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Overconvergent Families of Siegel–Hilbert
Modular Forms

Chung Pang Mok and Fucheng Tan

Abstract. We construct one-parameter families of overconvergent Siegel–Hilbert modular forms. This
result has applications to the construction of Galois representations for automorphic forms of non-
cohomological weights.

1 Introduction

The study of p-adic families of automorphic forms has been carried out in many
works. In the case of elliptic modular forms, the overconvergent modular eigen-
forms of finite slope (i.e., with non-zero Hecke eigenvalue at p) are interpolated to be
points on a rigid analytic curve, which is known as the Coleman–Mazur eigencurve
[CM]. Before this seminal work, the family of ordinary eigenforms was obtained by
Hida [Hi86].

Among all the approaches to the construction of eigenvarieties for more general
algebraic groups, the work of Kisin–Lai [KL] on overconvergent Hilbert modular
forms is most closely related to ours. Their method is a generalization of that of
Coleman-Mazur. In both cases, the key point for interpolating modular forms is
the complete continuity (cf. [Co, p. 425] for definition) of the Atkin–Lehner operator
on certain spaces of overconvergent forms. In the case of elliptic modular forms,
Coleman–Mazur interpolate modular forms by twisting by p-adic analytic families
of Eisenstein series. However, in the more general (Siegel–)Hilbert modular case such
a theory of Eisenstein series is not yet available. Instead, we lift (a certain power of)
the Hasse invariant in characteristic p to be a global section of certain automorphic
line bundle over the integral model of the Shimura variety.

We would like to mention certain differences between our method and that
of [KL], which are mainly caused by the generality of the Siegel–Hilbert moduli
space.

In the Hilbert modular case of [KL], they glue the toroidal compactfication of the
Rapoport model [Ra] with the Deligne–Pappas model [DP], because the Rapoport
model may not be proper at the places which are ramified in the totally real field.
Fortunately, Rapoport’s toroidal compactification can be used because the Lie alge-
bra condition, which causes non-properness at finite distance, is automatic in the
boundary. In the Siegel–Hilbert case, we have to do more to take care of the rami-
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fied places. There exists the canonical integral model of Pappas–Rapoport [PR] in
the Siegel–Hilbert modular case, which has a moduli interpretation. Its toroidal
compactifications are, however, not completely understood. Fortunately, the (par-
tial) toroidal compactifications and minimal compactification of the ordinary locus
is constructed in [La12] successfully, which will be enough for our use.

Furthermore, we follow the idea of Hida [Hi02] to form the formal Igusa tower
over the formal completion of the (compactified) moduli space with level structure
away from p, instead of using the “unramified Γ00(N pn) cusps” in [KL]. This seems
more convenient in the general Siegel–Hilbert case.

Write G = ResOF/Z GSp2g . The moduli space above is actually for its subgroup
G′ = G ×ResF/Q Gm Gm. Finally, with these strategies and results, we construct one-
dimensional families of eigenforms on G′, for any totally real field F and g ≥ 1. More
precisely, we obtain, for each classical weight κ, a reduced rigid analytic curve Eκ,
whose points are in one-to-one correspondence with systems of Hecke eigenvalues of
overconvergent automorphic forms on G′, whose weights “differ” from that of κ by
parallel weights. One of the key properties of the rigid curve Eκ is that the canonical
map to the weight space given by weights of modular forms is, locally in the domain,
finite flat. We refer the reader to Theorem 4.13 for more details.

Essentially due to the (local) finite flatness of the weight map on Eκ (and the ar-
gument in Section 4.4), we have the following theorem.

Theorem 1.1 (See Theorem 4.16) Let f be a (classical) Siegel–Hilbert modular
eigenform on G = ResOF/Z GSp2g of weight κ with some tame level and level pn at p.
For any positive integers t with large enough p-adic valuation, there exist Siegel–Hilbert
modular eigenforms ft of the same level and of varying weights, whose Hecke eigenvalues
converge p-adically to that of f when t goes to zero p-adically.

