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Abstract

This work concerns Markov decision chains on a denumerable state space endowed with
a bounded cost function. The performance of a control policy is assessed by a long-
run average criterion as measured by a risk-seeking decision maker with constant risk-
sensitivity. Besides standard continuity–compactness conditions, the framework of the
paper is determined by the following conditions: (i) the state process is communicating
under each stationary policy, and (ii) the simultaneous Doeblin condition holds. Within
this framework it is shown that (i) the optimal superior and inferior limit average value
functions coincide and are constant, and (ii) the optimal average cost is characterized via
an extended version of the Collatz–Wielandt formula in the theory of positive matrices.
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1. Introduction

This work is concerned with Markov decision processes (MDPs) on a denumerable state
space endowed with a bounded cost function. It is assumed that the decision maker is risk-
seeking with a constant risk-sensitivity coefficient, and the performance of a control policy is
measured by a long-run average cost index. In addition to standard continuity–compactness
conditions, the framework of the paper is mainly determined by two assumptions on the transi-
tion structure: (a) the state process is communicating under each stationary policy, and (b) the
simultaneous Doeblin condition holds. In this context, the main objectives of this work can be
described as follows:
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(i) to prove that the optimal inferior and superior limit average cost functions coincide and
are constant;

(ii) to characterize the optimal average cost.

The results for these problems extend to the present framework conclusions established
in [7] under the condition that the decision maker is risk-averse and, as in that paper, the
characterization of the optimal average cost presented in Theorem 1(ii) is a generalized version
of the Collatz–Wielandt formula for the largest eigenvalue of a positive matrix. On the other
hand, an additional objective of the paper is the following:

(iii) to establish the existence of a stationary policy whose average index differs from the
optimal one by less than a given tolerance.

The analysis of discrete-time Markov models endowed with a risk-sensitive average crite-
rion can be traced back, at least, to the seminal paper [14]. In that paper the Perron–Frobenius
theory of positive matrices [17] was employed to study MDPs with finite state and action
spaces, and the optimal average cost was characterized via an optimality equation. On the other
hand, motivated by important connections with the theory of large deviations and mathemati-
cal finance, risk-sensitive average criteria have recently been studied. Models with a countable
state space are considered in [5, 8, 9, 20], whereas MDPs on a general state space are analyzed
in [10, 11, 12, 15]. Connections of risk-sensitive average criteria with the theory of large devi-
ations are presented in [2, 16], whereas applications to mathematical finance are given in [3,
18, 21].

On the other hand, there are important differences between the risk-neutral and risk-
sensitive average criteria. For instance, in the risk-neutral case the simultaneous Doeblin
condition ensures that the optimal average cost is constant and is characterized via an opti-
mality equation [13, 19], a result that is not generally valid in the risk-sensitive case [6]. For
this reason, in this work the simultaneous Doeblin condition will be supplemented with the
requirement that the state space is communicating under the action of any stationary policy.

The remainder of the paper is organized as follows: In Section 2 the decision model is
formally introduced, the basic assumptions of the paper are formulated, and the risk-sensitive
average criteria are defined. Next, in Section 3 the idea of a subsolution of the optimality
equation is formulated and the main conclusions of the paper are stated in Theorem 1, which is
followed by a brief outline of the strategy used to prove that result. Section 4 contains the basic
properties of the family of subsolutions which allow us to establish the fundamental auxiliary
result in Theorem 2 of Section 5, establishing that if the space of stationary policies is finite
and the cost function is nonpositive with compact support, then the optimality equation has a
bounded solution. After those preliminaries, Theorem 1 is finally proved in Section 6, and the
paper concludes with some brief comments in Section 7.

1.1. Notation

In the following, the set of nonnegative integers is denoted by N, and, for a real-valued func-
tion h, ‖h‖ := sup{|h(x)| : belongs to the domain of h} is the corresponding supremum norm.
Given a nonempty set S, the space of all bounded real-valued functions defined on S is denoted
by B(S), i.e. h : S →R belongs to B(S) if and only if ‖h‖ < ∞. On the other hand, for real num-
bers a and b, a ∧ b = min{a, b}, and, if F ⊂ S, the indicator function of the subset F is denoted
by 1F , that is, 1F(y) := 1, y ∈ F, and 1F(y) = 0, y ∈ S \ F. For an event W, the corresponding
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indicator function is denoted by 1[W], and every relation between random variables holds
almost surely with respect to the underlying probability measure.

2. Decision model

Throughout, M= (S, A, {A(x)}x∈S, C, P) represents an MDP, a model for a dynamical
system whose components are as follows:

(i) The state space S is a denumerable set endowed with the discrete topology.

(ii) The control set A is a metric space.

(iii) For each state x ∈ S, the nonempty set A(x) ⊂ A is the class of possible actions at x.

(iv) C : K→R is the cost function, where K := {(x, a) | a ∈ A(x), x ∈ S} is the collection of
admissible pairs.

(v) P = [px,y(·)] is the controlled transition law.

This model M is interpreted as follows: At each time t ∈N the state of a dynamical system
is observed, say Xt = x ∈ S, and a decision maker (controller) chooses and applies an action
At = a ∈ A(x). As a consequence of such an intervention, a cost C(Xt, At) = C(x, a) is incurred
and, regardless of the previous states and actions, the state of the system at time t + 1 will be
Xt+1 = y ∈ S with probability pXt,Xt+1 (At) = px,y(a), where

∑
y∈S px,y(a) = 1; this is the Markov

property of the decision model.

Assumption 1.

(i) For every x ∈ S, A(x) is a compact subset of A.

(ii) For each x, y ∈ S, the mappings a 	→ px,y(a) and a 	→ C(x, a) are continuous in a ∈ A(x).

(iii) The cost function C is bounded, i.e. C ∈B(K).

The observed history of the process up to time n is denoted by

Hn := (X0, A0, X1, A1, . . . , Xn−1, An−1, Xn), n = 0, 1, 2, 3, . . . , (1)

whereas
Fn := σ (Hn) (2)

is the σ -field generated by Hn.

2.1. Policies

A policy is a measurable rule for choosing actions. Formally, a control policy π = {πn}n∈N
is a (special) sequence of stochastic kernels πn on the action space A given Hn, where the space
Hn of possible histories up to time n is given by H0 = S, and Hn =K

n × S for n ≥ 1; the vector
hn = (x0, a0, . . . , xn−1, an−1, xn) represents a generic element of Hn, so that ai ∈ A(xi) for i < n
and xi ∈ S for i ≤ n. When the controller drives the system using policy π = {πn}, given that
the history Hn attains the value hn ∈Hn, the probability of choosing action An inside a Borel
subset B of A(xn) is πn(B | hn), where πn(A(xn) | hn) = 1. The family of all policies is denoted
by P and, given the initial state X0 = x and the policy π ∈P used to direct the system, the
distribution P

π
x of the state–action process {(Xk, Ak)}k∈N is uniquely determined [13, 19] and

E
π
x [ · ] represents the corresponding expectation operator. Next, set F := ∏

x∈S A(x), so that F
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is a compact metric space consisting of all functions f : S → A such that f (x) ∈ A(x) for every
x ∈ S. A policy π is stationary if there exists f ∈ F such that, under π , at each time t ∈N the
action At = f (Xt) is applied. The class of stationary policies and F are naturally identified, a
convention allowing us to write F⊂P .

2.2. Utility function and average criteria

In this paper we suppose that the controller has a constant risk-sensitivity coefficient λ �= 0,
so that a random cost Y is assessed via the expected value of Uλ(Y), where the (dis-)utility
function Uλ is the strictly increasing mapping given by

Uλ(x) = sign(λ)eλx, x ∈R; (3)

notice that
Uλ(c + h) = eλcUλ(h), c, h ∈R. (4)

When the decision maker has to choose between two random costs Y0 and Y1, paying Y0
will be preferred if E[Uλ(Y1)] >E[Uλ(Y0)], whereas the controller will be indifferent between
both costs if E[Uλ(Y1)] =E[Uλ(Y0)]. Given a random cost Y such that E[Uλ(Y)] is finite, the
certainty equivalent of Y with respect to Uλ is the unique real number Eλ[Y] determined by
Uλ(Eλ[Y]) =E[Uλ(Y)], so that the controller will be willing to pay the amount Eλ[Y] to avoid
facing the uncertainty associated with Y; note that

Eλ[Y] = U−1
λ (E[Uλ(Y)]) = 1

λ
log (E[eλY ]), (5)

a relation that immediately leads to

P[|Y| ≤ b] = 1 =⇒ |Eλ(Y)| ≤ b. (6)

Observe that Uλ(·) is strictly convex (resp. concave) if λ > 0 (resp. λ < 0), and in that
case Jensen’s inequality yields that Eλ(Y) >E[Y] (resp. Eλ(Y) <E[Y]) if Y is a non-constant
random variable. When λ > 0 (resp. λ < 0) the controller is referred to as risk-averse (resp.
risk-seeking). Using the idea of the certainty equivalent, risk-sensitive average criteria can be
defined as follows: Let π ∈P be the policy used to operate the system starting at X0 = x. The
application of the first n actions A0, A1, . . . , An−1 generates the cost

