

As stated in § 1, the shielded vortex gas state described by van Kan et al. (2022) was
only followed into a dilute but transient state in which the number of vortices slowly grew
owing to random vortex nucleation. In this section, we use much increased computational
resources to study the long-time evolution of the system, based on runs from set A, as
it converges to a statistically stationary state. Figure 1 shows snapshots of the vortex
gas in the pure instability-driven case (γ = 1) at different times, non-dimensionalised by
the instability growth rate σ . Starting from random, small-amplitude initial conditions,
a short-lived inverse cascade is followed by the emergence of shielded vortices of both
parities (σ t = 6.3 in figure 1). In a stochastic competition between the two species, one
is eventually eliminated leading to spontaneous symmetry breaking, as discussed by van
Kan et al. (2022). This is clearly seen at σ t = 378 in figure 1. As time increases further,
the number of vortices increases. The last snapshot, at σ t = 9312, corresponds to the
statistically stationary state. Upon inspection of figure 1, the coherent vortices are seen
to be tripolar, with an elliptical core and two satellites 180◦ apart. As shown by van Kan
et al. (2022), these tripolar vortices are shielded, meaning that the circulation generated
by any given vortex becomes small beyond a finite radius, located close to the edge of its
satellites and comparable to the largest forcing scale.

The corresponding time evolution of the enstrophy (defined in § 2) is shown in
figure 2(a). This quantity is closely related to the number of vortices in this system,
as shown by van Kan et al. (2022). Four distinct phases can be identified: an initial,
rapid increase of the enstrophy from small-amplitude initial conditions, associated with
a short-lived inverse cascade, followed by a phase of slower, approximately linear, growth
of enstrophy with time. The latter corresponds to random nucleation of new vortices
in the background turbulence, depicted in figure 1. When the enstrophy reaches around
Ω/σ 2 ≈ 2.5 × 104 (corresponding to approximately 140 vortices in a domain of area
(2π)2), a phase of explosive growth sets in, where the number density of vortices increases
rapidly. Finally, a statistically stationary state is reached whose enstrophy is larger by a
factor of approximately 2.5 than the enstrophy threshold at which the rapid growth sets
in. It should be emphasised that the observed increase in enstrophy is due to an increasing
number of vortices since the core of any given vortex remains at constant vorticity due
to a local balance between forcing and nonlinear damping. A similar transient evolution
towards a vortex crystal in the Toner–Tu–Swift–Hohenberg model of active fluids is
described by James, Bos & Wilczek (2018). However, in this system, the enstrophy of
the final state is much smaller as a consequence of stronger nonlinear damping relative to
the linear forcing strength and the time scale separation between the slow nucleation and
the rapid explosive growth is therefore much less pronounced.

Figure 2(b) shows a log-log plot of the energy spectrum E(k) versus the wavenumber
k at the times highlighted in panel (a) by vertical dashed lines. The spectrum shown is
averaged over 50 consecutive snapshots, with the shaded envelope indicating one standard
deviation around the mean. At the earliest time illustrated, σ t = 378, the energy spectrum
has a local maximum at the largest scale, a remnant of the short-lived early-time inverse
cascade. As time passes, the kinetic energy in the large scales continuously decreases and
a sharp local maximum appears at an intermediate scale, approximately twice the forcing
scale, and corresponding to the scale of the individual vortices.

Figure 3(a) shows the non-dimensional enstrophy (compensated by γ ) versus the
non-dimensional time σ t for γ = 0.8, 0.85, 0.9, 0.95, and 1. In addition to the run at
γ = 1 already shown in figure 2, we generated an ensemble of 10 runs which differed only
in the phases of their random, small-amplitude initial conditions. Similarly, at γ = 0.95,
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Figure 1. Visualisation of the vorticity field at different times for γ = 1, showing the evolution from
small-amplitude, random initial conditions through a dilute to a dense vortex gas.

we performed 10 additional runs which also differed in the phases of their random,
small-amplitude initial conditions and in the realisation of the stochastic forcing (by
construction, no stochastic forcing is present at γ = 1). Several things can be gleaned from
figure 3(a). First, the explosive nucleation of new vortices seen in figure 2(a) is triggered
when the enstrophy reaches Ω ∼ 0.4Ωmax, in terms of the enstrophy Ωmax attained in
the stationary state, regardless of the value of γ (horizontal dashed line in figure 3a).
In fact, random vortex nucleation was observed for γ � 0.6 (van Kan et al. 2022), but
the late-time dynamics for 0.6 < γ < 0.8 remained numerically inaccessible owing to the
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Figure 2. (a) Time evolution of the enstrophy from small-amplitude random initial conditions when γ = 1
(case A). (b) Colour-coded log-log plots of the energy spectrum versus wavenumber at the times indicated by
dashed vertical lines in panel (a). The shaded envelopes indicate one standard deviation of the spectrum about
the mean, computed over 50 snapshots. The grey shaded region indicates the forcing range.

excessively long simulation time required to reach the final statistically stationary state at
these parameter values. Second, the enstrophy in the statistically stationary state scales
linearly with γ to a good approximation between γ = 0.8 and γ = 1. This is consistent
with a dominant balance between the instability forcing term, which is linear in the
velocity, and the cubic damping term in (2.1). In contrast, the time scale texp required
for the system to reach the explosive phase exhibits a non-trivial, sensitive dependence
on γ whose origin remains unclear. For the parameters considered here, the threshold
configuration (shown in figure 1 at σ t = 5980) contains approximately 140 vortices in a
domain of area (2π)2, see also figure 13. We note that the mean distance dNN between
the vortex centres of nearest neighbours (computed by finding the nearest neighbour of
any given vortex, and averaging over the population and over time) close to this threshold
is approximately dNN ≈ 2�1, which is somewhat larger than the integral scale (defined in
§ 1), which is given by LI ≈ 1.4�1 (with �1 = 2π/k1).

Figure 3(b) shows a zoom on the early phase of the evolution, highlighting the
stochasticity of the nucleation process. Figure 3(c) shows the time texp required to reach
40 % of the statistically stationary state enstrophy, where the phase of explosive growth
is triggered, for all the simulations shown in panel (a), with the dashed line indicating
a power-law fit giving an empirical exponent approximately equal to −7.6. To date, no
theoretical argument for such a power-law dependence has been identified. The inset in
panel (c) shows the duration tgrowth of the explosive growth phase as a function of γ

for the same runs. This time depends on γ less strongly than texp, with a power-law fit
with an approximate exponent of −2.2 although the data show a significant spread within
ensembles. Figure 3(d) shows the same data as panel (a) but with time rescaled by texp,
confirming the near self-similarity of the nucleation process. Since the duration tgrowth of
the explosive growth phase is not proportional to texp, the collapse during the latter phase
is imperfect. Moreover, the scaling of the stationary-state enstrophy with γ is seen to be
satisfied only approximately.