This theorem is sufficient for some applications. For example, Theorem 1.1 is one
of the main ingredients for attaching Galois representations to automorphic forms π
on GL2 over arbitrary CM fields, as seen in [Mo]. More precisely, in order to con-
struct such a 2-dimensional representation, we first lift π to an automorphic form Π
(of non-cohomological type!) on GSp4(AF). Then the Galois representation ρΠ as-
sociated to Π is obtained by interpolating Galois representations associated to forms
on GSp4(AF) of cohomological type, with the family of cohomological forms sup-
plied by Theorem 1.1. As is mentioned in [Mo], the use of p-adic analytic family
of automorphic forms, compared to the use of congruence relations between them,
has the advantage that this (less elementary) method allows us to prove local-global
compatibility.

We would like to mention that the eigenvariety for Siegel cuspidal eigenforms (not
necessarily with parallel weights), i.e., for the group GSp2g/Q, was recently devel-
oped in [AIP]. More recently, the eigenvariety for the group GL2/F was developed
in [AIP2].

The paper is organized as follows.
In Section 2 we recall the results on integral models of PEL Shimura varieties

and their compactifications. In the next section, we use the idea of Hida to form
the formal Igusa tower. In the last section, we form the spaces of overconvergent
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Siegel–Hilbert modular eigenforms and then prove that the U(p)-operator is com-
pletely continuous on the spaces. Finally by the machinery in [CM], we construct the
rigid curves interpolating these overconvergent forms, and then show Theorem 1.1.

Notation

• F is a totally real field of degree d over Q, and O = OF is the ring of integers. We
denote by A = AF the ring of adeles of F, and by A f the ring of finite adeles of F.

• For a maximal torus T = TG of a reductive group G over Z, Nm: ResOZ T → T
is the norm map, i.e., for any ring R, Nm(R) : T(O ⊗Z R) → T(R) is given by the
norm NF/Q on F.

• p ≥ 2 is a fixed rational prime.
• If K/Qp is a finite extension, K0 is the maximal unramified extension of Qp in K,

and [K : K0] = e. Q̄p is a fixed algebraic closure of K, and Cp is the completion
of Q̄p for the p-adic topology.

• Let H ⊂ G(A f ) denote an open compact subgroup which is of the form H =

HpH p, where Hp ⊂ G(Qp), H p ⊂ G(Ap
f ), for Ap

f the ring of finite adeles over F
with trivial p-component.

2 Siegel–Hilbert Moduli Spaces

2.1 PEL Datum

2.1.1 The General Integral PEL Data

Recall the (integral) PEL datum (OB, ∗, L, ψ, h), whose rational part (B, ∗, LQ, ψQ, h)
can give rise to a Shimura datum by 4.1 [Ko].
• B is a finite dimensional semisimple Q-algebra whose center is denoted by F, and

is equipped with a positive involution ∗:
(ab)∗ = b∗a∗, b∗∗ = b, ∀a, b ∈ B,

TrB/Q(bb∗) > 0, ∀b 6= 0.

OB is an order of B stabilized by the involution above.
• (L, ψ) is a symplectic (OB, ∗)-module over Z, i.e., L is a finite free Z-module carry-

ing an alternating form ψ : L× L→ Z, such that

ψ(bx, y) = ψ(x, b∗y), ∀x, y ∈ L, b ∈ OB.

Let G be the group over Z so that for any Z-algebra R,

G(R) = {g ∈ GL(OB)R (LR) | ψ(gx, g y) = ν(g)ψ(x, y), ν(g) ∈ R}.
• Let

h̃ : C→ End(OB)R (LR)

be an R-algebra homomorphism that gives a Hodge structure of type (1, 0), (0, 1)
on LR, such that ψ

(
x, h̃(
√
−1)y

)
is a symmetric positive definite bilinear form

on LR. The restriction h̃|C× can be viewed as a morphism of R-algebraic groups

h : ResC/R Gm,C −→ GR.
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The action of h gives a decomposition

(2.1.1) LC = V0,C ⊕V1,C,

where h acts on the first factor by the character z 7→ z̄ and on the second one by
z 7→ z. The Shimura field is then by definition

E = F[TrC(b|V0,C), b ∈ B].

