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Overconvergent Families of Siegel-Hilbert
Modular Forms

Chung Pang Mok and Fucheng Tan

Abstract. 'We construct one-parameter families of overconvergent Siegel-Hilbert modular forms. This
result has applications to the construction of Galois representations for automorphic forms of non-
cohomological weights.

1 Introduction

The study of p-adic families of automorphic forms has been carried out in many
works. In the case of elliptic modular forms, the overconvergent modular eigen-
forms of finite slope (i.e., with non-zero Hecke eigenvalue at p) are interpolated to be
points on a rigid analytic curve, which is known as the Coleman—Mazur eigencurve
[CM]. Before this seminal work, the family of ordinary eigenforms was obtained by
Hida [Hi86].

Among all the approaches to the construction of eigenvarieties for more general
algebraic groups, the work of Kisin—Lai [KL] on overconvergent Hilbert modular
forms is most closely related to ours. Their method is a generalization of that of
Coleman-Mazur. In both cases, the key point for interpolating modular forms is
the complete continuity (cf. [Co, p. 425] for definition) of the Atkin—Lehner operator
on certain spaces of overconvergent forms. In the case of elliptic modular forms,
Coleman—Mazur interpolate modular forms by twisting by p-adic analytic families
of Eisenstein series. However, in the more general (Siegel-)Hilbert modular case such
a theory of Eisenstein series is not yet available. Instead, we lift (a certain power of)
the Hasse invariant in characteristic p to be a global section of certain automorphic
line bundle over the integral model of the Shimura variety.

We would like to mention certain differences between our method and that
of [KL], which are mainly caused by the generality of the Siegel-Hilbert moduli
space.

In the Hilbert modular case of [KL], they glue the toroidal compactfication of the
Rapoport model [Ra] with the Deligne—Pappas model [DP], because the Rapoport
model may not be proper at the places which are ramified in the totally real field.
Fortunately, Rapoport’s toroidal compactification can be used because the Lie alge-
bra condition, which causes non-properness at finite distance, is automatic in the
boundary. In the Siegel-Hilbert case, we have to do more to take care of the rami-
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fied places. There exists the canonical integral model of Pappas—Rapoport [PR] in
the Siegel-Hilbert modular case, which has a moduli interpretation. Its toroidal
compactifications are, however, not completely understood. Fortunately, the (par-
tial) toroidal compactifications and minimal compactification of the ordinary locus
is constructed in [Lal2] successfully, which will be enough for our use.

Furthermore, we follow the idea of Hida [Hi02] to form the formal Igusa tower
over the formal completion of the (compactified) moduli space with level structure
away from p, instead of using the “unramified I'oo(Np") cusps” in [KL]. This seems
more convenient in the general Siegel-Hilbert case.

Write G = Reso,/z GSp,,. The moduli space above is actually for its subgroup
G =G X Resg/q G G- Finally, with these strategies and results, we construct one-
dimensional families of eigenforms on G/, for any totally real field F and ¢ > 1. More
precisely, we obtain, for each classical weight «, a reduced rigid analytic curve &,,
whose points are in one-to-one correspondence with systems of Hecke eigenvalues of
overconvergent automorphic forms on G', whose weights “differ” from that of x by
parallel weights. One of the key properties of the rigid curve €, is that the canonical
map to the weight space given by weights of modular forms is, locally in the domain,
finite flat. We refer the reader to Theorem 4.13 for more details.

Essentially due to the (local) finite flatness of the weight map on &, (and the ar-
gument in Section 4.4), we have the following theorem.

Theorem 1.1 (See Theorem 4.16) Let f be a (classical) Siegel-Hilbert modular
eigenform on G = Reso, jz GSp,, of weight k with some tame level and level p" at p.
For any positive integers t with large enough p-adic valuation, there exist Siegel-Hilbert
modular eigenforms f; of the same level and of varying weights, whose Hecke eigenvalues
converge p-adically to that of f when t goes to zero p-adically.

This theorem is sufficient for some applications. For example, Theorem 1.1 is one
of the main ingredients for attaching Galois representations to automorphic forms 7
on GL, over arbitrary CM fields, as seen in [Mo]. More precisely, in order to con-
struct such a 2-dimensional representation, we first lift 7 to an automorphic form IT
(of non-cohomological type!) on GSp,(Ar). Then the Galois representation pyy as-
sociated to II is obtained by interpolating Galois representations associated to forms
on GSp,(Ar) of cohomological type, with the family of cohomological forms sup-
plied by Theorem 1.1. As is mentioned in [Mo], the use of p-adic analytic family
of automorphic forms, compared to the use of congruence relations between them,
has the advantage that this (less elementary) method allows us to prove local-global
compatibility.

We would like to mention that the eigenvariety for Siegel cuspidal eigenforms (not
necessarily with parallel weights), i.e., for the group GSp,, q, was recently devel-
oped in [AIP]. More recently, the eigenvariety for the group GL,,r was developed
in [AIP2].

The paper is organized as follows.

In Section 2 we recall the results on integral models of PEL Shimura varieties
and their compactifications. In the next section, we use the idea of Hida to form
the formal Igusa tower. In the last section, we form the spaces of overconvergent
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Siegel-Hilbert modular eigenforms and then prove that the Uj,)-operator is com-
pletely continuous on the spaces. Finally by the machinery in [CM], we construct the
rigid curves interpolating these overconvergent forms, and then show Theorem 1.1.

Notation

e Fis a totally real field of degree d over Q, and O = Op is the ring of integers. We
denote by A = Ay the ring of adeles of F, and by Ay the ring of finite adeles of F.

e For a maximal torus T = T of a reductive group G over Z, Nm: Resy T — T
is the norm map, i.e., for any ring R, Nm(R): T(O ®z R) — T(R) is given by the
norm Ng/q on F.

* p > 2isa fixed rational prime.

e IfK/ Q, is a finite extension, Kj is the maximal unramified extension of Q, in K,
and [K : Ky] = e. Qp is a fixed algebraic closure of K, and C, is the completion
of Q, for the p-adic topology.

e Let H C G(Ay) denote an open compact subgroup which is of the form H =
H,H?, where H, C G(Q;), H? C G(A?), for A'} the ring of finite adeles over F
with trivial p-component.

2 Siegel-Hilbert Moduli Spaces
2.1 PEL Datum
2.1.1 The General Integral PEL Data

Recall the (integral) PEL datum (Og, *, L, 1, h), whose rational part (B, *, Lq, ¥q, h)
can give rise to a Shimura datum by 4.1 [Ko].

¢ Bis a finite dimensional semisimple Q-algebra whose center is denoted by F, and

is equipped with a positive involution *:

(ab)* =b*a*,b** =b, Va,b€ B,

Op is an order of B stabilized by the involution above.
e (L,) is a symplectic (Op, *)-module over Z, i.e., L is a finite free Z-module carry-

ing an alternating form ¢: L x L — Z, such that

Y(bx,y) = ¥(x,b*y), Vx,y € L,be Op.
Let G be the group over Z so that for any Z-algebra R,

G(R) = {g € GLo,,(Lr) | 1(gx, gy) = v(Q)¥(x, ), ¥(g) € R}
e Let
Ijlt C— End(OB)R(LR)
be an R-algebra homomorphism that gives a Hodge structure of type (1,0), (0, 1)
on Lg, such that w(x, h(v/=1) y) is a symmetric positive definite bilinear form
on Lg. The restriction /1|« can be viewed as a morphism of R-algebraic groups

h: Resc/r Gmc — Gr-
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The action of h gives a decomposition
(2.1.1) Lc=Voc® Vi,

where h acts on the first factor by the character z — Z and on the second one by
z +— z. The Shimura field is then by definition

E= F[Trc(b|V0"C), b e B].
The decomposition (2.1.1) is then defined over the subfield E of C.

2.1.2 PEL Data for Symplectic Groups

Let B = F be a totally real field of degree d. Let Oy = O and * = Id be the trivial
involution. Let L be a finite free Z-module of rank 2dg equipped with an O-module
structure, together with the standard symplectic form

p:LxL—=0
given by the antisymmetric matrix | = ( I i ) . Set
Y =Tro z 0.
The C-algebra homomorphism £ is

a+bis (Mg ~blag)
bIdg algg

We have the PEL datum (O,1d, L, v, h = il|c>< ). In this case
G = Resg,z GSp,,;

where GSp,, is the split reductive group of symplectic similitudes respecting the ma-
trix J.
The Shimura field in this case is E = Q.