The increasingly slow nucleation of new shielded vortices as γ decreases is a reflection
of time scale competition. As γ decreases, the time scale for the generation of a new
vortex by the linear instability increases. The background turbulence, taking place in the
interstitial space between the vortices already present, generates shear which disrupts the
formation of new vortices and hence it may be expected that vortex nucleation slows
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Figure 3. (a) Nearly self-similar evolution of the enstrophy from small-amplitude random initial conditions
to the dense vortex gas. The final enstrophy value in the stationary state scales approximately linearly with γ ,
while the time scale depends on γ highly nonlinearly. Low-opacity curves at γ = 1 and γ = 0.95 indicate an
ensemble of ten runs performed at each of these values. The horizontal dashed line indicates the enstrophy
threshold for the onset of the rapid growth phase. (b) Zoom on early times highlighting the stochastic nature
of the evolution and the deviations between different ensemble members. (c) Non-dimensional time σ texp at
which the explosive growth phase begins versus γ . An empirical power law with an exponent between −7 and
−8 is observed. Inset shows non-dimensional duration σ tgrowth of the explosive growth phase versus γ , where
tgrowth is defined as the difference between texp and the time required for the enstrophy to reach 90 % of its
maximum value at a given γ . The results show a significantly weaker dependence of tgrowth on γ compared to
texp. (d) Near self-similarity is verified by replotting the data from panel (a) against a time rescaled by texp, with
colours being consistent between the two panels. Since texp increases with γ significantly faster than tgrowth, the
rapid growth phase appears to sharpen as γ decreases under this rescaling.

down as γ decreases. For different values of γ , we measured the average strain rate
‖D‖ ≡

√
tr(DDT), where D ≡ 1

2 (∇u + (∇u)T) is the rate of strain tensor, and the average
mean-square vorticity of the turbulence in the interstitial space of the dilute vortex gas
(not shown). We found that both of these quantities are much larger than the maximum
instability growth rate, indicating that nucleation of new shielded vortices from this
turbulent background is indeed a rare event. In principle, one may hope to deduce the
dependence of texp on γ from these considerations. However, the fact that the interstitial
turbulence is no longer homogeneous owing to the embedded coherent, shielded vortices
complicates the picture.

As illustrated by figure 4(a), there is a tendency for large-amplitude vorticity fluctuations
to occur in the vicinity of coherent vortices. This is likely a manifestation of the coherent
vortices imparting vorticity to their vicinity through filamentation or diffusion. Therefore,
during the random nucleation process, as the coherent vortices increase in number, and
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Figure 4. (a) Snapshot of the vorticity field at γ = 1 during the random nucleation process, highlighting the
interstitial vorticity field by filtering out regions where the strain amplitude ‖D‖ (defined in the main text)
is larger than 5 % of its maximum value (we have also tested other threshold values and found qualitatively
the same results). High-amplitude vorticity fluctuations are preferentially found in the vicinity of shielded
vortices. (b) Time series of the mean squared vorticity at γ = 1, averaged over the interstitial space between
the coherent vortices, computed from the vorticity field shown in panel (a). The mean squared interstitial
vorticity increases in time in a manner reminiscent of the full enstrophy shown in figure 3, with the observed
interstitial values significantly smaller than the total enstrophy that is dominated by the coherent vortices. The
growth in interstitial vorticity indicates that within the shrinking gaps between the coherent vortices, vorticity
fluctuations increase in strength over time.

the interstitial space is reduced, the amplitude of vorticity fluctuations in the interstices
increases. This is confirmed by the time evolution of the mean-squared interstitial vorticity,
shown in figure 4(b). The mean-squared vorticity in the interstices is indeed seen to
increase over time during the random nucleation process. At the threshold of around
two-fifths of the final enstrophy, a value that appears to be universal across γ , the
interstices are sufficiently reduced in size that high-amplitude vorticity fluctuations can
rapidly develop, serving as seeds for new shielded vortices, allowing rapid nucleation
of the remaining three-fifths of the final number of vortices (note that only vortices
of the same sign can mature in the vortex gas past the initial stage of spontaneous
symmetry breaking, since vortices of the opposite sign undergo destructive interactions as
discussed by van Kan et al. 2022). This type of explosive nucleation resembles behaviour
observed in systems undergoing crowd synchronisation via quorum sensing when a large
number of dynamical elements communicate with each other via a common information
pool (Strogatz et al. 2005; Zamora-Munta et al. 2010), here the interstitial vorticity.
Although the initial spontaneous symmetry breaking occurs rapidly compared with the
slow nucleation process in the runs discussed here, at smaller values of γ , there can be
significant transients during which vortices of both signs coexist in the domain (van Kan
et al. 2022). This is compatible with the findings of James et al. (2021) in active turbulence
at moderate Reynolds numbers, who report similar transients with subdomains of locally
aligned vortices, whose duration grows with the size of the domain. In the present work, we
focus instead on the behaviour at substantially larger Reynolds numbers in a large domain
of a fixed size, leaving the domain size dependence to future work.

As γ changes, the relative importance of the two terms in the forcing function also
changes. To determine which term is responsible for setting the observed increasingly long
time scales of the approach to the stationary state, we compare two ensembles of runs at
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Figure 5. Time series of enstrophy from two ensembles of runs at γ = 0.95. In the first ensemble, shown by
the green curves, the random forcing is switched on with ε = 1 (same data as in figure 3), while in the second
ensemble, shown by the brown curves, the random forcing amplitude is set to zero, ε = 0. The difference
between the average of texp over each of the two ensembles is not statistically significant compared with the
standard deviation.

γ = 0.95 from sets A and E defined by the presence or absence of the random forcing term
(cf. § 2). The late-time evolution of enstrophy in these two ensembles is shown in figure 5.
The deviation between the average texp in the two ensembles is not statistically significant
compared with the standard deviation. In addition to the simulations at γ = 0.95, we have
also performed a run without random forcing at γ = 0.8 (not shown), and found that in
this case, the evolution of the enstrophy with and without the stochastic forcing is also
nearly identical. These findings indicate that, at least for γ close to unity, the stochastic
forcing plays only a minor role in setting the transition to the dense state. This is consistent
with the observation that the ratio Γ (defined in (2.8)) between the energy injection rate
associated with the instability forcing term and the random force is much greater than one.
Specifically, we find that, in the stationary state, Γ (γ = 0.8) ≈ 4.4 × 104 � 1.