∑n−1
k=0 C(Xk, Ak) and,

using (5), the associated certainty equivalent is

Jn(π, x) := 1

λ
log

(
E

π
x

[
exp

{
λ

n−1∑
t=0

C(Xt, At)

}])
, n = 1, 2, 3, . . . , (7)

which represents an average of Jn(π, x)/n per step. The superior limit (λ-sensitive) average
performance index of policy π at state x is given by

J(π, x) := lim sup
n→∞

1

n
Jn(π, x), (8)

and the corresponding optimal value function is

J∗(x) := inf
π∈P

J(π, x), x ∈ S; (9)
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a policy π∗ ∈P is lim sup (λ-)average optimal if J(π∗, x) = J∗(x) for every x ∈ S. The criterion
(8) represents the worst-case point of view about the behavior of the sequence {Jn(π, x)/n} of
averages over a finite horizon. The optimistic perspective assesses the performance of π via
the smallest limit point of that sequence:

J−(π, x) := lim inf
n→∞

1

n
Jn(π, x), (10)

with the corresponding optimal value function given by

J∗(x) := inf
π∈P

J−(π, x), x ∈ S, (11)

and π∗ ∈P is lim inf (λ-)average optimal if J−(π∗, ·) = J∗(·). It follows that

J−(π, ·) ≤ J(π, ·), π ∈P, and then J∗(·) ≤ J∗(·). (12)

From the definitions in (7)–(11), using (6), it is not difficult to verify that

−‖C‖ ≤ J−(π, ·) ≤ J(π, ·) ≤ ‖C‖, π ∈P, −‖C‖ ≤ J∗( · ) ≤ J∗( · ) ≤ ‖C‖.

Remark 1. In Section 6, several cost functions are considered simultaneously. In that case, the
cost function is explicitly indicated in the above notation for the average criteria and optimal
value functions. For instance, J∗(C, ·) and J∗(C, ·) are used instead of J∗(·) and J∗(·); notice
that

J∗(C + β, ·) = J∗(C, ·) + β, J∗(C + β, ·) = J∗(C, ·) + β, β ∈R. (13)

2.3. Optimality equation

Under appropriate requirements, the characterization of the optimal value functions in (9)
and (11) can be based on the following optimality equation:

Uλ(g + h(x)) = inf
a∈A(x)

[∑
y∈S

px,y(a)Uλ(C(x, a) + h(y))

]
, x ∈ S, (14)

where g ∈R and h(·) is a function defined on S. Suppose that this equality holds, and set

Y0 = Uλ(h(X0)), Yn = Uλ

(
n−1∑
t=0

(C(Xt, At) − g) + h(Xn)

)
, n = 1, 2, 3, . . . (15)

Remark 2. Direct consequences of (15) are the following facts:

(i) Let π = {πn} ∈P be a fixed policy. From (14), it follows that, for every n ∈N and a ∈
A(Xn), Uλ(g + h(Xn)) ≤∑y∈S pXn,y(a)Uλ(C(Xn, a) + h(y)); integrating both sides of this
relation with respect to πn(da | Hn) and using the Markov property, it follows that

Uλ(h(Xn)) ≤
∫

A(Xn)

∑
y∈S

pXn,y(a)Uλ(C(Xn, a) + h(y))πn(da | Hn)

=E
π
x [Uλ(C(Xn, An) − g + h(Xn+1)) |Fn], x ∈ S, n ∈N. (16)
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Next, using that exp
{
λ
∑n−1

t=0 (C(Xt, At) − g)
}

is Fn-measurable, (4) and the two
previous displays together yield

Yn = Uλ

(
λ

n−1∑
t=0

(C(Xt, At) − g) + h(Xn)

)

= exp

{
λ

n−1∑
t=0

(C(Xt, At) − g)

}
Uλ(h(Xn))

≤ exp

{
λ

n−1∑
t=0

(C(Xt, At) − g)

}
E

π
x [Uλ(C(Xn, An) − g + h(Xn+1)) |Fn]

=E
π
x

[
exp

{
λ

n−1∑
t=0

(C(Xt, At) − g)

}
Uλ(C(Xn, An) − g + h(Xn+1)) |Fn

]

=E
π
x

[
Uλ

(
n∑

t=0

(C(Xt, At) − g) + h(Xn+1)

)
|Fn

]
=E

π
x [Yn+1 |Fn], (17)

that is, {(Yn,Fn)}n∈N is a submartingale with respect to Pπ
x for every x ∈ S and π ∈P .

(ii) Suppose that function h(·) in (14) is bounded. In this context, using Assumption 1, it is
not difficult to see that, for each x ∈ S, the term within brackets in (14) is a continuos
function of a ∈ A(x), and then it has a maximizer f ∗(x) ∈ A(x). Thus, Uλ(g + h(x)) =
E

f ∗
x [Uλ(C(x, f ∗(x)) + h(x))] for every x ∈ S and, paralleling the argument in part (i), it

follows that the equality always holds in (16) and (17) when π is replaced by f ∗, so that

{(Yn,Fn)}n∈N is a martingale with respect to P
f ∗
x for every x ∈ S.

(iii) Maintaining the assumption that h(·) is bounded, observe that, for every n ∈N \ {0},
x ∈ S, and π ∈P , part (i) implies that Eπ

x [Y0] ≤E
π
x [Yn], an inequality that, using (15),

is equivalent to Uλ(h(x)) ≤E
π
x

[
Uλ

(∑n−1
t=0 (C(Xt, At) − g) + h(Xn+1)

)]
; recalling that

Uλ(·) is increasing, via (4) and (7) it follows that

Uλ(h(x)) ≤E
π
x

[
Uλ

(
n−1∑
t=0

(C(Xt, At) − g) + ‖h‖
)]

= eλ(‖h‖−ng)
E

π
x

[
Uλ

(
n−1∑
t=0

C(Xt, At)

)]

= eλ(‖h‖−ng)Uλ(Jn(π, x)) = Uλ(Jn(π, x) − ng + ‖h‖).

Thus, h(x) ≤ Jn(π, x) − ng + ‖h‖, and then g ≤ (1/n)(Jn(π, x) + ‖h‖ − h(x)) for every
positive integer n. Therefore,

g ≤ J−(π, ·), π ∈P, so that g ≤ J∗(·), (18)

by (10) and (11). On the other hand, part (ii) above yields E
f ∗
x [Y0] =E

f ∗
x [Yn], which

is equivalent to Uλ(h(x)) =E
f ∗
x
[
Uλ

(∑n−1
t=0 (C(Xt, At) − g) + h(Xn+1)

)]
; paralleling the
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above argument, it follows that

Uλ(h(x)) ≥E
f ∗
x

[
Uλ

(
n−1∑
t=0

(C(Xt, At) − g) − ‖h‖
)]

= e−λ(ng+‖h‖)
E

f ∗
x

[
Uλ

(
n−1∑
t=0

C(Xt, At)

)]

= e−λ(ng+‖h‖)Uλ(Jn(f ∗, x)) = Uλ(−(ng + ‖h‖) + Jn(f ∗, x)).

Therefore, h(x) ≥ Jn(f ∗, x) − (ng + ‖h‖), and then g ≥ (1/n)(Jn(f ∗, x) − (‖h‖ + h(x)));
via (8) and (9), it follows that g ≥ J(f ∗, x) ≥ J∗(x), x ∈ S. Combining this relation with
(12) and (18), it follows that g ≤ J∗ ≤ J∗(·) ≤ g, so that J∗(·) = g = J∗(·) and J−(f ∗, ·) =
g = J(f ∗, ·), i.e. g = limn→∞ n−1Jn(f ∗, ·).

2.4. Assumptions for a constant average cost

Even under strong communication-ergodicity conditions, like those in Assumption 2 below,
in the present context of a denumerable state space the existence of a solution of the optimality
equation cannot be generally guaranteed for an arbitrary bounded cost function; an (uncon-
trolled) example illustrating this phenomenon was given in Section 9 of [7]. However, as we
verify later, the strong requirements imposed below ensure that the optimal value functions are
constant. To continue, it is convenient to introduce the following notation.

For each set F ⊂ S, define the first return time to F by

TF := min{n ≥ 1 | Xn ∈ F}, (19)

where, by convention, the minimum of the empty set is ∞; if F = {x} is a singleton, the simpler
notation

Tx ≡ T{x} (20)

is used. Combining the above definition with (1) and (2), it follows that [TF = n] ∈Fn for every
n ∈N, so that TF is a stopping time with respect to the filtration {Fn}.
Assumption 2. There exists z ∈ S such that the following properties hold.

(i) Accessibility from z:
Under the action of any stationary policy, every state y ∈ S is accessible from z, i.e.
P

f
z[Ty < ∞] > 0, y ∈ S, f ∈ F.

(ii) Simultaneous Doeblin condition:
The first return time Tz satisfies supx∈S,f ∈F E

f
x[Tz] < ∞.

The proof of the following result can be found in [7].

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then:

(i) For every y ∈ S, there exists a finite constant My such that

E
π
x [Ty] ≤ My, x ∈ S, π ∈P . (21)

(ii) For arbitrary different states x, y ∈ S, Pπ
x [Ty < Tx] > 0, π ∈P .
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2.5. The problems

As already observed, under Assumptions 1 and 2, the optimal average cost cannot be gen-
erally characterized via the optimality equation (14), since it does not necessarily admit a
solution. Thus, looking for a characterization of the optimal average cost is an interesting
problem. The main objectives of this paper are:

• to show that the optimal value functions J∗(·) and J∗(·) coincide and are constant;

• to characterize the optimal average cost.