2.2 The Siegel-Hilbert Moduli Space over the Shimura Field

Keep the Shimura datum (0O, Id, L, v, h) as above. Let H C G(Z) be an open compact
subgroup. We recall the moduli problem from [Ko, Section 5] and [La08, 1.4.1.4].
Let My be the functor that assigns to a Q-scheme S the isomorphism classes of
the tuples (A, i, A, apy) of one of the following kinds:
¢ Aisan abelian scheme over S of relative dimension dg, equipped with an O-action
called the real multiplication: i: O — Endg(A).
¢ The requirement of Kottwitz determinant condition

det(bLie A) = det(b|Vo), Vb € F

as polynomial functions, for which both sides of the equality are considered as mor-
phisms of S-schemes (cf. [Ko, Section 5] for details).

* A\: A — AV isapolarization. Recall that a symmetric homomorphism A — AV is
a polarization if (locally for the étale topology) it comes from a line bundle over A
that is ample over S (cf. [GIT, 6.2]).

https://doi.org/10.4153/CJM-2014-017-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-017-9

Overconvergent Families of Siegel-Hilbert Modular Forms 897

* ay is an H-level structure of type (L;, ¢) analogous to that defined in Section 2.4.1
(¢f. [La08, 1.3.7.6] for more details).

The functor My is represented by a separated smooth algebraic stack of finite
type over E = Q, by Artin’s theory and Grothendieck’s theory of Hilbert schemes.
We denote the moduli stack by My again. If H is neat, then My is a smooth quasi-
projective scheme over Q, by [GIT] (and the theory of Hilbert schemes). As a special
case of the construction of My, we have the functor My, with the level structure oy
being the prime to p level structure H?.

We denote the universal abelian scheme over My by A, and denote by w the pull-
back along the unit section of the relative differentials 2, M

Remark 2.1 Let X denote the G(R)-conjugacy classes of 1. The complex manifold
G(Q)\X x G(A™)/H descends to a quasi-projective scheme Shy over Q, which is
commonly called the Shimura variety. We have a canonical open and closed immer-
sion

Shy — [My]

of the Shimura variety into the coarse moduli space of the algebraic stack M. The
moduli [Mp] is in fact the Shimura variety for the group G' = G X Resg/q G Gm> the
subgroup of G whose determinants lie in Gy,.

2.3 Integral Models and Compactifications

In [Lal2], Lan constructs a normal and flat algebraic stack My over Z ;) that comes
with a canonical isomorphism

My XSpecZ(p) SpecQ ~ Mpy.

We recall the construction briefly.

We first find an auxiliary Shimura datum that can provide the canonical inte-
gral model and toroidal compactification. In fact, we can embed the Z-module L
into another finite free Z-module L, which comes with an alternating pairing ¢«
whose restriction to L is 1. The R-algebra homomorphism  then induces another R-
algebra homomorphism Faux, Whose restriction to C* is denoted by haux. Moreover,
we have a subring O,,, C O for which the embedding L < L,y is O,ux-linear. The
point is that, for the auxiliary Shimura datum (O,yy, Id, Laux, Yaux, Paux)> the prime p
is a good prime to which the main results of [La08] apply.

Now we have an induced homomorphism of algebraic groups over Z,

t: G — Guux,

where the second group is defined by the auxiliary Shimura datum in the same way
as before. The auxiliary Shimura datum provides a moduli stack MGa“X(Zp), which is

separated smooth and of finite type over Z(,). By the fact that p is a good prime for
M, (2r)> we can show that there is a canonical isomorphism

M2 % Gun(z,) = M) @2 Q-
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More generally, for any open compact subgroup Hyux = HfuxGauX(Zp) C Gaux(2)
such that H? is mapped to Ha,, under the morphism t: G(ZP) — G, (ZF), we have
similarly a moduli stack M for which p is a good prime and a morphism

(2.3.1) My = My, ©z, Q,

compatible with the map between the two PEL data, which is finite on the coarse
moduli spaces.

Proposition 2.2 ([Lal2, Proposition 2.2.1.1]) The normalization ff[H of MHfux
in My is a normal flat algebraic stack over Z,y whose generic fibre is canonically iso-
morphic to My. The normalization of [Myy ] in [Mp] under the map of coarse moduli
spaces induced by (2.3.1) is canonically isomorphic to (My), which is a quasi-projective
normal flat scheme over Z ;). Hence My ~ [My] is a scheme if H is neat.

From now on, we always assume H is neat.
Let MY" be the toroidal compactification of My for a fixed admissible smooth
rational polyhedral cone decomposition datum ¥ for My.

Proposition 2.3 ([Lal2, Propositions 2.2.1.2,2.2.2.1, and 2.2.2.3])

(i) Thereis an admissible smooth rational polyhedral cone decomposition datum ¥,y
for Myp  (hence the toroidal compactification Mg’dﬁ of Myp ), which is compat-
ible with ¥ in a natural way, and induces a canonical morphism

(23.2) Mg — Mg ®z, Q,

which is compatible with the stratifications on both sides (in particular, extending
(2.3.1)) and the pullback of universal objects.

(ii) Let MB" and M;“Id}," be the corresponding minimal compactifications. Then the
morphism (2.3.2) induces a natural morphism

min min
ME" — M ®z,, Q,
Hjux (p)

which is compatible with the stratifications on both sides. The normalization ﬁﬂi“
of MI“E,:‘ in MP" is a projective normal flat scheme over Z,y whose generic fibre
is canonically isomorphic to NUI™, It contains My as an open dense subscheme.

(iii) In the case that 3 is projective, there is an integral model JV[}‘;r for the toroidal com-
pactication MY, which is by construction the normalization of the blow-up of cer-
tain coherent ideal sheaf on f/[‘H“i“. It is a projective normal flat scheme over Zy),
such that MI* ®z, Q ~ MY" in a canonical way. If H' C H is an open com-
pact subgroup, then there is a canonical map ff[;‘ﬁ — M}gr, compatible with the
canonical map My — Mpy.

For the integral model Mgy with prime to p level, we have the following stronger
result.
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Theorem 2.4 ([PR]) The canonical map j'/[:Hp — My isa closed embedding.

In particular, we have a moduli interpretation for M, with PEL data as part of the
moduli problem.

Proof By Theorem 12.2 of [PR], the flat scheme-theoretic image in ﬁHP of the

generic fibre Mpr is normal, hence is canonically isomorphic to M. In other
words, the integral model My defined above coincides with the canonical integral
model of Pappas—Rapoport [PR].

For the last claim, the reader is referred to [PR, Section 15] for more details. W

2.4 Ordinary Loci and Partial Compactifications

2.4.1 Level Structures Prime to p

We recall certain results from [Lal2, Chapter 3]. Let S be a scheme over Z(,,). Let A be
an abelian scheme over S, equipped with polarization A and O-endomorphism i as
before. Let H”? C G(Z?) be an open compact. Let N > 4 be a natural number prime
to p such that H? D U(N), the principal mod N congruence subgroup. A principal
level N structure of (A, A, i) of type (L,,, %) is the pair (ay, vy) defined as follows:

e ay: L/NL = A[NT] is an O-linear isomorphism of group schemes over S, such
that

(i)  the symplectic pairing L/NL x L/NL — Z/NZ and the A\-Weil pairing
A[N] x A[N] — py induced by the polarization A are compatible for a

chosen isomorphism of group schemes vy: Z/NZ — puy with respect to a
fixed primitive N-th root of unity (y.
(ii) oy is symplectic liftable: there is a tower of finite étale surjections

(Sm = Sn = S)Nmprm
and O-linear isomorphisms ays: L/ML = A[M] with respect to an isomor-
phism vy : Z/MZ — iy such that for any valid indices M’|M",
(O[M/, Z/M/) = (OéM//7 VM//) modM'.

(This condition is required so that ay lifts, at any geometric point s of S, to an
O-linear symplectic isomorphism between L;, and the Tate module of A.)

Consider all natural numbers N such that p { N and H? D> U(N). A level H?
structure of (A, A, 1) of type (Ly,, %) is a collection of H? /U (N)-orbits of principal
level N structures (ay, vn) for all N as above.