4. Crystallisation transition at small γ

The dense vortex gas states found near γ = 1, whose emergence was described in the
previous section, can be continued to smaller values of γ , where the observed states
become much more regular. This behaviour may appear unexpected, given that reducing
γ implies stronger stochastic forcing relative to instability forcing. However, for all the
results described below, the instability forcing term remains dominant in the sense that
the ratio Γ remains large. The dependence of the late-time flow state on γ is illustrated
in figure 6, where snapshots of the vorticity field are shown for runs in set B at γ = 1,
γ = 0.5 and γ = 0.05. In the latter case, a spontaneously formed hexagonal vortex crystal
is observed. For identical point vortices, this is the only stable vortex lattice in a periodic
domain (Tkachenko 1966). In all three panels, the vortices are of one sign only, i.e. all
three panels represent symmetry-broken chiral states. However, for every state shown in
figure 6, there exists a corresponding state with the sign of the vorticity reversed. The
vortex state shown in figure 6(a,b) at high Reynolds numbers differs substantially from
the disorganised, active turbulence state described by James et al. (2021) for moderate
Reynolds numbers, since we observe only vortices of a single sign, all with a pronounced
tripolar structure and therefore shielded. The vortex crystal shown in figure 6(c) bears
some resemblance to the active vortex lattice of James et al. (2021), although in the latter,
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Figure 6. Snapshots of the vorticity field in the dense, statistically stationary state at: (a) γ = 1; (b) γ = 0.5
and (c) γ = 0.05.

vortices are not tripolar, but rather embedded in a background of uniform but opposite
vorticity.

In the following, the transition from the disordered vortex gas to the crystal is analysed
quantitatively using different methods from statistical physics and crystallography.

4.1. Vortex diffusion
Supplementary movies SM1, SM2, SM3 available at https://doi.org/10.1017/jfm.2024.
162 show the evolution of the vorticity field over time for γ = 0.5, 0.25 and 0.05.
As γ is reduced, the root-mean-square speed at which individual vortices traverse the
domain decreases significantly. In particular, one observes that the individual vortices
in the gas phase move chaotically across the domain but are trapped in the crystalline
state. Therefore, the speed at which individual vortices propagate through the domain
is a natural order parameter for quantifying the transition to the crystalline state.
A particle-image-velocimetry (PIV) algorithm (Adrian & Westerweel 2011) is suitable
for this purpose.

We have implemented such an algorithm in Python and applied it to the dense vortex
states, taking into account the complicating feature of the periodic boundaries, which can
lead to spurious doppelgängers that must be eliminated to obtain the correct trajectories.
This procedure yields trajectories such as those shown in figure 7, where each colour
represents the trajectory of a single vortex in the system, shifted to start at the origin and
extending from t = 0 to σ t = 300. At γ = 0.5 and γ = 0.25 (figure 7a,b), the vortices
diffuse with a mean squared displacement that increases with γ . By contrast, at γ = 0.05
(figure 7c), i.e. in the crystalline state, the vortices remain trapped close to the origin.

To quantify this impression, we compute the mean squared displacement, a classical
measure in the study of diffusion processes, over the vortex population as a function of
time. Regular diffusion, which can be microscopically realised by Brownian motion, is
characterised by a linear increase of the mean squared displacement with time (Einstein
1905). The forced-dissipative system we are considering here is out of equilibrium, even
if only weakly so, owing to the absence of an inverse energy cascade. Random motions
observed in out-of-equilibrium systems are often characterised by anomalous diffusion
(Metzler & Klafter 2000; Sokolov & Klafter 2005), defined by a nonlinear scaling of the
mean squared displacement with time.

Against this backdrop, the results shown in figure 8(a) can be considered surprising: the
complex mutual advection of individual vortices leads to a mean squared displacement
that increases approximately linearly with time, i.e. the vortices perform regular diffusion.
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Figure 7. Trajectories of all individual vortices in the system from t = 0 to σ t = 300, shifted to start at the
origin, for (a) γ = 0.5; (b) γ = 0.25 and (c) γ = 0.05. Each colour indicates the trajectory of a particular
vortex. The vortices diffuse above the melting transition (γ ≥ γc ≈ 0.13) at a rate that increases with γ , but
are trapped at γ = 0.05 (crystalline state).

The (non-dimensional) slope Dv of the mean squared displacement over time is shown
in panel (b) as a function of the forcing parameter γ . Below a critical threshold, γ =
γc ≈ 0.13, individual vortices are trapped in the vortex crystal. Above this threshold, the
diffusivity increases monotonically with γ . The dashed line indicates a quadratic fit near
the onset of diffusion, which is accurate from γ = γc ≈ 0.13 to γ ≈ 0.25. The transition is
seen to be continuous (or supercritical). Figure 8(c) shows the same data as panel (b), but
as a function of Γ , defined in (2.8). The crystallisation transition occurs at Γ = Γc ≈ 90
with a critical exponent close to one. Similar behaviour is found in other systems exhibiting
hexagonal symmetry (Ammelt, Astrov & Purwins 1998; Bortolozzo, Clerc & Residori
2009; Ophaus et al. 2021) but appears unrelated to any of the classical instabilities of a
hexagonal pattern such as Eckhaus, zigzag or varicose instabilities (Sushchik & Tsimring
1994; Echebarria & Riecke 2000). In the following, we refer to the transition from
trapped to diffusive vortex motion observed at γ = γc interchangeably as a crystallisation
transition or a melting transition. The observation that the melting transition discussed
here is continuous is particularly interesting in view of the large literature on the search
for similar continuous melting transitions in particle systems at equilibrium (Dash 1999).

In Appendix C, the location of this transition is shown to be insensitive to the width
of the wavenumber band on which the random forcing acts. It is further highlighted there
that in the absence of the random forcing (ε = 0), the vortex crystal develops defects which
lead to residual diffusion that makes the sharp transition of figure 8 imperfect. Thus, the
role of the noise associated with the stochastic forcing term in this system is once again
counterintuitive, although it is well known that in simpler situations, noise can indeed
promote synchronisation, both in chaotic systems (Zhou & Kurths 2002) and in systems
of non-identical units including phase-coupled oscillators (Nagai & Kori 2010).