The decomposition (2.1.1) is then defined over the subfield E of C.

2.1.2 PEL Data for Symplectic Groups

Let B = F be a totally real field of degree d. Let OB = O and ∗ = Id be the trivial
involution. Let L be a finite free Z-module of rank 2dg equipped with an O-module
structure, together with the standard symplectic form

ϕ : L× L→ O

given by the antisymmetric matrix J =
( −Idg

Idg

)
. Set

ψ = TrO/Z ◦ϕ.

The C-algebra homomorphism h̃ is

a + bi 7→
(

aIdg −bIdg

bIdg aIdg

)
.

We have the PEL datum (O, Id, L, ψ, h = h̃|C×). In this case

G = ResO/Z GSp2g ,

where GSp2g is the split reductive group of symplectic similitudes respecting the ma-
trix J.

The Shimura field in this case is E = Q.

2.2 The Siegel–Hilbert Moduli Space over the Shimura Field

Keep the Shimura datum (O, Id, L, ψ, h) as above. Let H ⊂ G(Ẑ) be an open compact
subgroup. We recall the moduli problem from [Ko, Section 5] and [La08, 1.4.1.4].

Let MH be the functor that assigns to a Q-scheme S the isomorphism classes of
the tuples (A, i, λ, αH) of one of the following kinds:
• A is an abelian scheme over S of relative dimension dg, equipped with an O-action

called the real multiplication: i : O ↪→ EndS(A).
• The requirement of Kottwitz determinant condition

det
OS

(b| Lie A) = det
E

(b|V0), ∀b ∈ F

as polynomial functions, for which both sides of the equality are considered as mor-
phisms of S-schemes (cf. [Ko, Section 5] for details).

• λ : A→ A∨ is a polarization. Recall that a symmetric homomorphism A→ A∨ is
a polarization if (locally for the étale topology) it comes from a line bundle over A
that is ample over S (cf. [GIT, 6.2]).
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• αH is an H-level structure of type (LẐ, ψ) analogous to that defined in Section 2.4.1
(cf. [La08, 1.3.7.6] for more details).

The functor MH is represented by a separated smooth algebraic stack of finite
type over E = Q, by Artin’s theory and Grothendieck’s theory of Hilbert schemes.
We denote the moduli stack by MH again. If H is neat, then MH is a smooth quasi-
projective scheme over Q, by [GIT] (and the theory of Hilbert schemes). As a special
case of the construction of MH , we have the functor MH p with the level structure αH

being the prime to p level structure H p.
We denote the universal abelian scheme over MH by A, and denote by ω the pull-

back along the unit section of the relative differentials Ω1
A/MH

.

Remark 2.1 Let X denote the G(R)-conjugacy classes of h̃. The complex manifold
G(Q)\X × G(A∞)/H descends to a quasi-projective scheme ShH over Q, which is
commonly called the Shimura variety. We have a canonical open and closed immer-
sion

ShH ↪→ [MH]

of the Shimura variety into the coarse moduli space of the algebraic stack MH . The
moduli [MH] is in fact the Shimura variety for the group G′ = G ×ResF/Q Gm Gm, the
subgroup of G whose determinants lie in Gm.

2.3 Integral Models and Compactifications

In [La12], Lan constructs a normal and flat algebraic stack ~MH over Z(p) that comes
with a canonical isomorphism

~MH ×Spec Z(p) Spec Q 'MH .

We recall the construction briefly.
We first find an auxiliary Shimura datum that can provide the canonical inte-

gral model and toroidal compactification. In fact, we can embed the Z-module L
into another finite free Z-module Laux, which comes with an alternating pairing ψaux

whose restriction to L isψ. The R-algebra homomorphism h̃ then induces another R-
algebra homomorphism h̃aux, whose restriction to C× is denoted by haux. Moreover,
we have a subring Oaux ⊂ O for which the embedding L ↪→ Laux is Oaux-linear. The
point is that, for the auxiliary Shimura datum (Oaux, Id, Laux, ψaux, haux), the prime p
is a good prime to which the main results of [La08] apply.