2.4.2 Ordinary Level Structures at p

Let
0=D'C D' C D! =1l

be a filtration of O ®z Z,-modules, such that Gry' := D~!/D’ is torsion-free as a
Z,-module, and under the pairing ¢) D" is totally isotropic and is its own annihilator.
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Such a filtration determines a filtration
0= DVJ C D\/,O C D\/,—l — L\Z/P
on the dual lattice L\Z/p. We have the natural map
<p]03: DY — pVO
whose reduction mod p” is denoted by @%7 o
Let Pp C Gz, be the stabilizer of D. Let Mp be the group over Z,, whose R-
points, for any Z,-algebra R, are (g,¢) € GLog,r(Grp ®z,R) x Gp(R) such that

Y(gx,gy) = cb(x, y). We denote by Up the kernel of the natural morphism from Pp,
to Mp. Now for any integer n € Z>, we set

—1
Upo(p") = (G(Zy) = G(Z/p"Z))  Pp(Z/p"Z),
—1
UR(p") = (G(Z,) = G(Z/p"Z))  Up(Z/p"Z).

Let Sbe ascheme over Z. Let A be an abelian scheme together with a polarization A
and an O-endomorphism i. An ordinary principal level p” structure of (A, A, i) of
type (Lz,, v, D) is the following data:

e An O-linear homomorphism agn: (D°/p"D%)™ult — A[p"] of group schemes
over S.

* An O-linear homomorphism a;,/,ioz (DVO/prDV-Oymult s AV[p"] of group
schemes over S.

* Asection vy of (Z/p"Z)* =~ Isomg(fupn, fipr) so that the homomorphism of mul-
tiplicative group schemes

Vpn © (WOD,p")mu“: (DO/anO)mult N (DV,O/an\/.O)mult

is compatible with A under oz(;,n and OL}\)/n"O, and such that the scheme theoretic
images Im(agn) and Im(al\,/,:o) nullify each other under the A-Weil pairing on
Alp"] x AV [p"].
* The requirement that o, is symplectic liftable: there is a tower of quasi-finite étale
surjections
(Spn’ - Sp" - S)n’Zn

and triples (ozg,,, , oz;/,j/o sVt ) as above such that for any n” > #’,

0 V.0 ! 0 V.0
(CYP”// POt Vp,w) mod p" = (ap”, , ozpn’, 7Vpn/).

Let H, C G(Z,) be an open compact subgroup such that Ugf‘ll(p”) C H, C
Upo(p") for some integer n > 0. An ordinary level H, structure of (A, A, i) of

type (Lz,, %, D) is an H,/ UEfill( p")-orbit of ordinary principal level p” structure of

(A, A, i) of type (Lg,, 9, D).
2.4.3 Integral Models with Ordinary Level Structures

Let H = H’H, C G(Z) be an open compact subgroup such that U},’f‘}(p”) CH, C

Upo(p") for some integer n > 0. Let MOrna¥e he the functor that assigns to a Zp)-
scheme § the isomorphism classes of the tuples (A, i, A, anr, apy,) as follows:
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e A is an abelian scheme over S of relative dimension dg, equipped with an O-
endomorphism i: O — Endg(A).

* A: A — AV isa polarization.

* oy is alevel HY structure of type (Lj,, ).

* agp, is alevel H, structure of type (Lz,, ¢, D).

The functor MM is represented by a scheme of finite type over Z -

Let ry be the fixed nonnegative integer as in [Lal2] that is determined by the PEL
data and the filtration D of Lz,. We can check that, over any Q[( ]-scheme S, there
is a natural assignment from the level H structures of (A, i, \)s to the pairs of H?-
level structure of type (Ly,,v) and H,-level structure of type (Lz,, ), which is in
fact injective. As a consequence, we have an open and closed immersion

My ®q QlCyn] — M ®7 Q[¢yn ]

whose image, which is an open and closed subscheme of M3*™* @, Q[Cpn ], is
denoted by M.

Proposition 2.5 ([Lal2, Theorem 3.4.2.5]) The normalization JT/E}’}d of Mgd’naive

in M under the natural morphism M4 — M4 is o scheme smooth quasi-

projective separated of finite type over Z[(pu], which is an open subscheme of
My Q7 Z(P)[CP’” ].

2.4.4 Partial Compactifications of Ordinary Loci

Keep the data as before.

Theorem 2.6 (Theorem 5.2.1.1, [Lal2]) There is a scheme Jﬁfjd’tor, quasi-projective

smooth separated of finite type over Zp)[(pm ], containing JT/E}’;d as an open dense sub-

scheme. The universal tuple (A, i, \, o, apg,) on N extends to MO, The bound-

cord.t >, . . . .. . .
ary My O \MU is a relative Cartier divisor with normal crossing,.

We have the Hodge line bundle (detw)M(,H,d over M4, and (detw) ypoor, its ex-
H

- S ord.t
tension to My ~". Form

—

Negpdmin = Proj,,  T(ME™, (detw)’ i) -
> H

This is in general not projective, as the partial toroidal compactification f/[zrd’to' is
not proper.

Theorem 2.7 ([Lal2, Theorem 6.2.1.1]) There exists a canonical proper morphism
eord,t ~ord,mi
lei}' or H M(I)_Il' mm.

The scheme M*™™ is quasi-projective normal and flat over Z(y) [y |, which contains
M as an open dense subscheme.
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Remark 2.8 For the moduli space My, with prime to p level, the integral model
Mgyt is simply the ordinary locus of M ®z,,) Z(p) [prn |. It then comes with a moduli
interpretation, by Theorem 2.4.

2.5 Hecke Correspondences

2.5.1 The Double-coset Hecke Algebra

Let g be a prime number and v | g a place in F. For the completion F, of F at the
place v, we denote by O, the integer ring and fix a uniformizer w,. We define the
spherical Hecke algebra FCP" for GSp,, (Fy) with coefficients in Z to be the algebra of
Z-valued functions on Gszg(Fv) that are bi-invariant under Gszg(Ov). It is gener-
ated by the characteristic functions on the following double cosets:

Ig
Tv,l = Gsng(ov) ( wvlg) Gsng(ov);

Ig—i+1
vai—l
wglg—ﬁl
WVI,',1

Tv,i = Gsng(ov)

Sy = @, GSp,,(Oy).
2.5.2 Weights and Automorphic Sheaves

Through the end of this section, let M denote MHp, f/[?jf, or My.

We again denote the universal abelian scheme over M by A, and denote by w the
pullback of QY /v along the unit section. We remark that w is locally free over Oy,
but is not locally free as an Oyt ®z Op-module if p is ramified in F, for the integral
models.

We only give the construction of automorphic sheaves of My, and those of M =
ﬁ[Hp when p is a good prime for the moduli, so that w is locally free over Oy ®z Op.
The latter is enough for the auxiliary moduli. The automorphic sheaves over M
and fftj’}ﬁ in the general case are then defined by restriction via the closed immersion
in Theorem 2.4 and the inclusion f/[%‘,l C JV/[Hp ®z,) Z(p)[Cprn ]. We refer the reader
to [Lal2, Chapter 8] for more details, including the cases with level structure at p.

Let Tg/o be the standard diagonal maximal torus of GSp,, . Putting G =
Resy GSpyg/ and T = Resy Ty/0, take the standard Borel B of G with unipotent
radical U and identify T = B/U. Let M be the Levi of the standard Siegel parabolic
of G. ThenM D T.

Consider a character

k: T — Gy

We may regard  as a character of BN M that is trivial on U N M. The character & is
called dominant with respect to B, if the induced representation Indy-,, £~ inside
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the rational functions of the scheme (M/U N M) is non-zero. The Bruhat-Tits de-
composition shows that the subspace (Indjy,, x~1)Y™ is one-dimensional, and T
acts on a generator by —wyk, where wy is the longest element in the Weyl group (with
respect to T). The M-translation of the generator generates a sub-representation
pt C Indyl,, k71,

where an element m in the standard Levi M acts as m - f(x) = f(m~'x). The R-
dual p, of p} is called the rational representation of highest weight r, which has the
universal property that for any M-module X,

Homy(px, X) ~ Homy (X", py) ~ Homp(X", —x) ~ Homg(k, X).
We define the automorphic sheaf of weight x on M to be the contraction product
W = IsomM(Ogﬁ[,w) xMp,..

that is, the quotient of the product Isomy (O?\f[, w) X px by the equivalence relation
(pom,w) ~ (p,m-w), forp € IsomM(O?\ﬁ,w), méE Mandw € p,.