4.2. Radial distribution functions
Another well-established measure of structured particle systems in statistical physics is
the radial distribution function, usually denoted by g(r) (Chandler 1987). This quantity,
also referred to as the pair correlation function or pair distribution function, measures the
average density of particles near some location r with |r| = r, given that a tagged particle
is located at the origin. An equivalent definition of g(r) is as the probability density of the
quantity N(r)/r, where N(r) is the number of vortices found within a radius [r, r + dr] of
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Figure 8. (a) Mean squared displacement of vortices at different γ versus time. The observed increase is
approximately linear. (b) Blue circles represent the slope Dv measured from the observed mean squared
displacements versus γ . Error bars indicate uncertainty in slope estimation. A clear threshold for crystallisation
can be discerned at γ = γc ≈ 0.13. Black dashed line shows a quadratic fit in γ − γc which is consistent with
the data near onset. Inset shows a log-log plot of Dv versus γ − γc, validating the approximate agreement
between the data and the quadratic fit. (c) Same data as in panel (b), shown as a function of the ratio Γ (defined
in (2.8)) of energy injection rates due to instability and random forcing. The slope Dv scales approximately
linearly with Γ − Γc, where Γc ≈ 90.

a given vortex. The radial distribution function allows one to quantify the state of matter
in particle systems and has been used to characterise active vortex crystal states (Riedel
et al. 2005).

Figure 9 shows the radial distribution function observed in our system in the crystalline
state and above the melting transition. In panel (a), corresponding to the crystalline
state at γ = 0.05, there are pronounced peaks near r ≈ 2�1 (nearest neighbour distance),
r ≈ 2

√
3�1 (next nearest neighbour), r ≈ 4�1 (next next nearest neighbour) and this

structure continues to larger radii, modulo increasing fluctuations. Figure 9(b) shows that
a liquid-like structure is observed beyond the melting transition, with a clear peak near the
minimum distance between vortex centres, associated with the finite size of the vortices,
and successive peaks at larger radii indicating different coordination shells (Chandler
1987). A zoom on the first peak highlights that it decreases in radius as γ increases, in
agreement with direct measurement of the average vorticity profile, as shown in figure 12
below. At large separations, g(r) becomes constant, reflecting the random arrangement of
vortices in the vortex gas, which might also be called a vortex liquid in view of this result.
Indeed, it is known that a dense system of vortices can be treated as a fluid and can itself be
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Figure 9. Radial distribution function g(r) for different values of γ in the vortex crystal state at (a) γ = 0.05
and (b) for values of γ above the melting transition. In the crystalline state, there are pronounced peaks in g(r) at
nearest-neighbour, next-nearest-neighbour and next-next-nearest-neighbour distances (indicated by NN, NNN,
NNNN, respectively). In panel (b), a liquid-like structure is observed beyond the melting transition. The inset
shows a zoom on the first peak, which is seen to shift to smaller radii as γ increases, reflecting shrinking vortex
size.

described in terms of anomalous hydrodynamics (Wiegmann & Abanov 2014), although
these authors only consider point vortex flows and do not include the effects of shielding
or of the finite size of individual vortices.

The regularity or irregularity of dense vortex configurations in different phases can also
be measured using Voronoi diagrams, as described in Appendix B. One result of this
analysis is that the inter-vortex distance decreases as γ increases. However, the Voronoi
analysis is based purely on the location of vortex centres and does not include information
about the vorticity structure or the vortex size. This analysis thus cannot distinguish
between larger gaps between vortices and a change in the vortex size.

4.3. Lindemann ratio
Further insight into the physics of the melting transition of the vortex lattice can be gained
by considering the relative displacements of vortices. This can be quantified using an
established criterion in terms of the non-dimensional Lindemann ratio (Goldman et al.
2003), given by

rL = 〈|um − un|2〉
a2 , (4.1)

in terms of the lattice spacing a, where um is the displacement of vortex m from the
perfect lattice and the average is over nearest-neighbour vortex pairs indexed by m, n.
In simulations of 2-D crystalline atomic lattices at thermal equilibrium, melting has
been found to occur when rL ≈ 0.1 (Bedanov, Gadiyak & Lozovik 1985; Zheng &
Earnshaw 1998) and this criterion has been shown to apply also to non-equilibrium
systems (Goldman et al. 2003). We computed rL in the vortex crystal phase at the closest
available data point to the melting threshold (γ = 0.125), approximating |um − un| by
|a − |rm − rn|| in terms of the actual vortex positions rm, rn, to find that rL � 0.002. This
indicates that the displacements of vortices from their lattice sites are small compared
with the lattice spacing, even near the onset of melting. This is related to the fact
that the lattice spacing in the vortex crystal is nearly identical to the size of individual
vortices, implying that displacements of vortices from lattice sites are strongly constrained.
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Figure 10. Graphical validation of identified tripole axes in the shielded vortex crystal (γ = 0.05). Golden
stars indicate identified vortex centres while light red lines show the instantaneous tripole axes computed based
on the location of the maximum vorticity amplitude in the shield. No polar order is discerned.

The small Lindemann ratio near the onset of melting clearly distinguishes the present
non-equilibrium system from the equilibrium examples cited above.

5. Vorticity profile and vortex numbers

The accurate characterisation of the average vorticity profile of tripolar vortices poses
a challenge, as one can see in supplementary movie SM4: individual tripolar vortices,
which feature varying degrees of ellipticity, rotate rapidly about their centre. We identify
the tripole axis of every vortex in two steps. First, we find the location of the vortex centre
(position of central extremum). Note that the vortex positions are determined on a grid,
implying a spatial resolution of Δx = 2π/512 ≈ 0.06�1. Second, we find an extremum
of opposite sign in the shield. Then a straight line is drawn through these two points to
determine the tripole axis. A graphical validation of the results obtained by this method is
shown in figure 10 for the vortex crystal state. The golden stars shown there indicate the
vortex centres, with light red lines indicating the identified tripole axes. Individual vortices
in the vortex lattice are found to rotate as approximately rigid bodies. We searched for signs
of orientational order, such as local or global phase synchronization among neighbouring
shielded vortices, but no such effects were detected either in the vortex crystal state or in
the vortex gas phase.

To perform a population average, we rotate individual vortices (a linear interpolation
is required for this step due to the Cartesian grid) so that their vortex axes are aligned
in the y direction and shift all vortices to the origin. The resulting profiles for γ = 0.05
and γ = 0.5 are shown in figure 11. Three main features can be readily observed: first,
increased vorticity amplitude at γ = 0.5 leads to a sharper contrast between the vortex
and the background than at γ = 0.05. Second, the vortex core is notably less elliptical in
the crystal at γ = 0.05 than at γ = 0.5. Finally, the vortex size is significantly larger at
γ = 0.05 (i.e. in the hexagonal vortex crystal) than at γ = 0.5 (the vortex gas).