Now we have an induced homomorphism of algebraic groups over Z,

t : G −→ Gaux,

where the second group is defined by the auxiliary Shimura datum in the same way
as before. The auxiliary Shimura datum provides a moduli stack MGaux(Ẑp), which is
separated smooth and of finite type over Z(p). By the fact that p is a good prime for
MGaux(Ẑp), we can show that there is a canonical isomorphism

MGaux(Ẑp)×Gaux(Zp) 'MGaux(Ẑp) ⊗Z(p) Q.
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More generally, for any open compact subgroup Haux = H p
auxGaux(Zp) ⊂ Gaux(Ẑ)

such that H p is mapped to H p
aux under the morphism t : G(Zp)→ Gaux(Zp), we have

similarly a moduli stack MH p
aux

for which p is a good prime and a morphism

(2.3.1) MH →MH p
aux
⊗Z(p) Q,

compatible with the map between the two PEL data, which is finite on the coarse
moduli spaces.

Proposition 2.2 ([La12, Proposition 2.2.1.1]) The normalization ~MH of MH p
aux

in MH is a normal flat algebraic stack over Z(p) whose generic fibre is canonically iso-
morphic to MH . The normalization of [MH p

aux
] in [MH] under the map of coarse moduli

spaces induced by (2.3.1) is canonically isomorphic to [~MH], which is a quasi-projective
normal flat scheme over Z(p). Hence ~MH ' [~MH] is a scheme if H is neat.

From now on, we always assume H is neat.
Let Mtor

H be the toroidal compactification of MH for a fixed admissible smooth
rational polyhedral cone decomposition datum Σ for MH .

Proposition 2.3 ([La12, Propositions 2.2.1.2, 2.2.2.1, and 2.2.2.3])

(i) There is an admissible smooth rational polyhedral cone decomposition datum Σaux

for MH p
aux

(hence the toroidal compactification Mtor
H p

aux
of MH p

aux
), which is compat-

ible with Σ in a natural way, and induces a canonical morphism

(2.3.2) Mtor
H −→Mtor

H p
aux
⊗Z(p) Q,

which is compatible with the stratifications on both sides (in particular, extending
(2.3.1)) and the pullback of universal objects.

(ii) Let Mmin
H and Mmin

H p
aux

be the corresponding minimal compactifications. Then the

morphism (2.3.2) induces a natural morphism

Mmin
H −→Mmin

H p
aux
⊗Z(p) Q,

which is compatible with the stratifications on both sides. The normalization ~Mmin
H

of Mmin
H p

aux
in Mmin

H is a projective normal flat scheme over Z(p) whose generic fibre

is canonically isomorphic to Mmin
H . It contains ~MH as an open dense subscheme.

(iii) In the case that Σ is projective, there is an integral model ~Mtor
H for the toroidal com-

pactication Mtor
H , which is by construction the normalization of the blow-up of cer-

tain coherent ideal sheaf on ~Mmin
H . It is a projective normal flat scheme over Z(p),

such that ~Mtor
H ⊗Z(p) Q ' Mtor

H in a canonical way. If H′ ⊂ H is an open com-

pact subgroup, then there is a canonical map ~Mtor
H′ → ~Mtor

H , compatible with the
canonical map MH′ →MH .

For the integral model ~MH p with prime to p level, we have the following stronger
result.
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Theorem 2.4 ([PR]) The canonical map ~MH p →MH p
aux

is a closed embedding.

In particular, we have a moduli interpretation for ~MH p , with PEL data as part of the
moduli problem.

Proof By Theorem 12.2 of [PR], the flat scheme-theoretic image in ~MH p
aux

of the

generic fibre MH p is normal, hence is canonically isomorphic to ~MH p . In other
words, the integral model ~MH p defined above coincides with the canonical integral
model of Pappas–Rapoport [PR].