These problems were addressed in [7] for the case λ > 0 of a risk-averse controller, so, from
this point onwards, our analysis focuses on the risk-seeking case λ < 0.

3. Main result

In this section the main conclusions of this work are stated in Theorem 1, which extends
to the risk-seeking context results established in [7] for the risk-averse case. The ideas in the
following definition will be useful.

Definition 1.

(i) The set G̃ of subsolutions of the optimality equation (14) for model M consists of all
pairs (g, h(·)), where g ∈R and the function h : S →R satisfy

Uλ(g + h(x)) ≤ inf
a∈A(x)

[∑
y∈S

px,y(a)Uλ(C(x, a) + h(y))

]
, x ∈ S. (22)

(ii) The set G is the projection of G̃ on its first coordinate, i.e. G = {g ∈R | (g, h) ∈ G̃ for
some h : R→R}.

Remark 3. When two cost functions are simultaneously being examined, the sets G̃ and G in
the above definition are denoted by G̃(C) and G(C), respectively, making it clear what cost
function is being considered. With this notation, it follows that, for each β ∈R,

(g, h(·)) ∈ G̃(C) ⇐⇒ (g + β, h(·)) ∈ G̃(C + β),

whereas
g ∈ G(C) ⇐⇒ g + β ∈ G(C + β). (23)

Via (3), it is not difficult to see that if λ < 0, then inequality (22) is equivalent to

eλg+λh(x) ≥ sup
a∈A(x)

[
eλC(x,a)

∑
y∈S

px,y(a)eλh(y)

]
, x ∈ S. (24)

Using the above notation, the main result of the paper can be stated as follows.

Theorem 1. Suppose that λ < 0, and that Assumptions 1 and 2 hold. In this context, the
following assertions are valid:

(i) The inclusion g ∈ G is equivalent to g ≤ J∗(·).
(ii) For each x ∈ S, J∗(x) = sup{g | g ∈ G} = J∗(x).
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(iii) Set g∗ = sup{g | g ∈ G}. With this notation, g∗ ∈ G. More explicitly, there exists h∗ : S →
R such that (g∗, h∗(·)) ∈ G̃, that is,

eλg∗+λh∗(x) ≥ sup
a∈A(x)

[
eλC(x,a)

∑
y∈S

px,y(a)eλh∗(y)

]
, x ∈ S. (25)

(iv) For each ε > 0, there exists a stationary policy f ∈ F which is ε-optimal in the sense that
g∗ ≤ J−(f , x) ≤ J(f , x) ≤ g∗ + ε, x ∈ S.

The equality in Theorem 1(ii) is an extension of the Collatz–Wielandt formula for the largest
eigenvalue of a positive (finite-dimensional) matrix ([17]); see, for instance, the discussion on
this point presented in Remark 3.2 of [7]. The rather technical proof of the above result will
be presented in Section 6. Roughly, the backbone of the argument consists in ‘approximating’
the optimal average cost of the original model M, via MDPs with finite spaces of stationary
policies and cost functions with finite support. This strategy is developed in the following two
sections, and can be briefly outlined as follows: Section 4 concerns basic properties of the
class of subsolutions. First, it is shown that if (g, h(·)) ∈ G̃ then h(·) is bounded from above,
and g is a lower bound for the optimal inferior limit average index; moreover, given that the
system is driven by π ∈P starting at x ∈ S, it is shown that h(x) is bounded from above by
the certainty equivalent of the total relative cost

∑Tw−1
t=0 (C(Xt, At) − g) up to the first return

time to a given state w. Additionally, such a certainty equivalent is studied for the case in
which the system evolves under a stationary policy, and the results in this direction are used
in Section 5 to show that, if the space of stationary policies is finite and C has finite support,
then the optimality equation (14) admits a solution (g, h(·)) where the mapping h(·) is bounded.
After these preliminaries, the proof of Theorem 1 is finally presented in Section 6 before the
concluding remarks.

4. Fundamental tools

This section presents auxiliary results that will be used to establish Theorem 1. The starting
point is the following lemma, which concerns two basic properties of the pairs in G̃, namely, if
(g, h(·)) ∈ G̃ then (i) the functional part h is bounded from above, and (ii) g is a lower bound of
the optimal inferior limit average index.

Lemma 2. Given that λ < 0, under Assumptions 1 and 2 the following properties hold for each
w ∈ S and (g, h(·)) ∈ G̃:

(i) For each x ∈ S and π ∈P ,

eλh(x)−λh(w) ≥E
π
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}]
, (26)

and then

1 ≥E
π
w

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}]
. (27)

(ii) h(·) − h(w) ≤ ‖C − g‖Mw, where Mw is as in (21).

(iii) g ≤ J∗(x) for each x ∈ S.
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Proof. For (i), let π ∈P and x ∈ S be arbitrary. Given n ∈N, observe that, combining
Definition 1 with (24), it follows that eλh(Xn) ≥∑y∈S eλ(C(Xn,a)−g)pXn,y(a)eλh(y) for every a ∈
A(Xn), and then

eλh(Xn) ≥
∑
y∈S

∫
A(Xn)

eλ(C(Xn,a)−g)px,y(a) πn(da | Hn)eλh(y)

=E
π
x

[
eλ(C(Xn,An)−g)+λh(Xn+1) |Fn

]
,

where the equality is due to the Markov property. Now set Z0 = eλh(X0), Zn =
exp

{
λ
∑n−1

t=0 (C(Xt, At) − g) + λh(Xn)
}
, n = 1, 2, 3, . . . Using these and the previous display,

and the fact that exp
{
λ
∑n−1

t=0 (C(Xt, At) − g)
}

is Fn-measurable, an argument along the lines
of the one used in Remark 2 yields that {(Zn,Fn)} is a supermartingale with respect to P

π
x ,

i.e. Zn ≥E
π
x [Zn+1 |Fn], n ∈N, Pπ

x -almost surely (a.s.). Therefore, since Tw is a stopping time
with respect to the filtration {Fn}, the optional sampling theorem yields Eπ

x [Z0] ≥E
π
x [Zn∧Tw]

(Theorem 7.7.3, p. 304 of [1]; Theorem 35.2, p. 405 of [4]), i.e.

eλh(x) ≥E
π
x

[
exp

{
λ

n∧Tw−1∑
t=0

(C(Xt, At) − g) + λh(Xn∧Tw)

}]
. (28)

Now observe that Pπ
x [Tw < ∞] = 1, by (21), and that XTw = w on the event [Tw < ∞], by

(19). Therefore, with probability 1 with respect to P
π
x ,

lim
n→∞ exp

{
λ

n∧Tw−1∑
t=0

(C(Xt, At) − g) + λh(Xn∧Tw)

}

= exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g) + λh(XTw)

}
= exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g) + λh(w)

}
.

Thus, via Fatou’s lemma, (28) yields

eλh(x) ≥ lim inf
n→∞ E

π
x

[
exp

{
λ

n∧Tw−1∑
t=0

(C(Xt, At) − g) + λh(Xn∧Tw)

}]

≥E
π
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g) + λh(w)

}]

=E
π
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}]
eλh(w),

and (26) follows; setting x equal to w leads to (27).
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For (ii), from Jensen’s inequality it follows that

E
π
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}]
≥ exp

{
E

π
x

[
λ

Tw−1∑
t=0

(C(Xt, At) − g)

]}

≥ e−‖λ(C−g)‖Eπ
x [Tw]

≥ eλ‖C−g‖Mw , x ∈ S, π ∈P, (29)

where the negativity of λ and (21) were used in the last step. The above relation and (26)
together imply that λh(·) − λh(w) ≥ λ‖C − g‖Mw, and the conclusion follows.

For (iii), let x ∈ S and π ∈P be arbitrary. Recalling that {(Zn,Fn)} is a supermartingale with
respect to P

π
x , for every positive integer n,

eλh(x) =E
π
x [Z0] ≥E

π
x [Zn]

=E
π
x

[
exp

{
λ

n−1∑
t=0

(C(Xt, At) − g) + λh(Xn)

}]

≥E
π
x

[
exp

{
λ

n−1∑
t=0

(C(Xt, At) − g)

}]
eλ(h(w)+‖C−g‖Mw)

=E
π
x

[
exp

{
λ

n−1∑
t=0

C(Xt, At)

}]
e−nλg+λ(h(w)+‖C−g‖Mw)

= exp{λJn(π, x) − nλg + λ(h(w) + ‖C − g‖Mw)},

where the second inequality is due to part (ii), and (7) was used in the last step. It follows that
λh(x) ≥ λJn(π, x) − nλg + λ(h(w) + ‖C − g‖Mw), and then

g ≤ 1

n
Jn(π, x) + 1

n
(h(w) − h(x) + ‖C − g‖Mw).

Taking the inferior limit as n goes to ∞ in both sides of this relation, it follows that g ≤
J−(π, x), and then g ≤ J∗(·), since x ∈ S and π ∈P are arbitrary in this argument. �

The remainder of the section is dedicated to studying inequality (27) for a stationary policy
f , and it is convenient to introduce additional notation.