Figure 12(a) shows one-dimensional radial profiles of the vorticity corresponding to
γ = 0.5: cuts through the vortex centre along the x and y directions in figure 11, i.e. parallel
and perpendicular to the tripolar shield axis, are shown in blue and red, respectively,
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Figure 11. Population-averaged vorticity profiles at (a) γ = 0.05 and (b) γ = 0.5 in the crystal and gas phases.
The vortex size decreases and the core becomes more elliptical as γ increases. Note the different colour bars
required to accommodate the different vorticity strengths.
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Figure 12. (a) One-dimensional profiles obtained for γ = 0.5 from the two-dimensional population-averaged
vorticity profile shown in figure 11. (b) Radius r0 corresponding to the root (highlighted in panel (a) by an
arrow) of the azimuthally averaged vorticity profile ω̄(r) = (2π)−1 ∫

ω(r, φ) dφ (shown in green in panel a),
non-dimensionalised by largest scale �1 in the forcing range.

together with the azimuthally averaged vorticity profile (in green). We define the radius
r0 as the radius at which the azimuthally averaged profile passes through zero. Panel (b)
shows that this radius decreases monotonically as γ increases, indicating a continuous
shrinkage of the tripolar vortices as the contribution of the instability forcing increases.

As shown in figure 13(a), as the vortices shrink with increasing instability growth
rate (increasing γ ), the number density of vortices in the stationary state gradually
increases, with more and more vortices in the domain. However, the number of vortices
increases by less than 10 % over the whole range of γ , while their radial extent decreases
more rapidly with γ , with a reduction by around 20 % in vortex radius over the same
range (cf. figure 12) and faster shrinkage at small values of γ compared with larger γ .
Figure 13(b) shows that this results in a rapid and approximately linear growth with γ in
the fraction of the domain area occupied by gaps between vortices (identified as regions
where |ω| ≤ 0.01max(|ω|)) at small γ followed by saturation of this fraction at larger γ .
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Figure 13. (a) The number Nv of vortices observed in the domain in the statistically stationary state increases
with γ . In the statistically stationary vortex gas state, vortices are occasionally destroyed or created, an effect
captured by the error bars that indicate the standard deviation of the number of vortices. The fluctuations in Nv

are small compared with the total number of vortices in all cases. (b) Fraction of the domain area occupied by
gaps versus γ . Gaps are identified as regions where the absolute value of vorticity |ω| is less than or equal to
1 % of the maximum value in the vortex core. The gap area increases rapidly and approximately linearly with
γ at small γ , an effect important for the melting transition at γ ≈ 0.13, and saturates at larger γ .

This increase in the gap area with γ is of great importance in facilitating the observed
melting transition. Gaps grow between the lattice sites in the crystal state until, at
γ = γc ≈ 0.13, they become sufficiently wide for vortices to begin slipping through and
diffuse across the domain.

6. Conditions for the maintenance of the vortex crystal

In view of the non-trivial physical properties of the shielded vortex crystal described in
the previous sections, one can ask under which conditions this state is stable and whether
it can be disrupted in other ways than via the diffusive melting transition discussed in § 4.
Here, we describe two possibilities for destabilizing the vortex crystal state, both involving
the disruption of the vortex shields followed by the subsequent appearance of an inverse
energy cascade, which may be suppressed in the crystal when shielding is present. Similar
behaviour is observed in rapidly rotating Rayleigh–Bénard convection, where the inverse
energy cascade may be suppressed by the presence of convective Taylor columns (Grooms
et al. 2010; Julien et al. 2012).

6.1. Crystal decay at very small γ

First, we consider runs from simulation set B, starting in the vortex crystal state (taken
from a simulation at γ = 0.05), and continuously reduce γ while retaining the full cubic
damping term. The vortex crystal is found to remain stable down to γ = 0.04. However,
for γ ≤ 0.035, the shields of the tripolar vortices spontaneously dissolve, followed by an
inverse energy cascade culminating in the appearance of a large-scale vortex condensate,
as illustrated in figure 14. Two possible explanations suggest themselves. Since γ is
small, one may assume that the random forcing term becomes sufficiently strong to cause
the observed dissolution of the shield structures. However, at γ = 0.04 (the smallest γ

where the crystal is observed to be stable), we find Γ ≈ 11 (with Γ defined in (2.8)),
indicating that the energy injection rate due to the random forcing remains subdominant
compared with the instability forcing. Instead, we note that the ratio r(γ = 0.035) ≈ 1.7,
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Figure 14. Sequence of states observed at γ = 0.03 with vortex scale damping and ε = 1, initialised by a
vortex crystal state at larger γ . The dissolution of the shields of tripolar vortices in the vortex crystal is followed
by an inverse energy cascade.

cf. (2.5), indicating that the time scales of the forcing and the hyperviscous dissipation
are comparable. To test whether this is indeed responsible for the observed decay of the
crystal at γ ≤ 0.035, we performed additional simulations at γ = 0.005, 0.01, 0.02, 0.03
and 0.035 with ε = 0 (no stochastic forcing), leaving all other parameters unchanged
(set F in table 1). For γ ≤ 0.2, we observe the same temporal evolution from a vortex
lattice initial condition: the shields are seen to rapidly dissolve and an inverse cascade
ensues. This suggests that the observed decay phenomenology is indeed independent of
the stochastic forcing term. Influence of the stochastic forcing was detected only very close
to the onset of crystal decay, namely at γ = 0.03, 0.035: the crystal decayed rapidly via an
inverse cascade in the presence of noise, while for ε = 0, the crystal is stable at γ = 0.035
with a random deletion process observed only at γ = 0.03, where single vortices disappear
one after another from the lattice, as can be seen in supplementary movie SM5. Leaving
aside these special cases close to the dissolution threshold, we conclude that the observed
vortex decay is largely independent of the stochastic forcing except for a small shift in the
threshold. We mention that with a different choice of the parameters νn, k2 or ν∗ (see § 2),
one may achieve Γ ≈ 1, while maintaining r(γ ) � 1. In this case, the very destabilization
of the crystal would likely be facilitated by the dominance of the stochastic force over
instability, rather than by (hyper)viscous effects.
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Figure 15. (a) Log-log plot of the energy spectrum in the vortex crystal state (γ = 0.05). The primary peak
corresponding to the shielded vortex scale is located at wavenumber k = kv ≈ 19. Two secondary peaks are
seen at k ≈ √

3kv and k ≈ 2kv , corresponding to the next-to-nearest neighbour and next-next-nearest-neighbour
distances in the crystal. (b) Lin-log plot of energy deviation from the crystal versus time for different
simulations at γ = 1, initialised in the crystal state. In each simulation, a different spectral filter is applied
to the nonlinear damping, such that it acts only on the wavenumber window [kNL

min, k2], with k2 = 40 fixed.
A sharp transition is observed: when the nonlinear damping acts on the vortex scale kv ≈ 19, the vortex crystal
is stable, but it breaks down when the damping term does not act on kv . In the latter case, the well-organised
shields dissolve and an inverse cascade ensues wherein individual vortex cores merge and one observes a
large-scale condensate at late times.