The construction above then provides the automorphic sheaves on My and the
ones on the auxiliary moduli in the integral cases, and then those on the integral
models M = M, fftj’};i without the assumption that p is a good prime for the
moduli problems. We always denote the automorphic sheaves over M by the same
symbol w".

By the results of [Lal2, Chapter 8], the automorphic sheaf w” extends from the
moduli schemes to the total (resp. partial) compactifications in a canonical way,
which is compatible with the restrictions to the ordinary loci of the total objects.

2.5.3 Geometric Correspondences

As in the previous section, we may assume p is a good prime for the moduli M.

Let a be an ideal of O. Let M* be the moduli stack of isogenies between objects
in M, that is, the algebraic stack representing the functor M* that assigns to any base
scheme S over Q (resp. Z(;), resp. Z(,)[(pn ]) the category in groupoids in which an
object is an isogeny

f:A—B
between two polarized abelian schemes with endomorphisms and level structures
(A,ia, Aa) and (B,ip, Ag), whose kernel is (étale locally) O-linearly isomorphic to
(0/a0)8 and intersects with (the image of) the level structure only along the unit
section, is compatible with the O-endomorphisms, and respects the polarizations on
both sides.

Here we obtain the representability of the functor M* by the use of the fact that M
is representable and by the theory of Hilbert schemes (¢f. [FC, p. 251]). In particular,
since H is assumed to be neat, the functor M* is represented by a quasi-projective
scheme over Q (resp. Z,), resp. Z,) [y ]), which is denoted by the same symbol, as
usual. The universal isogeny over M* is denoted by J°. Assigning such an isogeny to
its source (resp. target), we have two natural projections

2,0
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whose restrictions to any connected component Z of M* are proper, by the valuative
criterion.
In the case that p is invertible in the base scheme S, the two projections

Tigpy: MP =M, i=1,2

are finite étale. In this case, for v | g a prime ideal in O, we have the bijection between
the connected components of M" and the double cosets 7, in the spherical Hecke

algebra HCP". Denote the corresponding connected component of M" by M, over
which the universal isogeny is said to be of type ,. We have the two projections

Tiy: M =M, i=1,2,
of type ,.

For M = M, My over a scheme S in characteristic p, and v|p a prime ideal
in O, we again have the connected component of M and the two projections

iyt M =M, i=1,2,
of type y,. (We refer the reader to [FC, Chapter VII] for details on the facts above.)
In the two cases above, consider the commutative diagram
Je — A
| /|
Z=M — M.

Over the base S, we have a natural map of O ®z O -torsors

T3 = T o) = forlhnyz = for (01 yn) — o,
hence the induced map
0: ﬂ;"aw” — T W
Applying 7, o« and composing with the trace map
Tr: ety " — W",
we obtain the map

% K 1 ax0 % Tr "
TaxT) (W —> T Ty W —> W,

Taking global sections and composing with the natural map
H Mg, w™) — HO(MRJTLQ*W;’(ILUK),
we get the desired endomorphism
To: H' (Mg, w") — H' (Mg, w"),

which will be denoted by U,) in the case a = (p). We remark that the Hecke opera-
tor U(,) corresponds to the product of the double cosets T, v|p.

We have the same construction for Z = M, the connected component of M" of
type 7. In these cases, the Hecke operators corresponding to the double cosets T),;
(resp. S,) will be denoted by T,,; (resp. S,) again.
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2.6 Hasse Invariants and Liftings
2.6.1 Hasse Invariants on Abelian Schemes in Characteristic p
Let A be an abelian scheme over S, a scheme in characteristic p. We have AP the

pullback of A — S via the absolute Frobenius Frobg on S, and Vas: AP 5 A the
Verschiebung isogeny. The latter then induces the map

Cays: Q/Ia/s — Q/I\(P)/S ~ Frobg Q}VS,
whose highest exterior power gives
Cass: detwyss — (detwA/5)®p,
hence a section h € H(A, (deEwA/S)®<p_1)) . Applying this to the universal abelian
scheme on the special fibre of My, we then have a global section
h € H(Vus g, , (detw)®P1)

which is known as the Hasse invariant of the moduli space. We have its extensions
to M and MP", and denote them by h again. The reader is referred to [Lal2,
Section 6.3] for more details.

Remark 2.9 For A/S an abelian scheme of dimension #, the Hasse invariant h(A)
is non-vanishing if and only if A is ordinary, which means that A[p] has p" elements
at every geometric point of S.

Lemma 2.10  Recall the notation from Section 2.5.3. The natural map of sheaves on
(M )k, (resp. (M}}p)pl,) with p coprime to a (resp. v)
0: 75 (detw)®P~! — 7 (detw)®P!
satisfies
O(msh) = 7 h.
Proof This follows from the functoriality of the Cartier operator.
Let R be an F,-algebra. Note that
O(msh)(A — B,v,v) = h(B,V'), (n{h)(A — B,v,V') = h(A,v),
where v (resp. V') is a chosen basis of H°(A, Q}VR) (resp. H(B, QJIS/R)) so that
75 (V') = v. Thus we only need to show h(B,v') = h(A,v).
On the other hand, writing ﬂ'gp ) as the pullback of 7, via Frobg, we have
h(B,V') Frobg(detv) = h(B, V) Froby (3 (detv')) = h(B,v)mi"* Frobj(detv')
= wép)* (h(B,V') Froby(detv)) = ﬂép)* (Cp/r(detv)))
= GA/R(TI';(detV/)) ,

where the last equality is obtained by the étaleness of the projection m,. Moreover,
we have

GA/R(W;(det‘/)) = Ca/r(detv) = h(A,v) Froby(detv),
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which, combined with the chain of equalities above, gives
h(B,v') = h(A,v),

as desired. [ |

2.6.2 Lifting Hasse Invariants to Characteristic Zero

Consider the Hasse invariant
h € H (MBI, , (detw)®P71).
Since the line bundle (detw)®?~! on (J_\}[E},“)FP is ample, for sufficiently large inte-

ger k the line bundle (det w)®*P~Y is very ample.

Proposition 2.11 For k € Z> big enough, the section
Woe ( (MEH)FP, (detw)®(17—l)k)

lifts to a section
hk € HO (VR (detw)®(P—F) .

Proof It is standard to show by Serre vanishing that H' ( M, (detw)®?~1%) =0
when k is sufficiently large, which in turn gives the surjectivity of

HO(JY/[E;H7 (detw)®(p71)k) N HO((J_V’[E}P)FP7 (detw)®(pfl)k). -

From now on, we fix such a lift as in Proposition 2.11, E := h*, such that ko > 0

and p 1 k.

3 Analytification of Siegel-Hilbert moduli schemes
3.1 Preliminary

We recall certain definitions and results from [KL] and [Lii], which will be applied to
the rigid analytifications of the Siegel-Hilbert moduli schemes, as well as their formal
models and the automorphic sheaves.

3.1.1 Relative Compactness

Let K be a finite extension of Q, and O the ring of integers. For X a formal scheme
over Spf Ok, we denote by X' the rigid analytic space associated to it, and by X, its
special fibre. For !l C X an admissible open, we let ][ denote the tube of 11, i.e.,
the pre-image in X"8 of the 1, under the natural specialization X — X, which is
surjective. If f: X — Y is morphism of rigid spaces, we call a morphism of zw-adic
Ok-flat formal schemes f: X — 9) a formal model of f, if f is the rigidification of f.

Definition 3.1 Let f: X — V be a quasi-compact morphism of rigid analytic
spaces, and U C X a quasi-compact (relative to X) admissible open. We say U is
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relatively compact in X over V, denoted by
U ey X,

if there exists an admissible covering of quasi-compact subsets {V;} of V' such that
locally (over each V;) there is a closed V -immersion of X into an #-dimensional unit
ball D}, (1) under which U maps into a ball D}, (¢) for some € < 1.

IfV = SpK, we simply write U €y XasU € X.

The notion of relative compactness in Definition 3.1 is independent of the
choice of covering {V;}, essentially by Raynaud’s theorem that the category of
quasi-compact rigid spaces is equivalent to that of quasi-compact admissible formal
schemes localized by admissible blow-ups.