Definition 2. Let f ∈ F, g ∈R, and w ∈ S be arbitrary but fixed, and define the total relative
cost function up to the first return time to state w under f by

hf ,g,w(x) := 1

λ
log

(
E

f
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}])
, x ∈ S.

Notice that this definition and (29) with f instead of π together yield λhf ,g,w(x) ≥ λ‖C −
g‖Mw, and the negativity of λ leads to

hf ,g,w(·) ≤ ‖C − g‖Mw. (30)
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On the other hand, a conditional argument combining Definition 2 with the Markov property
yields

E
f
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}
1[X1 �= w] | H1

]

= eλ(C(X0,f (X0))−g)1[X1 �= w]Ef
x

[
exp

{
λ

Tw−1∑
t=1

(C(Xt, At) − g)

}
1[X1 �= w] | H1

]

= eλ(C(X0,f (X0))−g)1[X1 �= w]EX1

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)}
]

= eλ(C(X0,f (X0))−g)1[X1 �= w]eλhf ,g,w(X1),

and then

eλhf ,g,w(x) =E
f
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}
1[X1 = w]

]

+E
f
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}
1[X1 �= w]

]

= eλ(C(x,f (x))−g)

(
px,w(f (x)) +

∑
y �=w

px,y(f (x))eλhf ,g,w(y)

)
. (31)

Next, the following lemma shows that if hf ,g,w(w) is finite at some point, then hf ,g,w(·) is
finite on S, and a fundmental property of the mapping y 	→ hf ,g,y(y) will be established, namely,
if that function attains a non-negative value at some point, then it is always non-negative.

Lemma 3. Assume that λ < 0 and that Assumptions 1 and 2 are valid. In this context, the
following assertions hold for arbitrary f ∈ F, g ∈R, and w ∈ S.

(i) If hf ,g,w(w) > −∞, then hf ,g,w(x) is finite for every x ∈ S.

(ii) The following assertions are equivalent:

(a) hf ,g,w(w) ≥ 0.

(b) hf ,g,w(·) is finite and the following Poisson inequality holds:

eλhf ,g,w(x) ≥ eλ(C(x,f (x))−g)
∑
y∈S

px,y(f (x))eλhf ,g,w(y), x ∈ S. (32)

(c) hf ,g,y(y) ≥ 0 for every y ∈ S.

Proof. For (i), given x ∈ S \ {w}, using Lemma 1(ii) pick a positive integer k satisfying

Pw[Tx = k < Tw] > 0, (33)
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and notice that [Tx = k < Tw] = [Xt /∈ {x, w}, 1 ≤ t < k, Xk = x] belongs to Fk (see (2)), so that

E
f
w

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}
|Fk

]

≥E
f
w

[
1[Tx = k < Tw] exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}
|Fk

]

= exp

{
λ

k−1∑
t=0

(C(Xt, At) − g)

}
1[Tx = k < Tw]Ef

w

[
exp

{
λ

Tw−1∑
t=k

(C(Xt, At) − g)

}
|Fk

]

≥ eλk‖C−g‖1[Tx = k < Tw]Ef
w

[
exp

{
λ

Tw−1∑
t=k

(C(Xt, At) − g)

}
|Fk

]

= eλk‖C−g‖1[Tx = k < Tw]Ef
Xk

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}]
,

where the last equality is due to the Markov property. Since Xk = x on the event [Tx = k], it
follows from Definition 2 that

E
f
w

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}
|Fk

]

≥ eλk‖C−g‖1[Tx = k < Tw]Ef
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}]

= eλk‖C−g‖1[Tx = k < Tw]eλhf ,g,w(x),

so that

eλhf ,g,w(w) =E
f
w

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}]
≥ eλk‖C−g‖eλhf ,g,w(x)

P
f
w[Tx = k < Tw],

and then (33) yields

hf ,g,w(w) > −∞ =⇒ λhf ,g,w(w) < ∞ =⇒ λhf ,g,w(x) < ∞ =⇒ hf ,g,w(x) > −∞.

Since x ∈ S \ {w} is arbitrary in this argument, this last display and (30) together yield that if
hf ,g,w(w) is finite then hf ,g,w(x) is finite for every x ∈ S.

For (ii) (c) =⇒ (a), the implication is clear. For (a) =⇒ (b), suppose that hf ,g,w(w) ≥ 0, so
that hf ,g,w(·) is a finite function, by part (i), and 1 ≥ eλhf ,g,w(w), since λ is negative. Thus, from
(31),

eλhf ,g,w(x) ≥ eλ(C(x,f (x))−g)

(
px,w(f (x))eλhf ,g,w(w) +

∑
y �=w

px,y(f (x))eλhf ,g,w(y)

)
, x ∈ S,

and (32) follows. For (b) =⇒ (c), let y ∈ S be arbitrary but fixed. Consider the new MDP
Mf obtained from M by setting A(x) = {f (x)}. In this case f is the unique policy in this new
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model, and (32) establishes that the pair (g, hf ,g,w(·)) belongs to the set G̃(Mf ) of subsolutions
corresponding to Mf , so that the conclusions of Lemma 2(i) applied to model Mf with y
instead of w hold. In particular, inequality (27) with f instead of π is valid, and then 1 ≥
E

f
y
[

exp
{
λ
∑Ty−1

t=0 (C(Xt, At) − g)
}]= eλhf ,g,y(y), so that hf ,g,y(y) ≥ 0. �

The next result is a natural complement of Lemma 3(ii).

Lemma 4. Let f ∈ F, g ∈R, and w ∈ S be arbitrary but fixed. Under the conditions in Lemma 3,
the following assertions hold.

(i) hf ,g,w(w) > 0 ⇐⇒ hf ,g,y(y) > 0 for every y ∈ S.

(ii) hf ,g,w(w) = 0 ⇐⇒ hf ,g,y(y) = 0 for every y ∈ S.

Proof. For (i), the ⇐= part is clear. To prove the =⇒ , suppose that hf ,g,w(w) > 0. In
this case hf ,g,w(·) is finite by Lemma 3, and, recalling that λ is negative, 1 > eλhf ,g,w(w) =
E

f
w
[

exp
{
λ
∑Tw−1

t=0 (C(Xt, At) − g)
}]

. Thus,

1 = eλρ
E

f
w

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g)

}]
for some ρ < 0. (34)

Next, define the cost function Ĉ by Ĉ(x, ·) = C(x, ·), x �= w, Ĉ(w, ·) = C(w, ·) + ρ, and con-
sider the new model M̂ obtained from M by replacing C by Ĉ. In this case, if ĥf ,g,w is the

total relative cost in Definition 2 associated with model M̂, (34) yields that eλĥf ,g,w(w) = 1, i.e.
ĥf ,g,w(w) = 0, and then the equivalence of assertions (a) and (c) in Lemma 3(ii) applied to
model M̂ implies that

ĥf ,g,y(y) ≥ 0 for every state y. (35)

Next, combining this fact with the inequality hf ,g,w(w) > 0, we show that hf ,g,y(y) > 0 for y ∈ S.
Since hf ,g,w(w) > 0, to achieve this goal it is sufficient to establish the above inequality for
y �= w. In this context, observe that (35) yields

1 ≥ eλĥf ,g,y(y) =E
f
y

[
exp

{
λ

Ty−1∑
t=0

(Ĉ(Xt, At) − g)

}]

=E
f
y

[
exp

{
λ

Ty−1∑
t=0

(C(Xt, At) − g)

}
exp

{
λρ

Ty−1∑
t=0

1{w}(Xt)

}]

>E
f
y

[
exp

{
λ

Ty−1∑
t=0

(C(Xt, At) − g)

}]
= eλhf ,g,y(y),

where the strict inequality follows by observing that (a) exp
{
λρ
∑Ty−1

t=0 1{w}(Xt)
}≥ 1, since λ

and ρ are negative, and that (b) exp
{
λρ
∑Ty−1

t=0 1{w}(Xt)
}

> 1 on the event [Tw < Ty], which

has positive probability with respect to P
f
y by Lemma 1(ii), whereas the last equality is due to

Definition 2. Thus, 1 > eλhf ,g,y(y), and then hf ,g,y(y) > 0, since λ is negative. This completes the
proof of part (i).

For (ii), the assertion follows by combining part (i) with the equivalence of properties (a)
and (c) in Lemma 3(ii). �

https://doi.org/10.1017/jpr.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.40


354 R. CAVAZOS-CADENA ET AL.

5. Optimality equation in a special case

The objective of this section is to provide sufficient conditions to ensure the existence of a
bounded solution to the optimality equation (14). The result in this direction requires special
conditions on the cost function and the action sets, and is stated in Theorem 2. That result will
be established using the following lemma.

Lemma 5. Let λ < 0 and f ∈ F be arbitrary but fixed. Suppose that the cost function C(·, f (·))
under f satisfies the following requirements:

(a) C(x, f (x)) ≤ 0 for every x ∈ S;

(b) C(·, f (·)) has finite support, i.e.

F := {x ∈ S | C(x, f (x)) < 0} is finite. (36)

In this case there exists a real number g(f) such that the following properties are valid:

(i) g(f ) ≤ 0, and the functions {hf ,g(f ),w}w∈S satisfy

eλhf ,g(f ),w(w) =E
f
w

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g(f ))

}]
= 1, w ∈ S; (37)

see Definition 2.