6.2. The role of nonlinear damping
Next, we examine the role of the nonlinear damping. The results presented by van Kan
et al. (2022) already showed that this term plays a crucial role in fully suppressing the
inverse cascade once shielded vortices form. In the absence of nonlinear damping at large
scales, a residual inverse cascade persists, albeit much weaker than that observed with
stochastic forcing only. However, a more systematic investigation of the role of nonlinear
damping in this system is still missing. As shown in figure 15(a), the energy spectrum
in the vortex crystal is sharply peaked at a principal peak corresponding to the vortex
scale (k ≈ kv = 19), with two minor peaks observed at k ≈ √

3kv and k ≈ 2kv . Given this
spectral structure, the nonlinear damping in this state will preferentially act on the vortex
scale. Hence, it is natural to investigate the situation where the nonlinear damping term is
subject to spectral filtering, to include or exclude the vortex scale and study its effect on
the stability of the vortex crystal.

Table 2 summarises the runs performed in set D, where the cubic nonlinearity is
filtered in Fourier space so that it acts on a finite wavenumber interval [kNL,min, kNL,max]
with kNL,max = k2 = 40. Table 2 indicates that the vortex crystal is only stable when the
nonlinear damping acts on the vortex scale. Otherwise the injected energy will inevitably
cascade towards larger scales. This is because the nonlinear damping at the shielded vortex
scale is strongly amplified, thereby suppressing the inverse cascade. Figure 15(b) shows
time series of kinetic energy confirming this expectation, highlighting a sharp transition
at kNL,min = 19: when the filtered damping excludes the vortex scale, the kinetic energy
grows and an inverse cascade ensues, while, otherwise, the vortex crystal remains intact.
This agrees with the findings of Linkmann et al. (2020), who observed such an inverse
cascade and large-scale condensation in a model of moderate Reynolds number 2-D active
turbulence with a negative eddy viscosity driving force but no nonlinear damping or
random forcing, provided the forcing amplitude was sufficiently large.
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kNL,min/k1 Vortex crystal stable

33/33 no
30/33 no
27/33 no
24/33 no
21/33 no
20/33 no
19/33 yes
18/33 yes
17/33 yes
14/33 yes
11/33 yes

Table 2. Stability of the vortex crystal with nonlinear damping applied only to the wavenumber
window [kNL,min, k2], for different kNL,min. A sharp transition is present at kNL,min = kv = 19, i.e. at the
energy-containing scale of the vortex crystal (see also figure 15).

In short, the vortex crystal can be disrupted in at least two ways other than the
diffusive melting transition described previously: it breaks down when the time scale
of (hyper)viscous dissipation at the forcing scale become comparable to the maximum
instability growth rate or when the nonlinear damping is turned off at the vortex scale.
A third possible mechanism for the breakdown of the vortex crystal arises when the
energy injection rate due to the stochastic forcing term becomes comparable to the energy
injected by the instability. However, this is not observed with the parameters considered
in our simulations, since here viscous dissipation becomes comparable to the small scale
instability forcing already at larger values of γ .

Although turning off the nonlinear damping at the vortex scale does lead to a breakdown
of the crystal state, it should be emphasised that the observed suppression of the inverse
energy cascade in that state is not a simple consequence of nonlinear damping. This is
clearly seen from the fact that at sufficiently small γ , γ � 0.3, an inverse cascade ensues
when the simulations are initialised with small-amplitude initial conditions despite the
presence of nonlinear damping; see also figure 16 and van Kan et al. (2022). Instead,
it is the presence of coherent, shielded vortices that amplifies the action of the nonlinear
damping and leads to the suppression of the inverse energy cascade. Thus, both ingredients
are needed for the spontaneous suppression of the inverse cascade.

7. Overview of stationary-state solutions at different γ

Figure 16 shows an overview of the observed stationary states in the model, extending
the state diagram previously shown by van Kan et al. (2022). Four qualitatively distinct
states are observed: starting in set A from small-amplitude, random initial conditions
with predominantly random forcing, i.e. small γ , a large-scale condensate spontaneously
forms (blue crosses). As γ increases beyond approximately γ = 0.35, a hybrid state
emerges (blue dots) with tripolar, shielded vortices embedded in the remaining large-scale
circulation patterns (see van Kan et al. (2022) and figure 17(a,b) for visualisations of such
states). Continuing the hybrid states to smaller γ , a range of bistability is found between
the condensate and hybrid states, as shown in the inset. In addition, figure 16 shows the
branch of high-density vortex states discussed above: the vortex gas (black diamonds) and
vortex crystal states (green hexagons), whose amplitude varies approximately linearly with
the control parameter γ , as discussed in § 3. The dense SV branch formed by the vortex gas
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Figure 16. Overview of the stationary states found in nonlinearly damped two-dimensional turbulence driven
by the hybrid forcing defined in (2.3) for different values of γ . Four qualitatively different states are
observed. First, a large-scale condensate (LSC) forms spontaneously from small-amplitude, random initial
conditions provided γ < 0.35. Second, a hybrid state with smaller-scale shielded vortices embedded in the
LSC (LSV+SV) emerges, as reported by van Kan et al. (2022); see also figure 17. Third, a dense shielded
vortex gas and fourth, a shielded vortex crystal, form together the branch of dense states which constitute the
primary topic of the present work.

and crystal states coexists with the condensate and hybrid states over a wide range of the
control parameter γ , leading to pronounced multistability. The dense SV branch terminates
at γ ≈ 0.04 below which hyperviscous dissipation becomes comparable to the instability
forcing (rather than by the stochastic force) and the shielded vortices are destabilised. The
same four types of qualitatively different states described here for cubic friction are also
found with quadratic drag, as shown in Appendix A, thereby highlighting the potential
relevance of our results to geophysical flows. These are characterised by large-scale, highly
anisotropic, quasi-two-dimensional turbulent flows, sustained by various linear instability
mechanisms. Indeed, the notion of a vortex gas has recently been used by Gallet & Ferrari
(2020) to derive a transport closure for turbulence driven by baroclinic instabilities in an
oceanic context.