For the last claim, the reader is referred to [PR, Section 15] for more details.

2.4 Ordinary Loci and Partial Compactifications

2.4.1 Level Structures Prime to p

We recall certain results from [La12, Chapter 3]. Let S be a scheme over Z(p). Let A be
an abelian scheme over S, equipped with polarization λ and O-endomorphism i as
before. Let H p ⊂ G(Ẑp) be an open compact. Let N ≥ 4 be a natural number prime
to p such that H p ⊃ U (N), the principal mod N congruence subgroup. A principal
level N structure of (A, λ, i) of type (LẐp , ψ) is the pair (αN , νN ) defined as follows:

• αN : L/NL
∼
−→ A[N] is an O-linear isomorphism of group schemes over S, such

that

(i) the symplectic pairing L/NL × L/NL −→ Z/NZ and the λ-Weil pairing
A[N] × A[N] −→ µN induced by the polarization λ are compatible for a

chosen isomorphism of group schemes νN : Z/NZ
∼
−→ µN with respect to a

fixed primitive N-th root of unity ζN .
(ii) αH is symplectic liftable: there is a tower of finite étale surjections

(SM � SN = S)N|M,p-M

and O-linear isomorphisms αM : L/ML
∼
−→ A[M] with respect to an isomor-

phism νM : Z/MZ
∼
−→ µM such that for any valid indices M′|M′′,

(αM′ , νM′) = (αM′′ , νM′′) mod M′.

(This condition is required so that αN lifts, at any geometric point s of S, to an
O-linear symplectic isomorphism between LẐp and the Tate module of As.)

Consider all natural numbers N such that p - N and H p ⊃ U (N). A level H p

structure of (A, λ, i) of type (LẐp , ψ) is a collection of H p/U (N)-orbits of principal
level N structures (αN , νN ) for all N as above.

2.4.2 Ordinary Level Structures at p

Let
0 = D1 ⊂ D0 ⊂ D−1 = LZp

be a filtration of O ⊗Z Zp-modules, such that Gr−1
D := D−1/D0 is torsion-free as a

Zp-module, and under the pairing ψ D0 is totally isotropic and is its own annihilator.
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Such a filtration determines a filtration

0 = D∨,1 ⊂ D∨,0 ⊂ D∨,−1 = L∨Zp

on the dual lattice L∨Zp
. We have the natural map

ϕ0
D : D0 → D∨,0

whose reduction mod pn is denoted by ϕ0
D,pn .

Let PD ⊂ GZp be the stabilizer of D. Let MD be the group over Zp, whose R-
points, for any Zp-algebra R, are (g, c) ∈ GLO⊗ZR(GrD⊗Zp R) × Gm(R) such that
ψ(gx, g y) = cψ(x, y). We denote by UD the kernel of the natural morphism from PD

to MD. Now for any integer n ∈ Z≥0, we set

U p,0(pn) =
(

G(Zp)→ G(Z/pnZ)
)−1

PD(Z/pnZ),

U bal
p,1(pn) =

(
G(Zp)→ G(Z/pnZ)

)−1
UD(Z/pnZ).

Let S be a scheme over Z. Let A be an abelian scheme together with a polarization λ
and an O-endomorphism i. An ordinary principal level pn structure of (A, λ, i) of
type (LZp , ψ,D) is the following data:

• An O-linear homomorphism α0
pn : (D0/pnD0)mult → A[pn] of group schemes

over S.
• An O-linear homomorphism α∨,0pn : (D∨,0/pnD∨,0)mult → A∨[pn] of group

schemes over S.
• A section νpn of (Z/pnZ)× ' IsomS(µpn , µpn ) so that the homomorphism of mul-

tiplicative group schemes

νpn ◦ (ϕ0
D,pn )mult : (D0/pnD0)mult → (D∨,0/pnD∨,0)mult

is compatible with λ under α0
pn and α∨,0pn , and such that the scheme theoretic

images Im(α0
pn ) and Im(α∨,0pn ) nullify each other under the λ-Weil pairing on

A[pn]× A∨[pn].
• The requirement that αpn is symplectic liftable: there is a tower of quasi-finite étale

surjections
(Spn′ � Spn = S)n′≥n

and triples (α0
pn′ , α

∨,0
pn′ , νpn′ ) as above such that for any n′′ ≥ n′,

(α0
pn′′ , α

∨,0
pn′′ , νpn′′ ) mod pn′ = (α0

pn′ , α
∨,0
pn′ , νpn′ ).