(ii) For each w ∈ S, the function hf ,g(f ),w(·) is finite and the following Poisson equation
holds:

eλhf ,g(f ),w(x) = eλ(C(x,f (x))−g(f ))
∑

y

px,y(f (x))eλhf ,g(f ),w(y), x ∈ S. (38)

(iii) The function hf ,g(f ),w(·) is bounded for each w ∈ S. More explicitly,

−∞ < inf
x∈S

hf ,g(f ),w(x) ≤ hf ,g(f ),w(·) ≤ Mw‖C − g(f )‖.

(iv) Given w ∈ S, for n ∈N set

Wn(f ) := exp

{
λ

n∧Tw−1∑
t=0

(C(Xt, At) − g(f )) + λhf ,g,w(Xn∧Tw)

}
. (39)

With this notation, Wn(f ) =E
f
x
[

exp
{
λ
∑Tw−1

t=0 (C(Xt, At) − g(f ))
} |Fn

]
, Pf

x-a.s., x ∈ S,
n ∈N; see (2), (19), and (20).

Proof. Recall that the equality At = f (Xt) is always valid when the system is driven using f .
The argument to prove (i) is by induction on |F|, the number of elements of the set F in

(36). If |F| = 0 then C(·, f (·)) = 0, so that, setting g(f ) = 0, it follows that (37) holds for each
x ∈ S. Next, assume that, for some nonnegative integer n, the desired conclusion is valid when
the support of C(·, f (·)) has n elements, and suppose that |F| = n + 1. Pick x̃ ∈ F, so that

C(x̃, f (x̃)) < 0, (40)

and set F̃ = F \ {x̃}, C̃(x, a) = C(x, a)1F̃(x), (x, a) ∈K, so that

F = F̃ ∪ {x̃}, C(x, f (x)) = C(x̃, f (x̃))1{x̃}(x) + C̃(x, f (x)), x ∈ S. (41)
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It follows that the support of the function C̃(·, f (·)) is the set F̃, which has n elements. Thus,
by the induction hypothesis there exists g̃(f ) ≤ 0 such that (37) holds with C̃ and g̃(f ) instead
of C and g(f ), respectively; in particular,

E
f
x̃

[
exp

{
λ

Tx̃−1∑
t=0

(C̃(Xt, At) − g̃(f ))

}]
= 1.

Next, observe that (41) yields

Tx̃−1∑
t=0

(C(Xt, f (Xt)) − g̃(f )) = C(x̃, f (x̃))
Tx̃−1∑
t=0

1{x̃}(Xt) +
Tx̃−1∑
t=0

(C̃(Xt, f (Xt)) − g̃(f )))

= C(x̃, f (x̃))1{x̃}(X0) +
Tx̃−1∑
t=0

(C̃(Xt, f (Xt)) − g̃(f )))

= C(x̃, f (x̃)) +
Tx̃−1∑
t=0

(C̃(Xt, f (Xt)) − g̃(f ))) P
f
x̃-a.s.,

where the second equality was obtained using that Xt �= x̃ for 1 ≤ t < Tx̃, by (19) and (20),
whereas the relation P

f
x̃[X0 = x̃] = 1 was used in the last step. Thus, (37) leads to

E
f
x̃

[
exp

{
λ

Tx̃−1∑
t=0

(C(Xt, At) − g̃(f ))

}]
= eλC(x̃,f (x̃)) > 1, (42)

where, recalling that λ < 0, the inequailty is due to (40). Now observe that

exp

{
λ

Tx̃−1∑
t=0

(C(Xt, At) − γ )

}
↘ 0 as γ ↘ −∞,

whereas, since the mapping γ 	→ exp
{
λ
∑Tx̃−1

t=0 (C(Xt, At) − γ )
}

is increasing,

exp

{
λ

Tx̃−1∑
t=0

(C(Xt, At) − γ )

}
≤ exp

{
λ

Tx̃−1∑
t=0

(C(Xt, At) − g̃(f ))

}
, γ ≤ g̃(f ).

Combining (42) with the two previous displays, the dominated convergence theorem implies
that v(γ ) := E

f
x̃

[
exp

{
λ
∑Tx̃−1

t=0 (C(Xt, At) − γ )
}]

is continuous in γ ∈ (−∞, g̃(f )], and that
v(γ ) ↘ 0 as γ ↘ −∞; since v(g̃(f )) = eλC(x̃,f (x̃)) > 1, by (42), the intermediate value property
implies that there exists g(f ) ∈ (−∞, g̃(f )) ⊂ (−∞, 0) such that

1 = v(g(f )) =E
f
x̃

[
exp

{
λ

Tx̃−1∑
t=0

(C(Xt, At) − g(f ))

}]
= eλhf ,g(f ),x̃(x̃).

From this point, Lemma 4(ii) yields that (37) holds for every x ∈ S. This completes the
induction argument.
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For (ii), since eλhf ,g(f ),w(w) = 1 for every w ∈ S, by part (i), Lemma 3(i) yields that hf ,g(f ),w(·)
is finite, and (38) follows from (31).

For (iii), recall that the equality P
π
x [Tw < ∞] = 1 is always valid, by Lemma 1(i). Now,

define the finite set G = {w} ∪ F such that TG ≤ Tw and TG ≤ TF , and then

C(Xt, f (Xt)) = 0, 1 ≤ t < TG. (43)

Next, select an initial state
X0 = x ∈ (S \ G) ⊂ (S \ F), (44)

so that
C(X0, f (X0)) = 0, (45)

and observe that

exp

{
λ

Tw−1∑
t=0

(C(Xt, f (Xt)) − g(f ))

}

= 1[TG = Tw] exp

{
λ

Tw−1∑
t=0

(C(Xt, f (Xt)) − g(f ))

}

+ 1[TG < Tw] exp

{
λ

Tw−1∑
t=0

(C(Xt, f (Xt)) − g(f ))

}

= 1[TG = Tw] exp

{
λ

TG−1∑
t=0

(C(Xt, f (Xt)) − g(f ))

}

+ 1[TG < Tw] exp

{
λ

( TG−1∑
t=0

(C(Xt, f (Xt)) − g(f )) +
Tw−1∑
t=TG

(C(Xt, f (Xt)) − g(f ))

)}

= 1[TG = Tw]e−λg(f )TG + 1[TG < Tw] exp

{
−λg(f )TG + λ

Tw−1∑
t=TG

(C(Xt, f (Xt)) − g(f ))

}

≤ 1[TG = Tw] + 1[TG < Tw] exp

{
λ

Tw−1∑
t=TG

(C(Xt, f (Xt)) − g(f ))

}
,

where the third equality is due to (43)–(45), and the inequality stems from the negativity of λ

and g(f ). It follows that, for every x ∈ S \ G,

eλhf ,g(f ),w(x) =E
f
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, f (Xt)) − g(f ))

}]

≤ P
f
x[TG = Tw] +E

f
x

[
1[TG < Tw] exp

{
λ

Tw−1∑
t=TG

(C(Xt, f (Xt)) − g(f ))

}]

= P
f
x[TG < Tw] +E

f
x

[
1[TG < Tw]eλhf ,g(f ),w(XTG )],
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where, via a conditional argument, the second equality follows from the Markov property.
Thus, since XTG ∈ G on the event [TG < ∞] and P

f
x[TG < ∞] ≥ P

f
x[Tw < ∞] = 1, it follows

that

eλhf ,g(f ),w(x) ≤ 1 + exp
{

max
y∈G

|λhf ,g(f ),w(y)|
}

≤ 2 exp
{

max
y∈G

|λhf ,g(f ),w(y)|
}
, x ∈ S \ G,

and then hf ,g(f ),w(x) ≥ λ−1[ log (2) + maxy∈G |λhf ,g(f ),w(y)|] when x ∈ S \ G; since hf ,g(f ),w(·)
is a finite function and the set G is finite, it follows that hf ,g(f ),w(·) is bounded from below.