8. Conclusions and outlook

In this work we have presented a detailed study, based on extensive DNS, of the statistically
stationary states observed in 2-D turbulence driven by a hybrid forcing that interpolates
between stochastic stirring and linear instability in the presence of nonlinear damping. Our
simulations reveal an approximately self-similar evolution from small-amplitude random
initial conditions to a high-density vortex gas state when the forcing is dominated by the
instability term. The observed evolution begins with a short-lived initial inverse cascade
that gives way to the formation of shielded vortices of positive and negative polarities.
This brief phase is in turn followed by spontaneous symmetry breaking resulting in a state
with vortices of one sign only. This broken-symmetry state further evolves via a slow,
random nucleation process through which ever more coherent vortices are generated, up
to a critical threshold where the number of shielded vortices (equivalently, the enstrophy)
is approximately two fifths of its maximum value. Once this threshold is reached, the
interstitial space between vortices has shrunk sufficiently for the coherent vortices to
efficiently impart vorticity to these interstices, leading to the formation of vortex seeds and
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Figure 17. Overview of the stationary states observed with quadratic damping at different values of γ . These
states are qualitatively similar to those observed with cubic damping. Filled contours show vorticity, while the
contour lines in panel (b) show the large scale streamfunction.

an explosive increase in vortex number, resulting in convergence towards a high-density
statistically stationary state. The interplay between turbulence and the coherent vortices
remains incompletely understood. Specifically, the dependence of the nucleation time scale
on the forcing strength and the detailed mechanism of vortex nucleation and turbulence
suppression, as well as the exact threshold density at which it occurs all require further
investigation, as does the impact of the domain size, all of which are left for a future study.

The second key result reported here is that the high-density vortex gas state obtained
from the observed self-similar, explosive evolution that sets in when the above threshold
is exceeded exists over a wide range of forcing parameters, and undergoes a continuous
or supercritical phase transition to a hexagonal vortex state at a threshold γ = γc ≈ 0.13,
below which individual vortices are trapped in a lattice and no longer diffuse across the
domain. We showed that this transition is facilitated by rapid growth of inter-vortex gaps
with increasing γ when γ is small. This transition was found to be sharp in the presence
of noise, and becomes imperfect in its absence. This somewhat counterintuitive behaviour
appears to be associated with defects which anneal in the presence of noise but persist in its
absence. The loss of positional order in the vortex gas was quantified using methods from
statistical physics and crystallography focusing on vortex diffusivity, based on observed
mean squared displacements, and the radial distribution function, with brief remarks on
Voronoi diagrams and the Lindeman parameter. The results revealed that the vortex ‘gas’
is in fact liquid-like in terms of the distribution of relative vortex positions. It is important
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to stress here that the type of diffusive melting transition described in this work differs
qualitatively from that described by James et al. (2021), since no vortices are annihilated
here, the spontaneous symmetry breaking is maintained during the transition and no
hexatic phase is observed, although with suitable initial conditions, a transient hexatic
phase exists in the present problem as well but was not observed to arise spontaneously.
Somewhat surprisingly, we do not observe any spontaneous transitions between the vortex
crystal and turbulence, in contrast with the results of James et al. (2021), although we
cannot exclude the possibility that such behaviour might occur in the present model with
different parameter values.

Another important result obtained in this paper is the population-averaged vorticity
profile of the tripolar shielded vortices in this system. This profile indicates that the
structure of the coherent tripolar vortices changes with the control parameter γ : the
vortex size decreases monotonically with increasing γ and vortices in the crystal state
feature a less elliptical vortex core than at larger γ . No theoretical explanation is available
for these observations and any future progress on these questions will be a significant
contribution to our understanding of this prominent building block of instability-driven
2-D turbulence. In fact, the gradual decrease in vortex size was shown to be offset, in part,
by a correspondingly gradual increase in the number of vortices in the stationary state,
resulting in an approximately linear growth in the gap area (as measured by the area where
the vorticity magnitude is below 1 % of the maximum) with the control parameter γ . The
vortex intensity was likewise found to scale approximately linearly with γ over a wide
range of γ .

The conditions for the suppression of the inverse cascade in the vortex crystal were
analysed, revealing that three key ingredients are required. First, the dominant energy
injection must stem from the instability forcing. Second, the nonlinear damping must
act at the scale of individual vortices and third, the time scale of viscous dissipation
must be large compared to the inverse instability growth rate at the most linearly
unstable scales. Violation of any of these conditions results in the dissolution of the
shields of the coherent vortices, triggering a standard inverse energy cascade and the
formation of a large-scale condensate. Finally, all known statistically stationary states
of this problem were discussed, including earlier results from van Kan et al. (2022),
namely the large-scale condensate, hybrid states consisting of large-scale circulation
patterns with embedded shielded vortices, and the dense vortex gas and vortex crystal
states.

Many questions remain open. Since transient evolution towards an active vortex crystal,
reminiscent of the transient dynamics observed here, has been observed in a model of
active turbulence (James et al. 2018), it is natural to ask if the self-similarity of this
evolution and the non-trivial scaling of its time scale with the driving strength is found
in the moderate-Reynolds-number flows of active turbulence models as well. Moreover,
while it is well known that large-scale self-organization occurs in highly anisotropic 3-D
turbulent flows, such as flows in thin layers or rapidly rotating flows, it is as yet unclear
what will be the fate of the vortex crystal described here in quasi-2-D flows, i.e. when
the flow is no longer required to be strictly 2-D. Three-dimensionality is typically not
taken into account in numerical studies of vortex crystals (see e.g. James et al. 2021),
although numerically metastable 2-D lattices of 3-D vortices are observed in rapidly
rotating turbulence (Di Leoni et al. 2020). It is therefore important to clarify the stability
of such vortex crystals in a quasi-2-D setting, both from a fundamental standpoint, and
because laboratory realisations of such states will necessarily be 3-D and hence prone to
3-D instabilities (e.g. Kerswell 2002; Seshasayanan & Gallet 2020).
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It will also be of considerable interest to develop a hydrodynamic description of the
vortex gas (or liquid!) extending the approach of Wiegmann & Abanov (2014) to include
the effects of vortex shielding and possibly the tripolar vortex structure. More generally,
since the statistical mechanics of point vortex systems is well developed (Onsager 1949;
Eyink & Sreenivasan 2006), including the aforementioned effects in this context would
yield significant insights into the properties of the shielded vortex gas identified here.

We anticipate that the predictions of the present model may be verified in highly
anisotropic flows driven by spectrally localised instabilities, where ambient fluctuations
might play the role of the stochastic forcing term. It is important to stress that, for the
dense vortex states, the ratio Γ is always much greater than one, implying that the impact
of the presence or absence of a stochastic forcing is minor. This observation suggests that
states of this type are likely to be robust, provided only that the turbulent state is forced via
an instability.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.162.
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Appendix A. Quadratic bottom drag

Many studies of nearly 2-D turbulence include a linear Rayleigh drag law to model the
effect of bottom friction (Boffetta & Ecke 2012). However, in the context of geophysical
turbulence, numerous works consider a quadratic bottom drag law, e.g. Jansen et al. (2015)
and Gallet & Ferrari (2020). Such a quadratic drag law can be obtained from dimensional
considerations and is widely used in numerical ocean models (Gill 1982; Willebrand et al.
2001; Egbert et al. 2004; Couto et al. 2020).