Lemma 3.2 ([KL,2.1.8]) Leti:Y < Y’ and j: X < X' be admissible open inclu-
sions, all of which are quasi-compact rigid spaces over the quasi-compact rigid space V,
and f:Y' — X' be a proper morphism. Suppose we have the following Cartesian dia-
gram

y —L o x

b
vy —L o x
and suppose X €y X'. ThenY €y Y'.

3.1.2 Overconvergence

Let X be a quasi-compact rigid space over K, with a formal model X. LetD C X,
be a Cartier divisor. Choose a finite covering {;};—1 ., of X, so that for any i the
ideal of Dy, is generated by a single section h; € Og . Choose for each h; a lifting

h; € T(X, 0g). Forany r € (|p|"/¢, 1], define

X(r)= U {xeX||hl >r},
1<i<n

which is independent of the choice of A;.

Proposition 3.3 ([KL,2.3.2]) IfX(1) €g X for X' a quasi-compact admissible open
of X, then for any r close enough to 1 we have X(r) C X'.

3.2 Lifting Frobenius

Let K be a finite extension of Q,. Let X be a scheme that is locally of finite type over
Ok, and X the formal completion of X along its special fiber. Denote by X' the rigid
fibre of X via Raynaud’s functor.
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3.2.1 Passing to the Rigid Analytic Setting

ord, min

We glue My ®z,) Z(p)[Cpn ] with M?;f O (resp. ff[m ) and denote the resulting
scheme by My (resp. Mp).

Let My, (resp. My») be the formal completion of M}, (resp. Mys) along the
special fiber over p. The same procedure of completion along the special fibre gives
the universal semi-abelian scheme

Si[ — S)j’EHp .
Combining with rigidification, we get the universal semi-abelian scheme
Arie 5 Pe.

Take iy to be the open formal subscheme of M7;, whose points are in My», which
is hence equipped with the universal object

A= Q_Ug)gm, — EUEHp.

Set . _ ‘
Vi = Myt N (M),

with (MHp)gi the rigid space associated to the Qp-scheme (Mpr)q,, which then
comes with the restriction

i i rig
Aris — erlg|9ﬁ:%’ — EIRHP'

By adding the superscript ord, we have the analogous construction and notation
for the ordinary locus.

3.2.2 Canonical Subgroup and Frobenius

The complement D of the ordinary locus of the special fibre (M) of My is a
Cartier divisor, which is the vanishing locus of the Hasse invariant /i, by Theorems 2.4
and 2.6. We apply the construction in Section 3.1.2 to X = J\_/[E%, and then have for
r € (|p|/¢, 1] the quasi-compact admissible opens iﬁtg%, (r) C M?ﬁ In particular, we
see by definition that fﬁigg;, (1) = Eﬂigf'rig.

It is elementary to check by Definition 3.1 and [Lii, Corollary 5.11] that, for r, s €
(|p|'/e, 1) with s < r,

(3.2.1) M (r) € ME(s)
and . '
MOrSE € IMTE (1),
We have the following result from [Fa] (cf. [AIP, 4.1.3] for extension to semi-
abelian schemes.)

Theorem 3.4 ([Fa, Theorem 6]) For each n € Z>y and r suﬁﬁci@ntly close to 1
(depending on n), there is a canonical subgroup of level n 3(,(r) C A8 [ p"] the p-
divisible group G = A"8[p>°] over M3 (r), which is locally free of rank p® over
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Op, and whose restriction to the ordinary locus 9Ji?;f " is the multiplicative subgroup

QIrig[pn]mult C erig[pn]'

Moreover, the level-one canonical subgroup 3, (r) is the kernel of the Frobenius on
G, and for any 1 < m < n, H,(r) /3, (r) is the canonical subgroup of AE[ p"] /H,, ()
of level n — m.

The multiplicative subgroup A[p"]™ ! C A[p"] is a finite flat group scheme of
order p"¥. We have, by the proof of [Ka, 1.11.6], that /[ p"]™" gives an element
in M9'd. We thus have a canonical map

@ My — Mps, A A/ A[p" ™,

Proposition 3.5 Ifris close enough to 1, then the morphism o induces the following
morphism, which is finite flat of degree p"®s:

2(r): DB (r) — ME ("),

Proof We have the map p": Mord — MoK defined by A +— A/A[p"]™ X, and then
the map @™ ¢: M1 —y M4 induced by the first one on the rigid fibre.

The claim then follows from the argument in the proof of [KL, 3.1.7], together
with the observation on abelian schemes in [Ka, 1.11.4]. [ |

Corollary 3.6  For r sufficiently close to 1, the sheaf U8 p"] /3, () is finite flat.

Proof This is by Proposition 3.5. ]

3.3 The Formal Igusa Tower

Following the idea of Hida (see, e.g., [Hi02]), we define @E,;;ﬂd to be the Galois cover
of M9 trivializing the étale sheaf A[p"]/A[p"]™ !, The pre-image of MY under

the covering map is written as im};‘,;‘;id. We then have a proper map

931};‘};;2“‘ — Mo — M

for which the Stein factorization is written as 933;’,‘,1;’”“1

Similarly as before, we have the universal semi-abelian scheme

N ur,ord
A, — ML

and the universal abelian scheme
ur,ord
A, — My, &

by restriction. Consider the associated rigid space iﬁtgg;ﬂd’“g and the open subspace

wzﬁ;;ﬂd*“g by taking intersection with (M}’,’Epn)gi, the rigid space associated to the

Q,-scheme (M?fgpn )Q,- We then have the finite étale map

. gyur,ord,rig ord,rig
I, : Pyrordrie _y gordie,

L . ~ ord,ri
which is a Galois cover of My, ",
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For r close enough to 1, we set
T (1) — S (1)

to be the Galois cover of 9]3?[% (r) trivializing the finite flat sheaf Arig| p"1/3H,.(r) (see

ur.ord.rlg gypur Jrig

Corollary 3.6). In particular, the ordinary locus Mt;; . Myyppn (1), which justi-
fies the notation. Set

Mg () = M) N (Mo ) g
for r close enough to 1, with (Mg pn)gi the rigid space associated to the Q,-scheme
(Myrpn)q,- For s < r with s close enough to 1, we have
(3.3.1) Misos(r) € M (s),
by Lemma 3.2 and (3.2.1).
Again by the proof of [Ka, 1.11.6], we have a well-defined map

Gt Mo — ML A, > A, /A, [p]™",

sitting in the followmg commutative diagram

ur,ord Pn ur,ord
Mot " g

l Ig, l Ig,

A

My ——s My

Proposition 3.7  For r close enough to 1, the map ¢, induces the following morphism,
which is finite flat of degree p®:

Bu(r): MG (r) — M ().

Proof This follows from Proposition 3.5 and [KL, 2.2.1]. [ |

4 Overconvergence of Siegel-Hilbert Modular Forms

4.1 P-adic Banach Spaces

Set Zordrig — 93&;};‘;? "8 to be the tube of (95?;;;(;,?1)0\(%?%;?)0, and set Z°7-118 to be

.. . . ur,ord,ri
its intersection with 9)31;;;;1 e

Lemma 4.1 (Kocher Principle) Assume dg > 1 (to exclude the modular curve case).
For r < 1 sufficiently close to 1, we have the natural isomorphisms
HO (D578 (r), 00") =5 HO (M), w) > HO (D08 2078, ")
Proof It suffices to show that on formal affine open subsets, the natural map
HO (M0, ") — HO@go, w)
is an isomorphism. Furthermore, by the existence of the Galois covering of Iord

by M r,,(;nd , we just need to show the isomorphism for n = 0. This then reduces to

https://doi.org/10.4153/CJM-2014-017-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-017-9

Overconvergent Families of Siegel-Hilbert Modular Forms 911

the Kocher principle for classical forms without level at p, which can be shown as in
[FC, Proposition 1.5, Chapter V]. ]

Recall we have the connected component M}, pr Of My, for any prime ideal
v C O and double coset ;.
Define iml;,;;*“g(r) by the Cartesian diagram

Yy, UL, i Yo ri
E]‘RHPI) g() (MIKIPP”)Qi

l l Ty

N E{rpi«;ﬁ( ) - (MHPp”)Q

Note that the left vertical map is finite étale, being the base change of the finite
étale map 7, ,,. We also denote it by 7, ,, and the other projection by m ,,.