For (iv), looking at (2), (19), and (20) we observe that, for each x, w ∈ S and n, k ∈N \
{0} with k ≤ n, the random variables 1[Tw = k],

∑k−1
t=0 (C(Xt, At) − g(f )), and 1[Tw > n] are

Fn-measurable, and then

E
f
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g(f ))

}
|Fn

]

=E
f
x

[
n∑

k=1

1[Tw = k] exp

{
λ

k−1∑
t=0

(C(Xt, At) − g(f ))

}
|Fn

]

+E
f
x

[
1[Tw > n] exp

{
λ

n−1∑
t=0

(C(Xt, At) − g(f ))

}
exp

{
λ

Tw−1∑
t=n

(C(Xt, At) − g(f ))

}
|Fn

]

=
n∑

k=1

1[Tw = k] exp

{
λ

k−1∑
t=0

(C(Xt, At) − g(f ))

}

+ 1[Tw > n] exp

{
λ

n−1∑
t=0

(C(Xt, At) − g(f ))

}
E

f
x

[
exp

{
λ

Tw−1∑
t=n

(C(Xt, At) − g(f ))

}
|Fn

]

= 1[Tw ≤ n] exp

{
λ

n∧Tw−1∑
t=0

(C(Xt, At) − g(f ))

}

+ 1[Tw > n] exp

{
λ

n−1∑
t=0

(C(Xt, At) − g(f ))

}
eλhf ,g(f ),w(Xn)

= 1[Tw ≤ n]exp

{
λ

n∧Tw−1∑
t=0

(C(Xt, At) − g(f ))

}

+ 1[Tw > n] exp

{
λ

n∧Tw−1∑
t=0

(C(Xt, At) − g(f ))

}
eλhf ,g(f ),w(Xn∧Tw ),

where the Markov property was used to set the third equality. Next, notice that on the event
[Tw ≤ n] the equality Xn∧Tw = w holds, and in this case eλhf ,g(f ),w(Xn∧Tw ) = eλhf ,g(f ),w(w) = 1, by
part (i). Combining this fact with the previous display, it follows that

E
f
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g(f ))

}
|Fn

]

= 1[Tw ≤ n] exp

{
λ

n∧Tw−1∑
t=0

(C(Xt, At) − g(f ))

}
eλhf ,g(f ),w(Xn∧Tw )

https://doi.org/10.1017/jpr.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.40


358 R. CAVAZOS-CADENA ET AL.

+ 1[Tw > n] exp

{
λ

n∧Tw−1∑
t=0

(C(Xt, At) − g(f ))

}
eλhf ,g(f ),w(Xn∧Tw )

= exp

{
λ

n∧Tw−1∑
t=0

(C(Xt, At) − g(f ))

}
eλhf ,g(f ),w(Xn∧Tw ) = Wn(f ),

completing the proof. �

Next, the previous lemma will be used to establish the main result of the section, which will
be derived under the following conditions.

Assumption 3. There exists a finite set F ⊂ S such that the cost function and the action sets
satisfy the following properties.

(i) For each x ∈ S \ F, the action set A(x) is a singleton, whereas A(x) is finite for x ∈ F.

(ii) If x ∈ S \ F, C(x, ·) = 0 and C(x, ·) ≤ 0 if x ∈ F.

Theorem 2. Suppose that λ < 0, and that Assumptions 2 and 3 are valid. In this context, for
each w ∈ S, the following assertions hold.

(i) For each stationary policy f̃ , the cost function C(·, f̃ (·)) satisfies conditions (a) and (b) in
Lemma 5, and there exists f ∈ F such that the pair (g(f ), hf ,g(f ),w(·)) ∈ (−∞, 0] ×B(S)
satisfies

eλg(f )+λhf ,g(f ),w(x) = sup
a∈A(x)

[
eλC(x,a)

∑
y∈S

px,y(a)eλhf ,g(f ),w(y)

]
,

= eλC(x,f (x))
∑
y∈S

px,y(f (x))eλhf ,g(f ),w(y), x ∈ S.

(ii) J∗(·) = g(f ) = J∗(·), and g(f ) = limn→∞ (1/n)Jn(f , x), x ∈ S.

Proof. Starting with part (i), notice that Assumption 3 implies that the space F of stationary
policies is finite and that, for each f̃ ∈ F, the nonpositive cost function C(·, f̃ (·)) has finite
support, so that conditions (a) and (b) in Lemma 5 hold for every f̃ ∈ F; see (36). It follows
that, for each f̃ ∈ F, there exists g(f̃ ) such that, for each state w, the pair (g(f̃ ), hf̃ ,g(f̃ ),w(·)) ∈
(−∞, 0] ×B(S) satisfies the conclusions in Lemma 5. Pick f ∈ F such that

g(f ) = min
f̃ ∈F

g(f̃ ). (46)

Now let w ∈ S be arbitrary but fixed, and note that (38) holds by Lemma 5(ii), so that

eλhf ,g(f ),w(x) ≤ sup
a∈A(x)

[
eλ(C(x,a)−g(f ))

∑
y

px,y(a)eλhf ,g(f ),w(y)

]
, x ∈ S. (47)

Thus, to establish the first assertion it is sufficient to show that the equality holds in the above
relation. To achieve this goal, recall that the space A(y) is finite for every y ∈ S, which allows
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us to pick f ∗ ∈ F such that

eλ(C(x,f ∗(x))−g(f ))
∑

y

px,y(f ∗(x))eλhf ,g(f ),w(y)

= sup
a∈A(x)

[
eλ(C(x,a)−g(f ))

∑
y

px,y(a)eλhf ,g(f ),w(y)

]
, x ∈ S. (48)

Combining these two last displays, it follows that, for each state x ∈ S,

eλhf ,g(f ),w(x) ≤ eλ(C(x,f ∗(x))−g(f ))
∑

y

px,y(f ∗(x))eλhf ,g(f ),w(y),

and then there exists a function 	 : S →R such that

	(·) ≥ 0 (49)

and

eλhf ,g(f ),w(x) = e−	(x)+λ(C(x,f ∗(x))−g(f ))
∑

y

px,y(f ∗(x))eλhf ,g(f ),w(y), x ∈ S; (50)

notice that g(f ) − g(f ∗) ≤ 0, by (46), and then

λ(g(f ) − g(f ∗)) ≥ 0, (51)

since λ < 0. To complete the proof of part (i) it is sufficient to show that

	(·) = 0, (52)

since this equality combined with (48) and (50) yields that the equality occurs in (47). To
establish (52), recall that the equality An = f ∗(Xn) always holds with probability 1 under f ∗, so
that, via (50) and the Markov property, it follows that, for each x ∈ S and n ∈N,

eλhf ,g(f ),w(Xn) = e−	(Xn)+λ(C(Xn,f ∗(Xn))−g(f ))
∑

y

pXn,y(f ∗(Xn))eλhf ,g(f ),w(y)

= e−	(Xn)+λ(C(Xn,An)−g(f ))
E

f ∗
x

[
eλhf ,g(f ),w(Xn+1) |Fn

]
, P

f ∗
x -a.s. (53)

Now define the positive random variables

V0 = eλhf ,g(f ),w(X0),

Vn = exp

{
n−1∑
t=0

[−	(Xt) + λ(C(Xt, At) − g(f ))] + λhf ,g(f ),w(Xn)

}
, n ∈N.

(54)
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Observing that under f ∗ the random variable
∑n

t=0 [−	(Xt) + λ(C(Xt, At) − g(f ))] is
Fn-measurable, and using the Markov property, it follows that, for every x ∈ S and
n ∈N,

E
f ∗
x

[
exp

{
n∑

t=0

[−	(Xt) + λ(C(Xt, At) − g(f ))] + λhf ,g(f ),w(Xn+1)

}
|Fn

]

= exp

{
n∑

t=0

[−	(Xt) + λ(C(Xt, At) − g(f ))]

}
E

f ∗
x [eλhf ,g(f ),w(Xn+1) |Fn]

= exp

{
n−1∑
t=0

[−	(Xt) + λ(C(Xt, At) − g(f ))]

}
eλhf ,g(f ),w(Xn),

where the last equality is due to (53). This last relation and (54) lead to E
f ∗
x [Vn+1 |Fn] = Vn,

i.e. {(Vn,Fn)}n∈N is a martingale with respect to P
f ∗
x . Via the optional sampling theorem it

follows that, for every x ∈ S and n ∈N,

eλhf ,g(f ),w(x) =E
f ∗
x [V0] =E

f ∗
x [Vn∧Tw]

=E
f ∗
x

[
exp

{ n∧Tw−1∑
t=0

[λ(C(Xt, At) − g(f )) − 	(Xt)] + λhf ,g(f ),w(Xn∧Tw)

}]
.

Recalling that Pf ∗
x [Tw < ∞] = 1, by Lemma 1(i), and using that XTw = w on the event [Tw <

∞], it follows that

lim
n→∞ Vn∧Tw = lim

n→∞ exp

{ n∧Tw−1∑
t=0

[λ(C(Xt, At) − g(f )) − 	(Xt)] + λhf ,g(f ),w(Xn∧Tw)

}

= exp

{ Tw−1∑
t=0

[λ(C(Xt, At) − g(f )) − 	(Xt)] + λhf ,g(f ),w(w)

}
, P

f ∗
x -a.s. (55)

Next, we compare Vn with the random variable Wn(f ∗) introduced in Lemma 5; see (39).
Observe that

n∧Tw−1∑
t=0

[−	(Xt) + λ(C(Xt, At) − g(f ))] =
n∧Tw−1∑

t=0

λ(C(Xt, At) − g(f ∗)) − Qn,

where

Qn := (n ∧ Tw)λ(g(f ) − g(f ∗)) +
n∧Tw−1∑

t=0

	(Xt) ≥ 0,
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and the inequality is due to (49) and (51). Thus,

0 ≤ Vn∧Tw = exp

{ n∧Tw−1∑
t=0

[−	(Xt) + λ(C(Xt, At) − g(f ))] + λhf ,g(f ),w(Xn∧Tw)

}

= exp

{ n∧Tw−1∑
t=0

[λ(C(Xt, At) − g(f ∗))] + λhf ,g(f ),w(Xn∧Tw)

}
e−Qn

≤ exp

{ n∧Tw−1∑
t=0

[λ(C(Xt, At) − g(f ∗))] + λhf ,g(f ),w(Xn∧Tw)