To test the robustness of the results presented here with respect to the choice of
damping, we summarise here the results from runs in set C, i.e. DNS of (2.1)–(2.3) with
quadratic damping (m = 1 in (2.1)) and β = 0.1. Figure 17 shows snapshots of solutions
obtained with this quadratic friction and confirms that the four stationary states reported
for cubic friction by van Kan et al. (2022) also exist in the geophysically relevant case
of quadratic friction. Panel (a) shows the classical large-scale condensate obtained from
small-amplitude initial conditions for γ = 0.05. Panel (b) shows a hybrid state, again
obtained from small-amplitude initial conditions, with two large-scale counter-rotating
patches with embedded tripolar vortices whose sign is aligned with the background
circulation. Panel (c) shows a dilute vortex gas, also obtained from small-amplitude
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Figure 18. (a–c) Voronoi tesselations based on the vortex centre locations show a change in regularity with
increasing γ : (a) γ = 0.05; (b) γ = 0.25 and (c) γ = 1. Note that only a fraction of the domain is shown.
(d–f ) Time-averaged histograms of the number of edges in the above Voronoi diagrams at the same values of
γ . The variance of the number of edges increases with increasing γ : the lattice state at γ = 0.05 is perfectly
hexagonal, while pentagons and heptagons appear at γ = 0.25, and a small number of octagons and tetragons
at γ = 1.

initial conditions for γ = 1.0. Finally, panel (d) shows a stable vortex lattice obtained
by initialising with a similar lattice state at γ = 0.05.

Appendix B. Voronoi analysis of spatial order in dense vortex states

An alternative tool for quantifying changes in regularity in the spatial distribution of the
vortices is the Voronoi tesselation, a classical tool in the study of crystals (Blatov 2004).
The Voronoi tesselation associated with a given set M of points in the plane is given
by a set of polygons, each corresponding to a unique point in the set M, defined as the
set of points whose Euclidean distance from the point is smaller than from any other
point in M. In our application, we take M to be the set of vortex centres. Since we are
considering a finite periodic domain, while Voronoi tesselations are constructed for the
entire plane, it is necessary to exclude polygons at the edges of the domain to avoid
spurious boundary effects. We make use of the spatial.Voronoi module provided by the
scipy package (Virtanen et al. 2020) to compute the Voronoi diagrams.

Figure 18(a–c) shows that the Voronoi tesselation associated with the dense vortex states
varies strongly with γ . At γ = 0.05, where the hexagonal vortex crystal is observed,
the corresponding Voronoi tesselation also consists of hexagons. As γ increases above
the melting threshold, the polygons in the Voronoi tessellation vary more and more in
shape. Figure 18(d–f ) quantifies this visual insight in terms of histograms of the number
of edges at γ = 0.05 (in the crystalline state) and at γ = 0.25 and γ = 1 (above the
melting threshold). At γ = 0.05, all polygons are indeed hexagonal, while at γ = 0.25,
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Figure 19. Probability density function (PDF) of the area Apolygon of the polygons in the Voronoi tesselation
for different values of γ , non-dimensionalised according to Ãpolygon = Apolygon/�

2
1. The PDF is sharply peaked

at γ = 0.05 in the crystalline state, and broadens significantly as γ increases above the melting threshold. The
mean area decreases as γ increases, indicating that the distance between vortex cores also decreases. See also
figure 12.

there are also pentagons and heptagons. At γ = 1, the fraction of hexagons has decreased
further, while pentagons and heptagons are more frequent, and a small number of octagons
and tetragons also appear. In short, the variance of the number of edges increases as γ

increases.
In addition to the number of edges, another quantifiable characteristic of the

Voronoi polygons is their area. Figure 19 shows histograms of the polygon areas
(non-dimensionalised by �2

1, where �1 = 2π/k1 is the largest forcing scale). The histogram
is sharply peaked in the crystalline state, and its variance increases monotonically with γ

in the vortex gas state. In addition, both the average polygon area and its most probable
value shrink as γ increases, observations that are indicative of a reduced average distance
between vortex centres.

Appendix C. Impact of noise on the crystallisation transition

One can ask to what extent the melting/crystallisation transition observed here depends
on the forcing characteristics. Figure 20 shows the mean squared displacement of shielded
vortices observed with a modified random forcing with the same energy injection rate
ε, but acting over the wider range k ∈ [33, 40] instead of a thin shell near k2 = 40. The
instability forcing term is unchanged. A sharp transition is observed from a trapped state
at γ = 0.125 to a diffusing state at γ = 0.15, consistent with the results described in the
main text. The transition behaviour and the location of the transition is thus robust to
changes in the scales subject to random forcing.

In contrast, when the energy injection rate ε by the random forcing is set to zero,
a qualitative change in the system behaviour is observed, with finite diffusion rates
below the threshold in the absence of noise, as shown in figure 21 in terms of the
mean squared displacement (cf. figure 8). In the absence of random forcing (ε = 0),
long-lived line defects spontaneously form as shown in figure 22(a), which lead to residual
vortex diffusion below the threshold at γc ≈ 0.13 observed in the presence of stochastic
forcing. Supplementary movie SM6 shows that these defects are long-lived and thus
significantly affect the crystal structure: contrast this with the regular lattice structure
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Figure 20. Mean squared displacement versus time at (a) γ = 0.125 and (b) γ = 0.15 with the stochastic
forcing acting on [k1 = 33, k2 = 40], instead of a thin shell near k2 = 40. Individual vortices in the system are
trapped at γ = 0.125, but diffuse across the domain at γ = 0.15, indicating that the melting transition near
γ = γc ≈ 0.13 is robust to changes in the width of the forcing window. Dashed line in panel (b) indicates a
linear fit.
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of γ , vortices are trapped when the random forcing is active (ε = 1). Here, in contrast, a small residual diffusion
is observed.
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Figure 22. Snapshots of the vorticity field from set B at γ = 0.075 with random forcing (a) turned off
(ε = 0) and (b) turned on (ε = 1).
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seen in figure 22(b) and supplementary movie SM7, with identical parameters as in
supplementary movie SM6 except for ε = 1 (random forcing turned on), where no defects
are present. The difference between these two situations, with and without stochastic
forcing, may be interpreted in terms of annealing of the crystal structure by the random
stirring force. Other phenomena where a transition is sharpened in the presence of noise
include noise-induced synchronisation (Zhou & Kurths 2002; Nagai & Kori 2010).
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