Let Hp ⊂ G(Zp) be an open compact subgroup such that U bal
p,1(pn) ⊂ Hp ⊂

U p,0(pn) for some integer n ≥ 0. An ordinary level Hp structure of (A, λ, i) of
type (LZp , ψ,D) is an Hp/U bal

p,1(pn)-orbit of ordinary principal level pn structure of
(A, λ, i) of type (LZp , ψ,D).

2.4.3 Integral Models with Ordinary Level Structures

Let H = H pHp ⊂ G(Ẑ) be an open compact subgroup such that U bal
p,1(pn) ⊂ Hp ⊂

U p,0(pn) for some integer n ≥ 0. Let Mord,naive
H be the functor that assigns to a Z(p)-

scheme S the isomorphism classes of the tuples (A, i, λ, αH p , αHp ) as follows:
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• A is an abelian scheme over S of relative dimension dg, equipped with an O-
endomorphism i : O ↪→ EndS(A).

• λ : A→ A∨ is a polarization.
• αH p is a level H p structure of type (LẐp , ψ).
• αHp is a level Hp structure of type (LZp , ψ,D).

The functor Mord,naive
H is represented by a scheme of finite type over Z(p).

Let rH be the fixed nonnegative integer as in [La12] that is determined by the PEL
data and the filtration D of LZp . We can check that, over any Q[ζprH ]-scheme S, there
is a natural assignment from the level H structures of (A, i, λ)S to the pairs of H p-
level structure of type (LẐp , ψ) and Hp-level structure of type (LZp , ψ), which is in
fact injective. As a consequence, we have an open and closed immersion

MH ⊗Q Q[ζprH ] −→M
ord,naive
H ⊗Z Q[ζprH ]

whose image, which is an open and closed subscheme of Mord,naive
H ⊗Z Q[ζprH ], is

denoted by Mord
H .

Proposition 2.5 ([La12, Theorem 3.4.2.5]) The normalization ~Mord
H of Mord,naive

H

in Mord
H under the natural morphism Mord

H → M
ord,naive
H is a scheme smooth quasi-

projective separated of finite type over Z(p)[ζprH ], which is an open subscheme of
~MH ⊗Z(p) Z(p)[ζprH ].

2.4.4 Partial Compactifications of Ordinary Loci

Keep the data as before.

Theorem 2.6 (Theorem 5.2.1.1, [La12]) There is a scheme ~Mord,tor
H , quasi-projective

smooth separated of finite type over Z(p)[ζprH ], containing ~Mord
H as an open dense sub-

scheme. The universal tuple (A, i, λ, αH p , αHp ) on ~Mord
H extends to ~Mord,tor

H . The bound-

ary ~Mord,tor
H \~Mord

H is a relative Cartier divisor with normal crossing.

We have the Hodge line bundle (detω) ~Mord
H

over ~Mord
H , and (detω) ~Mord,tor

H
, its ex-

tension to ~Mord,tor
H . Form

~Mord,min
H = Proj⊕k≥0

Γ
(
~Mord,tor

H , (detω)k
~Mord,tor

H

)
.

This is in general not projective, as the partial toroidal compactification ~Mord,tor
H is

not proper.

Theorem 2.7 ([La12, Theorem 6.2.1.1]) There exists a canonical proper morphism

~Mord,tor
H −→ ~Mord,min

H .