Proposition 4.2  Letr < 1 be sufficiently close to 1. We have that O (mlevpl;rnng(r)) is
a p-adic Banach space with respect to the norm

[flr:= sup |f(x)]

xesﬁg;‘;‘g( "

for a function f € O (iml;,,‘;ﬂng(r)) . This is the same as the norm

fI7 = sup [fGl-

xES‘R;’_I"[';;r g \71'1 (Zord.rig)

Proof We use the argument in the proof of [KL, 4.1.6].
First note that | f|° is a well-defined norm on the p-adic Banach space

( tﬁ,l;;l;lrlg(r)\w (Zord ng))

with the latter space being finite over wtg;‘;%(r)\zordﬁﬂg and hence quasi-compact. (If

JF is a coherent sheaf on a quasi-compact rigid space X, then F(X) is a p-adic Banach

space.)
Then we only need to show that
(41.1) =117, VF € OV ),

which will then realize
0 ( Wﬁp‘; rlg( )) — 0O ( m];};l;,rig(r) \ﬂ;’;v (Zord,rig))

as a closed subspace. For this, recall we have the Kocher principle and the fact that
the natural projection

. Ig .
» d . d7 n
M ™" rig 100, Mg — M
is finite étale. The former is Lemma 4.1, and the latter holds because both 7 ,, and
Ig, are finite étale by construction. Then by the argument in the proof of [KL, 4.1.6],
we are reduced to show (4.1.1) for r = 1, n = 0, and may assume f extends to
f € o) (by Lemma 4.1). In this case we may assume that its image f, €

O(Merd)g is non-zero. If |f|7 < |f|; = 1, then f; is nilpotent on the open subset
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(93?}’;,51)0 of (ﬂﬁ"rd)o Thus it vanishes on (93?}’;,‘3)0 and hence on the whole (?[R(’rd)o by
Theorem 2.6, a contradiction. [ |

Corollary 4.3  Let0: w3, ((detw)kO(P’l)) — Wfﬁv((detw)k‘)@*”) be the canoni-

cal map of sheaves on EUE%';,, "€ Then for r sufficiently close to 1,

0(m3,,(B)) = fumi, (B) € H(5780), i, ((detw)r) )

for some f, € O (Sm}g;;f rlg(r)) . Here we have used the same symbol E to denote the

pullback of E from M8 to its Galois cover 9JEUHI;2§.
Moreover, we have that fi, — 1 is topologically nilpotent. In fact, for any 0 < e < 1,
there is an r < 1 such that |fi, — 1|, < |p|.

Proof We see that the proof of [KL, 4.1.7] applies. We only give a sketch here. As
before, we reduce to the case n = 0. The first assertion then follows from the fact that
the special fibre (M}; ord) ) is normal, by Theorem 2.7. To show the second assertion,
first note that the case r = 1 follows from Lemma 2.10 and Proposition 4.2. The case
for a general r then follows from the r = 1 case, as well as Proposition 3.3. |

Using Corollary 4.3 we now show the following.

Proposition 4.4
(i)  We have the inclusion
T2, (M504 08) C MG
and the inclusion
a0, (M550 8(r)) C M8 (r)

for r sufficiently close to 1.
In particular, the inclusions above hold for , , on 9)?;}1;;’:’ 8 itha C O an
ideal.

(i) Forr — 17, my (py induces a map

EUEH,, Pur E(pP) i]ﬁg;;%(r).
Proof (i) The first assertion follows from the construction of ‘l]?g;;ﬂd’rig
For the second inclusion, we argue as in the proof of [KL, 4.1.10]. First observe
that it is enough to show this for E-valued points for any finite extension E/Q,. By

the construction of EDEI’{”,,I;,,“g(r) we may assume 7 = 0. Let f: A — Bbe an element

in EDE?;I;M’“g(r) (E). We may enlarge E so that A extends to a semi-abelian scheme A
over Op. We may and do assume that A is an abelian scheme, because otherwise
r = 1 and we go back to the first assertion. Then we can extend Ker( f) to a finite flat
subgroup scheme of A. The quotient of A by this subgroup scheme is denoted by B,
and the projection A — B by pr. Let v; (resp. v;) be a basis of H(A, QA/O ) (resp.

H'(B,Q} 5/0,))- Then we must have

pr*(detvy) = adetv,
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for somea € Og.
Now, by the definition of overconvergence, it suffices to show that

|E(A, detv;)| < |E(B, detvg)|.
By Corollary 4.3 we have
E(B,detvg) = fi,E(A, pr(detvp)),
with f;, — 1 topologically nilpotent. On the other hand, we have the equality
E(A,pr*(detvy)) = al=PRE(A, detvy).

Now the result follows because | fi, (A, v;)| = 1 and [al =Pk | > 1.
(ii) This is proved as in [KL, 4.3.3]. By Proposition 3.7, for s close enough to 1 we
have the natural map

@n(s): M E(s) — Mg B (sP)
by restricting to the intersection of the map in Proposition 3.7 with (Mg pn)gi. For
r — 17, by part (i) we see 7 () induces a map

(p), ST
W) — ML)

for some r? < s. If s > r, we are done. Now assume s < r. Thus it suffices to show
that their composition

T2,(p) @n(s
M) L M () 0, M5 (sP)

ur. rlg

factors through My, x (r7) C ‘lﬁgg?%(sp ), for which it is in turn enough to show the

further composition with ?[Rng (sP)

2,(p) : @n(s) : Ig, :
ey P, gpunie o PO, qpucis ) B g )

factors through M8 (rP).
Tracing the construction we know that for r — 17 the latter composition is in-
duced by the map
,ur,ord T1.(p) ur,ord d d
EUEH,, = My —> AL —> M

where the map [ - p] is the multiplication by p on the level structure of the universal
abelian scheme. To see this, using Proposition 3.3, we only have to check the state-
ment for the case r = 1, which is easily seen. Meanwhile, we notice that [ - p] induces
the identity map on Hasse invariant, because the Hasse invariant is independent of
level structures. Hence it maps M5 () to itself. This concludes the proof. ]

4.2 Hecke Operators on Overconvergent Siegel-Hilbert Modular Forms

Let L/Q, be a finite extension and R an L-affinoid algebra with a fixed sub-
multiplicative semi-norm extending the norm on L, and Y € R such that

Y| < |pl7=!

https://doi.org/10.4153/CJM-2014-017-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-017-9

914 C. P. Mok and F. Tan
We use the convention that for a Q,-analytic space X, Xz = X Xspq, Sp R. Define
MHﬂp”,){,r(L) = Ho(wglll;%(r)L7 wh) 9
MHPp”‘K+Y,r(:R) = HO (gjt}lggl;%(r)ﬂh wﬁ) s
My (L) = i Migeps e (L),

r—1-1

Mg oy (R) = 1 Mysopr oy (R).

r—1-1

Remark 4.5 Let U} be the group of totally positive units in Of, and Ugy its sub-
group of elements that are congruent to 1 modulo N. As noted in [KL, 1.11.8] and
Remark 2.1, the moduli spaces we have constructed are for G' = G Xges, 10 Gn Gm>
where the two maps in the product are the determinantal and diagonal ones. This is
because multiplying by U on the polarizations of tuples in M is an isomorphism
for the subgroup U7y C Uf. We thus get an action of the finite group U} /UZy on

M o, which induces a natural action on HO(EJJEuHrj,g%(r), w"). Hence the U} /Ugy-

invariants of the spaces above are the spaces of forms on G = Resr/q GSp,,.

By abuse of notation, we call these spaces the spaces of overconvergent Siegel—
Hilbert modular forms of level H? p" and of weight « (resp. x + Y) with coefficients
in L (resp. R).

By Proposition 4.4 (i), we have two projections

/y, UL, T ur,ri;
Tl T2, 93?};;;” 5(r) — imep%(r).