}

≤ exp

{ n∧Tw−1∑
t=0

[λ(C(Xt, At) − g(f ∗))] + λhf ∗,g(f ∗),w(Xn∧Tw)

}
e|λ| ‖hf ,g(f ),w−hf ∗,g(f ∗),w‖

= Wn(f ∗)e|λ| ‖hf ,g(f ),w−hf ∗,g(f ∗),w‖,

where Wn(f ∗) is as in (39). Since the equality

Wn(f ∗) =E
f ∗
x

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g(f ∗))

}
|Fn

]

holds P
f ∗
x -a.s. for every x ∈ S and n ∈N, by Lemma 5(iv), it follows that {Wn(f ∗)}n∈N is

uniformly integrable with respect to P
f ∗
x , i.e. Ef ∗

x [Wn(f ∗)1[Wn(f ∗) > c]] → 0 as c → ∞ uni-
formly in n; note that Wn(f ∗) ≥ 0, and see, for instance, Theorem 7.6.6, p. 300 of [1], or
Theorem 16.14, p. 230 of [4]. Since ‖hf ,g(f ),w − hf ∗,g(f ∗),w‖ is finite, by Lemma 5(iii), the rela-
tion 0 ≤ Vn∧Tw ≤ Wn(f ∗)e|λ| ‖hf ,g(f ),w−hf ∗,g(f ∗),w‖ obtained from the above display immediately

implies that {Vn∧Tw}n∈N is uniformly integrable with respect to P
f ∗
x . Combining this property

with (55), an application of Theorem 7.5.2, p. 295 in [1] allows us to interchange the limit and
the expectation to obtain that, for every x ∈ S,

eλhf ,g,w(x) = lim
n→∞ E

f ∗
x [Vn∧Tw] =E

f ∗
x

[
lim

n→∞ Vn∧Tw

]

=E
f ∗
x

[
exp

{ Tw−1∑
t=0

[λ(C(Xt, At) − g(f )) − 	(Xt)] + λhf ,g(f ),w(w)

}]
.

Setting x = w, it follows that

eλhf ,g(f ),w(w) =E
f ∗
w

[
exp

{ Tw−1∑
t=0

[λ(C(Xt, At) − g(f )) − 	(Xt)] + λhf ,g(f ),w(w)

}]

and then

1 =E
f ∗
w

[
exp

{ Tw−1∑
t=0

[λ(C(Xt, At) − g(f )) − 	(Xt)]

}]

=E
f ∗
w

[
exp

{
λ

Tw−1∑
t=0

(C(Xt, At) − g(f ∗))

}
e−Q

]
,
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where Q := Twλ(g(f ) − g(f ∗)) +∑Tw−1
t=0 	(Xt) ≥ 0, and the inequality is due to (49) and (51).

Observe now that 1 =E
f ∗
w
[

exp
{
λ
∑Tw−1

t=0 (C(Xt, At) − g(f ∗))
}]

by Lemma 5(i), and combining

this equality with the two previous expressions it follows that 1 = P
f ∗
w [Q = 0], an equality that,

combined with (49) and (51), implies that Pf ∗
w
[∑Tw−1

t=0 	(Xt) = 0
]= 1.

To conclude, observe that
∑Tw−1

t=0 	(Xt) ≥ 	(X0) ≥ 0 and
∑Tw−1

t=0 	(Xt) ≥ 	(x)1[Tx <

Tw] ≥ 0, x ∈ S \ {w}, and recall that Pf ∗
w [Tx < Tw] > 0 by Lemma 1(ii), whereas 1 = Pw[X0 =

w]. Combining these relations with the two previous expressions, it follows that 	(·) = 0. As
already mentioned, this completes the proof of part (i). From this point, part (ii) follows via
Remark 2(iii). �

6. Proof of Theorem 1

In this section the main result of the paper is established. Essentially, the approach used
to prove Theorem 1 consists in ‘approximating’ the original model M by a sequence {Mn}
of MDPs satisfying the conditions in Theorem 2. Throughout the remainder of the section
Assumptions 1 and 2, as well as the condition λ < 0, are enforced. The argument relies heavily
on the preliminaries established in Section 5, as well as on Lemma 6. To begin with, suppose
that the cost function C satisfies

C(x, a) ≤ 0, (x, a) ∈K, (56)

let {Fn}n∈N be a sequence of subsets of S such that

Fk is finite, Fk ⊂ Fk+1, k ∈N,
⋃
k∈N

Fk = S, (57)

and define the truncated cost function Cn by

Cn(x, a) := C(x, a)1Fn (x), (x, a) ∈K. (58)

Now, let f0 ∈ F be a fixed stationary policy, and recall that, for each x ∈ S, the action set A(x)
is a compact subspace of the metric space A, so that there exists a sequence of {Dn(x)}n∈N of
subsets of A(x) such that

Dk(x) is finite, Dk(x) ⊂ Dk+1(x), k ∈N, D(x) :=
⋃
k∈N

Dk(x) is dense in A(x). (59)

With this notation, for each n ∈N define the collection {An(x)}x∈S of action sets as follows:

An(x) = Dn(x), x ∈ Fn, An(x) = {f0(x)}, x ∈ S \ Fn. (60)

Next, let
Mn = (S, A, {An(x)}x∈S, Cn, P), n ∈N, (61)

be the MDP obtained from M after replacing the actions sets {A(x)}x∈S and the cost function C
by {An(x)} and Cn, respectively. It follows from (56)–(61) that, for every n ∈N, the conditions
in Theorem 2 are satisfied by Mn, and then there exists a stationary policy fn ∈∏x∈S An(x)
such that, given w ∈ S, the pair

(gn, hn(·)) = (g(fn), hfn,g(fn),w(·)) ∈ (−∞, 0] ×B(S) (62)
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has the following properties:

eλgn+λhn(x) = sup
a∈An(x)

[
eλCn(x,a)

∑
y∈S

px,y(a)eλhn(y)

]
=

= eλCn(x,fn(x))
∑
y∈S

px,y(fn(x))eλhn(y), x ∈ S, (63)

hn(·) ≤ Mw‖Cn − gn‖, hn(w) = 0, −‖C‖ ≤ −‖Cn‖ ≤ gn ≤ 0, (64)

by Lemma 5 and (56). It follows that gn ∈ [−‖C‖, 0] and hn(x)b ∈ (−∞, 2Mw‖C‖], x ∈ S,
n ∈N. Via Cantor’s diagonal method, it is possible to determine a subsequence of (gn, hn(·))
(by notational convenience, still denoted by (gn, hn(·))) which is convergent:

lim
n→∞ gn =: g∗ ∈ [−‖C‖, 0], lim

n→∞ hn(x) =: h∗(x) ∈ [−∞, 2Mw‖C‖], x ∈ S. (65)

The following lemma, using the conditions and definitions in (56)–(65), is the last step before
the proof of Theorem 1.

Lemma 6. The pair (g∗, h∗(·)) in (65) satisfies the following properties.

(i) h∗(·) is a finite function, and

eλg∗+λh∗(x) ≥ sup
a∈A(x)

[
eλC(x,a)

∑
y∈S

px,y(a)eλh∗(y)

]
, x ∈ S, (66)

and then (g∗, h∗(·)) ∈ G̃; see Definition 1 and (24).

(ii) For each x ∈ S,
J∗(x) = g∗ = J∗(x). (67)

Proof. For (i), let x ∈ S be arbitrary but fixed and select nx ∈N such that x ∈ Fk if k ≥ nx.
Next, let d ∈ D(x) be arbitrary, so that there exists n(d) ∈N such that d ∈ Dk(x) for k ≥ n(d). It
follows from (60) that d ∈ An(x) for n ≥ max{nx, n(d)}, and then (63) implies

eλgn+λhn(x) ≥ eλCn(x,d)
∑
y∈S

px,y(d)eλhn(y) = eλC(x,d)
∑
y∈S

px,y(d)eλhn(y), n ≥ max{nx, n(d)},

where the equality is due to the definition of Cn in (58). Taking the inferior limit as n goes to
∞ in this relation, (65) and Fatou’s lemma together lead to

eλg∗+λh∗(x) ≥ eλC(x,d) lim inf
n→∞

∑
y∈S

px,y(d)eλhn(y)

≥ eλC(x,d)
∑
y∈S

px,y(d) lim inf
n→∞ eλhn(y)

= eλC(x,d)
∑
y∈S

px,y(d)eλh∗(y), d ∈ D(x).

Next, given a ∈ A(x), observe that (59) implies that there exists a sequence {dk}k∈N contained
in D(x) such that limk→∞ dk = a; replacing d by dk in the above display and taking the inferior
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limit as k goes to ∞, from Fatou’s lemma and the continuity conditions in Assumption 1, it
follows that

eλg∗+λh∗(x) ≥ lim inf
k→∞ eλC(x,dk)

∑
y∈S

px,y(dk)eλh∗(y)

≥ eλC(x,a)
∑
y∈S

lim inf
k→∞ px,y(dk)eλh∗(y) = eλC(x,a)

∑
y∈S

px,y(a)eλh∗(y).