The scheme ~Mord,min
H is quasi-projective normal and flat over Z(p)[ζprH ], which contains

~Mord
H as an open dense subscheme.
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Remark 2.8 For the moduli space ~MH p with prime to p level, the integral model
~Mord

H p is simply the ordinary locus of ~MH p⊗Z(p) Z(p)[ζprH ]. It then comes with a moduli
interpretation, by Theorem 2.4.

2.5 Hecke Correspondences

2.5.1 The Double-coset Hecke Algebra

Let q be a prime number and v | q a place in F. For the completion Fv of F at the
place v, we denote by Ov the integer ring and fix a uniformizer $v. We define the

spherical Hecke algebra Hsph
v for GSp2g(Fv) with coefficients in Z to be the algebra of

Z-valued functions on GSp2g(Fv) that are bi-invariant under GSp2g(Ov). It is gener-
ated by the characteristic functions on the following double cosets:

Tv,1 = GSp2g(Ov)

(
Ig

$vIg

)
GSp2g(Ov),

Tv,i = GSp2g(Ov)


Ig−i+1

$vIi−1

$2
v Ig−i+1

$vIi−1

GSp2g(Ov), 2 ≤ i ≤ g,

Sv = $v GSp2g(Ov).

2.5.2 Weights and Automorphic Sheaves

Through the end of this section, let M denote ~MH p , ~Mord
H p , or MH .

We again denote the universal abelian scheme over M by A, and denote by ω the
pullback of Ω1

A/M along the unit section. We remark that ω is locally free over OM,
but is not locally free as an OM ⊗Z OF-module if p is ramified in F, for the integral
models.

We only give the construction of automorphic sheaves of MH , and those of M =
~MH p when p is a good prime for the moduli, so that ω is locally free over OM ⊗Z OF .
The latter is enough for the auxiliary moduli. The automorphic sheaves over ~MH p

and ~Mord
H p in the general case are then defined by restriction via the closed immersion

in Theorem 2.4 and the inclusion ~Mord
H p ⊂ ~MH p ⊗Z(p) Z(p)[ζprH ]. We refer the reader

to [La12, Chapter 8] for more details, including the cases with level structure at p.
Let Tg/O be the standard diagonal maximal torus of GSp2g/O. Putting G =

ResOZ GSp2g/O and T = ResOZ Tg/O, take the standard Borel B of G with unipotent
radical U and identify T = B/U . Let M be the Levi of the standard Siegel parabolic
of G. Then M ⊃ T.

Consider a character

κ : T −→ Gm.

We may regard κ as a character of B ∩M that is trivial on U ∩M. The character κ is
called dominant with respect to B, if the induced representation IndM

B∩M κ−1 inside
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the rational functions of the scheme (M/U ∩M) is non-zero. The Bruhat–Tits de-
composition shows that the subspace (IndM

B∩M κ−1)U∩M is one-dimensional, and T
acts on a generator by−w0κ, where w0 is the longest element in the Weyl group (with
respect to T). The M-translation of the generator generates a sub-representation

ρ∗κ ⊂ IndM
B∩M κ−1,

where an element m in the standard Levi M acts as m · f (x) = f (m−1x). The R-
dual ρκ of ρ∗κ is called the rational representation of highest weight κ, which has the
universal property that for any M-module X,

HomM(ρκ,X) ' HomM(X∗, ρ∗κ) ' HomB(X∗,−κ) ' HomB(κ,X).

We define the automorphic sheaf of weight κ on M to be the contraction product

ωκ = IsomM(Odg
M, ω)×M ρκ,

that is, the quotient of the product IsomM(Odg
M, ω) × ρκ by the equivalence relation

(ϕ ◦m,w) ∼ (ϕ,m · w), for ϕ ∈ IsomM(Odg
M, ω), m ∈ M and w ∈ ρκ.

The construction above then provides the automorphic sheaves on MH and the
ones on the auxiliary moduli in the integral cases, and then those on the integral
models M = ~MH p , ~Mord

H p without the assumption that p is a good prime for the
moduli problems. We always denote the automorphic sheaves over M by the same
symbol ωκ.