Vv, ur,rig

We then get the (pullback of) canonical map of sheaves on M;;; o (DR

* K * K
MW" = T

whose composition with multiplication by sz“(" ~" gives the map

k(Y 1)
ko=
* K * K ka * K
Ty W — T, W ——— 7 w"
Here
v Y
Rp=D .__ (
=exp| ——log i)
T Pl =1 8 fxo

is a well-defined element in O(ﬂﬁl}g;f;rig(r)y) for r such that | fy, — 1|, < |p|¢, where

Y
e is chosen to satisfy |Y| |p| < |p|"/?~). We remark that the analyticity of f,*"~"
follows from the assumption that |Y| < |p] 71! (and the assumption that p { k).
Applying 7 ,. to the above map, and pre-composing it with the map from w"
and composing it with the trace map, we obtain

Y
k(p—1
Ty 0 fig Tr

K * K * K * K K
W= Ty W T T W =T T W —> W
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Then taking global sections, we get an endomorphism T, of HO(EJJ?E;;;%U)% w”).
The resulting Hecke operator will denoted by T,; (resp. S,) if v, = T,,; (resp. S,).
Letting r — 17, we obtain the Hecke operator on MIT_” vy (R), which is denoted
by the same symbol. The ring of endomorphisms generated by all the Hecke opera-
tors (with v and ~, varying) is denoted by TLF vy The product of Ty, ’s for all v|p
is denoted by U,).
The construction made above and Corollary 4.3 thus give rise to the following.

Proposition 4.6  Let 1);: R — L' be the character to a finite extension L' /L that
sends Y to (p — 1)kot for somet € Z>o. We have the following commutative diagram
compatible with the actions of Hecke operators T:

Id @, i -E'
My (R) =5 My (L) == M (L)

(4.2.1) Tl TJ(

M (R) M=% ME, (1) —E M
HPp" k+Y HPp" Kk prn,,{.Nm@fleof

(L)

Proof LetT = T, . Then we are supposed to check thatforvf®x € M LP o ry (R)s

(4.2.2) U (T(f®x)) UE' =T(f® ¢ (x) UE).

(This suffices for the proof, since the T, ’s generate the Hecke algebra.)
Now, unwinding the definition of the Hecke operator T, we see that for A — B an

isogeny in mt};;;‘,&“g(r),
T(f ® x)(A) = f(B) ® fk@x-
Then, applied to (A — B), the left hand side of the equality (4.2.2) is equal to
f(B) @1, (x) UE'(B),
while the right hand side is equal to
(fB) ®v(x)) U fi,E'(A),
since ¥;(Y) = ko(p — 1)t. Now the result follows from Corollary 4.3. [ |

Proposition 4.7 Fors < r < 1 with s sufficiently close to 1, the following natural
inclusion is completely continuous:

Res(s, r): HO(M508(s), ") < HO (M558, ") .
Proof It is equivalent to showing this for the natural inclusion
HO (Do 8(s), w") s HO (Dt 8(r), w")

by the Kocher principle Lemma 4.1.
Recall fm}fﬁ%(r) S iﬁ?;{rp’?%(s) from (3.3.1). Now we conclude by [KL, Proposition
2.4.1]. |
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Lemma 4.8  Supposer is close enough to 1. The Hecke operator Uy, on the R-module
Migppn vy, (R) can be constructed as the composition of the natural inclusion Res(r?, r)
and the following map induced by ; (,):

(4.2.3) HO (M08 (), w") — HO (M58 0r7), w").
Proof This follows from Proposition 4.4 (ii). [ |

Corollary 4.9  For r close enough to 1, the action of U,y on My pr s1y,-(R) is com-
pletely continuous.

Proof We know by Proposition 4.7 that the map Res(r, r¥) is completely continu-
ous. Moreover, the map (4.2.3) is continuous. Since a composition of a continuous
map followed by a completely continuous one is again completely continuous, we are
done. ]

Remark 4.10 It is the eigenvalues of the Hecke operator U, that we will interpo-
late, since we only construct a one-parameter family of overconvergent Siegel-Hilbert
eigenforms.

4.3 Constructing Families of Overconvergent Siegel-Hilbert Modular Forms

4.3.1 The Setup

Recall that Ty is the standard diagonal maximal torus of GSp,, ;. Denote by c: T, —
G,, the character:

a;
a
g -2
_ —a;---a.bm .
ball 1 g
—1
bag

Let W be the rigid space whose E-valued points are continuous homomorphisms
in Homcom( T,(0®zZ,), E X) for any (not necessarily finite) field extension E/Q,.

In the rest of the paper, we fix a classical weight  and a finite extension L/Q,. For
our purpose we only need the part of the weight space that “differs” from our fixed
weight « by parallel weights. Thus let W,, be the admissible subspace of W whose
E-valued points, for E C C, a closed subfield containing L, are

W.(E)={x =k (TocoNm): T,(0 ® Z,) — E*}

for some continuous character 7: Z, — E* satisfying

vp(1—=7(1) > ﬁ, teZy.
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We define a rigid analytic function Y on W,; as follows: if x € W,(E) is as above,
and is associated to 7: Z,” — E*, then the value of Y at x is given by

1
szowm

logt

fort € Z,; sufficiently close to the identity.

By the construction above, we have that [Y| < |p| 777!, hence the Banach module
MLPP% +v(R) of overconvergent forms is well-defined, for any SpR C W,.. Let

T};}‘;,,ﬁ +y be the closure of the ring of endomorphisms on ML,, iy (R) generated
by the Hecke operators at the places away from the level, under the norm defined in
Proposition 4.2.

Proposition 4.11  The R-algebra TL;‘;N Ly 1S commutative.

Proof Let W be a Zariski dense set of integral weights in the Y-neighbourhood
of k, which can be achieved by taking the parameters ¢ to be sufficiently large powers
of p, by Proposition 4.6. By the analyticity obtained in Proposition 4.6, each element
in TL’?;,,_K .y is determined by the Zariski dense set W< We then have the injection

f,ur t,ur
Thivpn sy = [1 T pr s
wewd

where each factor is the specialization. On the other hand, each Hecke ring T}}?;”,w
with the fixed integral weight w is commutative, being the completion of a commu-
tative algebra of Hecke correspondences. Thus the product over W< is commutative,
s0 is its subring TI};';,,,K iy [

Let
Z.=SpTh"

H?rp" k+Y
be the rigid space over L associated to the R-algebra TE;’];",H +y- It comes with the
weight map w: Z, — SpR C W,. Define X,; = Z,; x G,,. Write x,, for the canonical
co-ordinate on Gy,,.

4.3.2 Construction by the Coleman-Mazur Machinery

Now we are ready to define the one-parameter families of overconvergent Siegel—
Hilbert modular forms of level H? p” as Coleman and Mazur proceed in [CM]. For
our purpose, it is enough to construct it over any affinoid quasi-compact subset
SpR C W,. We fix such an R from now on.

Set H to be the (topological) commutative ring generated by the formal vari-
ables X(;,), together with X,,;,Y, (here i = 1,...,¢) for all prime ideals v C O away
from the level. Let ¢: H — O(X,;) be the map sending

Xv,i — tv,ia Yv = Sy, X(P) = Xp-

https://doi.org/10.4153/CJM-2014-017-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-017-9

918 C. P. Mok and F. Tan

Here we have denoted by t,; and s, the image of the Hecke operators T,; and S,
in O(X,,) respectively, regarded as functions on Z,. Then J acts on M,T“, o w(XR)
with the action factoring through ¢(J).

For r sufficiently close to 1, we know by Corollary 4.9 that U, acts completely
continuously on (Mg pr kiv,-)(R).  This implies that the action of 1(a)U(,) on
My pr vy, (R) is completely continuous for any o € H. Following [CM, Section 4],
for each a € JH, we can form the Fredholm series

Po(T) = dﬂgt(l — U@ U TIMprpr sy (R)) € RITT,

which is independent of the choice of r (for r sufficiently close to 1) by the following
lemma.

Lemma 4.12 Let0 < r < r' < 1 with r sufficiently close to 1. Then the Banach
R-module Myp pn 1v,,(R) admits an orthogonal basis that is also an orthogonal basis
for the R-submodule My pn 1y, (R).