Since x ∈ S and a ∈ A(x) are arbitrary, it follows that (66) holds. To complete the proof of part
(i) we show that h∗(·) is a finite function. To achieve this goal, pick a stationary policy f ∈ F

and define the sequence {Sn} of subsets of S as follows:

S0 = {w}, Sk = {y ∈ S | pxy(f (x)) > 0 for some x ∈ Sk−1}, k = 1, 2, 3, . . . ,

and notice that S =⋃∞
k=0 Sk, by Lemma 1(ii). Using (65), to show that h∗(·) is finite it is

sufficient to verify that, for each k ∈N,

h∗(x) > −∞ for x ∈ Sk, (68)

a claim that will be proved by induction. Notice that h∗(w) = 0, by (64) and (65), and then the
desired conclusion holds for k = 0. Suppose that (68) is valid for some k ∈N, let ŷ ∈ Sk+1, and
pick x̂ ∈ Sk such that

px̂,ŷ(f (x̂)) > 0. (69)

Now observe that (66) implies that

eλg∗+λh∗(x̂) ≥ eλC(x̂,f (x̂))
∑
y∈S

px̂,y(f (x̂))eλh∗(y) ≥ eλC(x̂,f (x̂))px̂,ŷ(f (x̂))eλh∗(ŷ).

Recalling that λ < 0, the condition h∗(x̂) > −∞ implies that the left-most term in the above
relation is finite, and then (69) allows us to conclude that eλh∗(ŷ) < ∞, so that h∗(ŷ) > −∞;
since ŷ ∈ Sn+1 is arbitrary, it follows that (68) holds with k + 1 instead of k, concluding the
induction argument. As already mentioned, this completes the proof of part (i).

For (ii), for each n ∈N let J∗,n(·) be the superior limit optimal average cost function for
model Mn. In this case, (62) and part (ii) of Theorem 2 yield that gn = J∗,n(·). Moreover, if fn
is the stationary policy in (63), then Theorem 2(ii) applied to model Mn yields

gn = J∗,n(x) = lim
k→∞

1

λk
log

(
E

fn
x

[
exp

{
λ

k−1∑
t=0

Cn(Xt, At)

}])
, x ∈ S;

see (7). Observe now that Cn ≥ C, since the cost function is negative, so that the above display
leads to

gn ≥ lim sup
k→∞

1

λk
log

(
E

fn
x

[
exp

{
λ

k−1∑
t=0

C(Xt, At)

}])

= lim sup
k→∞

1

k
Jk(fn, x) = J(fn, x) ≥ J∗(x), x ∈ S;
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see (8) and (9). From this point, (65) leads to g∗ ≥ J∗(·). Recall now that (g∗, h∗(·)) ∈ G̃, by
Lemma 6(ii), so that g∗ ≤ J∗(·), by Lemma 2(iii). Combining these two expressions with the
inequality J∗(·) ≤ J∗(·) in (12), it follows that J∗(·) = g∗ = J∗(·). �

The proof of the main result is finally presented below.

Proof of Theorem 1. Let λ < 0 be fixed, and suppose that Assumptions 1 and 2 hold. The
proof has been split into two cases.

Case 1:C(x, a) ≤ 0 for every (x, a) ∈K. Let g∗ ∈R and h∗(·) be as in (65). For (i), suppose
that g ∈ G. In this case, (g, h(·)) ∈ G̃ for some function h(·), and then g ≤ J∗(·) by Lemma 2(iii).
Assume that g ≤ J∗(·). Since J∗(·) = g∗, by Lemma 6(ii) it follows that g ≤ g∗, and then λg ≥
λg∗, since λ is negative. Combining this last inequality with (66), and recalling that h∗(·) is a
finite function (by Lemma 6(ii)), it follows that (g, h∗) ∈ G̃, and then g ∈ G; see Definition 1
and (24).

For (ii), since J∗(·) = g∗, by Lemma 6(ii), part (i) implies that g ∈ G ⇐⇒ g ≤ g∗; then
g∗ = sup{g | g ∈ G}, and the desired conclusion follows from equality (67) established in
Lemma 6(ii).

For (iii), since h∗(·) is finite, by Lemma 6(i), and g∗ = sup{g | g ∈ G}, by part (ii), the
conclusion follows from inequality (66) established in Lemma 6(i).

For (iv), consider the model Mn in (61), let (gn, hn(·)) ∈ [−‖C‖, 0] ×B(S), and let fn ∈ F

be as in (62) and (63). It follows from Remark 2(iii) that gn = limk→∞ (1/k)J(n)
k (fn, x), x ∈

S, where J(n)
k (fn, x) is the (λ-)certainty equivalent of the random cost

∑k−1
t=0 Cn(Xt, At) with

respect to P
fn
x , so that, for each initial state x,

gn = lim
k→∞

1

kλ
log

(
E

fn
x

[
exp

{
λ

k−1∑
t=0

Cn(Xt, At)

}])
.

We show that policy fn is ε-optimal if n is large enough. To achieve this goal, using that C ≤ 0,
observe that C ≤ Cn, by (58), and then the above display implies that

gn ≥ lim sup
k→∞

1

kλ
log

(
E

fn
x

[
exp

{
λ

k−1∑
t=0

C(Xt, At)

}])

≥ lim inf
k→∞

1

kλ
log

(
E

fn
x

[
exp

{
λ

k−1∑
t=0

C(Xt, At)

}])
,

i.e. gn ≥ J(fn, x) ≥ J−(fn, x) ≥ J∗(x), x ∈ S, n ∈N; see (7)–(11). Since J∗(·) = g∗, by part (iii),
using that gn → g∗ as n → ∞, pick n∗ ∈N such that g∗ + ε ≥ gn∗ to conclude from the above
display that g∗ + ε ≥ J(fn∗ , ·) ≥ J−(fn∗ , ·) ≥ g∗, so that fn∗ ∈ F is ε-optimal.

Case 2: C ∈B(K). The notation in Lemma 1 and Remark 3 will be used. For (i), consider
the cost function C − ‖C‖, which is nonpositive. Using Remark 3, note that

g ∈ G(C) ⇐⇒ g − ‖C‖ ∈ G(C − ‖C‖)

⇐⇒ g − ‖C‖ ≤ J∗(C − ‖C‖, ·)
⇐⇒ g − ‖C‖ ≤ J∗(C, ·) − ‖C‖,
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where the second equivalence is due to part (i) in Case 1 applied to the cost function C − ‖C‖,
and Lemma 1 was used in the last step. It follows that g ∈ G(C) ⇐⇒ g ≤ J∗(C, ·).

For (ii), an application of part (ii) of Case 1 to the cost function C − ‖C‖ ≤ 0 yields

J∗(C − ‖C‖, ·) = sup{g | g ∈ G(C − ‖C‖)} = J∗(C − ‖C‖, ·),
a relation that, via (13) and (23), leads to J∗(C, ·) = sup{g | g ∈ G(C)} = J∗(C, ·).

For (iii), since C − ‖C‖ ≤ 0, the third part of Case 1 yields that

sup{g | g ∈ G(C − ‖C‖)} ∈ G(C − ‖C‖);

since G(C − ‖C‖) = G(C) − ‖C‖, it follows that sup{g | g ∈ G(C)} ∈ G(C).
For (iv), let ε > 0 be fixed. Applying the fourth part of Case 1 to the cost function

C − ‖C‖ ≤ 0, there exists fε ∈ F such that

sup{g | g ∈ G(C − ‖C‖)} + ε ≥ J(C − ‖C‖, fε, ·)
≥ J−(C − ‖C‖, fε, ·) ≥ sup{g | g ∈ G(C − ‖C‖)},

a relation that, via (13) and (23), leads to g∗ + ε ≥ J(C, fε, ·) ≥ J−(C, fε, ·) ≥ g∗, where g∗ =
sup{g | g ∈ G(C)}, showing that fε is ε-optimal for the cost function C. �

Remark 4. Finally, it is important to point out that the literature on risk-seeking is scarce. The
problem addressed in this manuscript is interesting by itself. The case λ < 0 is associated with
a risk-loving (risk-seeking) controller. A risk-seeking controller is willing to accept greater
economic uncertainty in exchange for higher returns. Using a prospect theory approach, it has
been found that people are risk-averse in the domain of gains but become risk-seeking in the
domain of losses; see, for instance, [22].

7. Concluding remarks

This work has studied Markov decision chains endowed with average cost criteria.
Besides standard continuity–compactness conditions, three essential assumptions determined
the framework of the paper: (i) the simultaneous Doeblin condition holds, (ii) the state space
is communicating under the action of each stationary policy, and (iii) the decision maker driv-
ing the system is risk-seeking. Within this context, a characterization of the optimal average
cost was provided in Theorem 1, extending conclusions in [7] obtained under the condition
that the controller is risk-averse. Another interesting result stated in part (iv) of the main the-
orem is the existence of ε-optimal stationary policies, which was obtained by truncating the
cost function, instead of taking a policy that ‘almost optimizes’ the term within brackets of the
optimality inequality (25). In this direction there is, at least, an interesting question to be ana-
lyzed in the future: Given ε > 0, assume that f ∈ F is derived from the optimality inequality in
such a way that action f (x) is an ε|λ|-maximizer of the logarithm of the term within brackets in
(25), i.e. eλ(g∗+ε)+λh∗(x) ≤ [eλC(x,f (x)) ∑

y∈S px,y(f (x))eλh∗(y)
]

for every x ∈ S. With this notation,
establishing that f is ε-optimal is an interesting problem.
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