Proof Since Myspr vy, (R) = My pr iy, (Qp)®q, R, we may assume R = Q,, and

*,Ur,rig

Y = 0. Recall that, as r is sufficiently close to 1, the natural map M, . °(r) —
fm;}ﬁig(r) is finite étale. We can conclude the proof by [KL, 2.4.5], namely in the

notation of loc. cit. we let I be the push-forward of w” under the composition (recall
the notation from Section 3.3)

M) — M) — M),

which is proper. Moreover, we have the line bundle £ = (detw)?~!, which is ample
over My, and D C (M, )x,, the divisor where the Hasse invariant / vanishes. Then
[KL, 2.4.5] gives the result we require. [ |

Set &, = Effd C X, to be the nilreduction of the Zariski-closed subspace of X,
cut out by the ideal generated by the functions P, ( (xpL(a))’l) for all the o € H
such that ¢(«) is a unit. Alternatively, we can define &, as follows.

The entire series associated to a € H, P, (T) € R[[T]], defines a closed subspace

Za CSpR x A,

where T is regarded as the co-ordinate on A'. For each a € H such that ¢(c) is unit,
we can define the map

fa: Xe =Zy X Gp = SpR X Al x = (z,5) — (ﬂ(z)7¥) ,
(u(@)) (x)
where we have regarded ¢(«) as a function on X,;. Then we set £,; to be the nilreduc-
tion of
N rn'(Za).
aeXH,
@) EO(X,)™

The following theorem is obtained from the above construction formally, as
in [CM].
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Theorem 4.13

(i) Let E C C, be a closed subfield containing L. For an E-valued point x € &(E),
there is a non-zero simultaneous eigenvector f, € ML )(E) for all the Hecke

operators in TLp PrRY such that the Hecke eigenvalues At (z), As,(x), Ay, (x) for
the operators T, ;, S, and U, satisfy

A, (x) = 1,i(x), A5, (x) = s,(x), Ay, (%) = x,(x).

Pp" kY (x

For a fixed Yy € Ewithv,(Yy — 1) > ﬁ, the above assignment induces a bijec-

tion between the points {x € €,,(E) }y(x=v, and systems of TLP o vy -€igenvalues
of an eigenvector f € MLPP”‘H+Y0 (E) of finite slope at p.

(ii)  The rigid analytic space E,; is a curve. The weight map w: &€,, — W,, is, locally in
the domain, finite flat. The image of any component of €, under this map misses
at most finitely many points in W,,.

The following theorem plays a similar (yet weaker) role as the expected result that
classical Siegel-Hilbert eigenforms are Zariski dense in the rigid analytic space &,.

Theorem 4.14 Let f be a classical Siegel-Hilbert modular eigenform of weight k
and of level HP p". There exists, for any positive integer t with v,(t) large enough, a
Siegel-Hilbert modular eigenform f, of weight r.-Nm* =% and of the same level, such
that the Hecke eigenvalues on the f;’s converge p-adically to that of f, as v,(t) — +oo.
Furthermore, if f is cuspidal, then the f; can also be taken to be cuspidal.

Proof The proofis completely similar to that of [KL, 4.5.6].
As before, we take the weight space W,, centered in « to be Sp R since the con-
struction is local. By the construction of €, when ¢(«) is unit, we have a map

To: € — Zg.

By the method of [CM, Chapter 7], we see the projection r,, is finite.
Let x € £,(L) be the point corresponding to f. By the arguments of [CM, 6.2.2
and 6.3.2] we may assume

(43.1) ra (rax) = {x}.
By this property, we only need to find a family of elements in Z,(L) converging to
ra(x) == xq.

Let w € Sp R denote the weight of x. Let x1, ..., x, be the points in Z, that lie
over the weight w and correspond to other (finitely many by [CM, 1.3.7]) roots of
P,(T),, € L[T], the specialization by w of P,(T) € R[[T]]. The t(a)U(;)-eigenvalue
of x; (0 < i < r) is denoted by A;. By the (local) finite flatness of the weight map w
(shrinking Sp R if necessary) we may assume there are disjoint connected compo-
nents {Z; }izo,. r of Z,, such that forany 0 < i <r,

e x; is the only point in Z; among the points {xo, . . ., X, }.
e T/ ) is topologically unipotent on Z, and is topologically nilpotent on Z; for any
i>1.

e Z; is finite over Sp R.
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Thus | J:_, Z; is finite flat over Sp R, hence corresponds to a polynomial F(T) €
R[[T]] dividing P, (T). By the construction, we have the following well-defined idem-
potent operator

n!
o= lim ( L(a)U(p)) F(ozU(P))’
n—00 Ao F(Ao)~!
which is easily checked to be the identity on a point in Z, and kill any points in Z;
fori > 1.

Consider the integers t such that Y ! (Y(x) +(p — l)kot) € SpR. We form the
Siegel-Hilbert modular eigenform of level H? p" and weight x + (p — 1)kot:

g =eE - f)=elE -g).

By Proposition 4.6 (applying the first row of diagram (4.2.1) to f) and the conti-

nuity of the Hecke action on M LP iy (R), we have that

& #0, ifv,(t) > 0.

We can write E' - g as a finite sum of classical eigenforms. If f is cuspidal to begin
with, then E' - gy can be written as a finite sum of cuspidal eigenforms. Pick one of
them so that the associated point x; € &, has image in Zy under the projection 7.
By this construction, the point x is the limit of r,(x;) when ¢ goes to 0 p-adically.
Now by (4.3.1), we have that x is the limit of x;. Let f; be the classical Siegel-Hilbert
modular form corresponding to x;. This finally concludes the proof. ]

Remark 4.15 Using the result of Bijakowski [Bi] on classicality of overconvergent
automorphic forms on PEL Shimura varieties of type (A) and (C) in the unramified
case, we should be able to prove the density of classical points in the eigenvariety €
when p is a good prime for the moduli problem.

4.4 Complement

In this final subsection we give a complement to Theorem 4.14 that is needed for the
application [Mo].

Thus let v be a prime of O with v { p. Fix a Bernstein component B, of GSng(FV).
Recall that B, is given by the (equivalence class of) data given by a pair (M, 7),
where M is a Levi subgroup of GSp,,y,, and 7 is a supercuspidal representation
of M(F,), up to twisting by unramified characters of M(F,). Let E be a number
field over which B, is defined, and denote by 3, = E[B,] the affine coordinate ring
of B,, which is known as the Bernstein centre of B,. We have an idempotent element
e, € 3, such that for any irreducible admissible representation 7, of GSp, g(Fv), we
have 7, belongs to the component B, if and only if e, - 7, # 0.

Now we come back to the context of the previous subsections. Let ] be the rational
prime below the prime v, and let m be the exact power such that I* divides N. We
assume that # is sufficiently large that the following holds: denoting by K, (m) the
principal congruence subgroup at the prime v of level #, with associated idempotent
ex,(m)- Then we assume that n is large enough that ex () - e, = e,, with e, being
the idempotent associated to the Bernstein component B, as above. We may also
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assume that the extension L/Q, in the last subsection to be large enough to contain
the number field E.

We note that in the particular case where B, is the Iwahori component associated
to the (standard) Iwahori subgroup I, C GSp,, (F,), then for any 7, belonging to B,,
we have Uy, acts invertibly on 7l (cf. [BC, Section 6.4.1]).

Back to the fixed Bernstein component B, as above. The Bernstein centre 3, acts
on the space of overconvergent Siegel-Hilbert modular forms MLP vy (R). Indeed
by the theory of Bernstein centre it suffices to see that the local Hecke algebra of
GSp2g(Fv) with respect to the congruence subgroup K, (m) acts on MLPPWJrY(R).
Since v 1 p, this follows by a similar argument as in Section 4.2.

As in [BC, Chapter 7], we can then form the space of overconvergent Siegel-
Hilbert modular forms associated to the idempotent e,:

evMLP oty (R)-

Then the same argument as in the proof of Theorem accum4.14 but with the con-
structions applied to the space e, M Lp p wry (R), yields the following.

Theorem 4.16 Let f be a classical cuspidal Siegel-Hilbert modular eigenform of
weight k and of level HP p". Let m be the cuspidal automorphic representation of
GSp,, (Ar) generated by f, and assume that 7, belongs to B.,. There exists, for any pos-
itive integer t with v, (t) large enough, a Siegel-Hilbert cuspidal eigenform f, of weight
- Nm P~ Dkt and of the same level, such that the Hecke eigenvalues on the f,’s converge
p-adically to that of f, as v,(t) — +oo. Furthermore the f; can be taken to have the fol-
lowing property: denoting by m; the cuspidal automorphic representation of GSp,,(Ar)
generated by f;. Then m,, belongs to B,,.
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