By the results of [La12, Chapter 8], the automorphic sheaf ωκ extends from the
moduli schemes to the total (resp. partial) compactifications in a canonical way,
which is compatible with the restrictions to the ordinary loci of the total objects.

2.5.3 Geometric Correspondences

As in the previous section, we may assume p is a good prime for the moduli M.
Let a be an ideal of O. Let Ma be the moduli stack of isogenies between objects

in M, that is, the algebraic stack representing the functor Ma that assigns to any base
scheme S over Q (resp. Z(p), resp. Z(p)[ζprH ]) the category in groupoids in which an
object is an isogeny

f : A→ B

between two polarized abelian schemes with endomorphisms and level structures
(A, iA, λA) and (B, iB, λB), whose kernel is (étale locally) O-linearly isomorphic to
(O/aO)g and intersects with (the image of) the level structure only along the unit
section, is compatible with the O-endomorphisms, and respects the polarizations on
both sides.

Here we obtain the representability of the functor Ma by the use of the fact that M
is representable and by the theory of Hilbert schemes (cf. [FC, p. 251]). In particular,
since H is assumed to be neat, the functor Ma is represented by a quasi-projective
scheme over Q (resp. Z(p), resp. Z(p)[ζprH ]), which is denoted by the same symbol, as
usual. The universal isogeny over Ma is denoted by Ia. Assigning such an isogeny to
its source (resp. target), we have two natural projections

M
π1,a

←−Ma
π2,a

−→M,
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whose restrictions to any connected component Z of Ma are proper, by the valuative
criterion.

In the case that p is invertible in the base scheme S, the two projections

πi,(p) : M(p) →M, i = 1, 2

are finite étale. In this case, for v | q a prime ideal in O, we have the bijection between
the connected components of Mv and the double cosets γv in the spherical Hecke

algebra H
sph
v . Denote the corresponding connected component of Mv by Mγv , over

which the universal isogeny is said to be of type γv. We have the two projections

πi,γv : Mγv →M, i = 1, 2,

of type γv.
For M = ~Mord

H p , ~MH p over a scheme S in characteristic p, and v|p a prime ideal
in O, we again have the connected component of Mγv and the two projections

πi,γv : Mγv →M, i = 1, 2,

of type γv. (We refer the reader to [FC, Chapter VII] for details on the facts above.)
In the two cases above, consider the commutative diagram

Ia −−−−→ A

fa

y f

y
Z = Ma

πi,a

−−−−→ M.

Over the base S, we have a natural map of O⊗Z O×Z -torsors

π∗2,aω = π∗2,a( f∗Ω
1
A/M)→ fa∗Ω

1
Ia/Z

∼
−→ fa∗(π

∗
1,aΩ1

A/M)
∼
−→ π∗1,aω,

hence the induced map
θ : π∗2,aω

κ −→ π∗1,aω
κ.

Applying π1,a∗ and composing with the trace map

Tr : π1,a∗π
∗
1,aω

κ → ωκ,

we obtain the map

π1,a∗π
∗
2,aω

κ
π1,a∗θ

−−−→ π1,a∗π
∗
1,aω

κ
Tr
−→ ωκ.

Taking global sections and composing with the natural map

H0(MR, ω
κ)→ H0(MR, π1,a∗π

∗
2,aω

κ),

we get the desired endomorphism

Ta : H0(MR, ω
κ)→ H0(MR, ω

κ),

which will be denoted by U(p) in the case a = (p). We remark that the Hecke opera-
tor U(p) corresponds to the product of the double cosets Tv,1, v|p.

We have the same construction for Z = Mγv , the connected component of Mv of
type γv. In these cases, the Hecke operators corresponding to the double cosets Tv,i

(resp. Sv) will be denoted by Tv,i (resp. Sv) again.
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2.6 Hasse Invariants and Liftings

2.6.1 Hasse Invariants on Abelian Schemes in Characteristic p

Let A be an abelian scheme over S, a scheme in characteristic p. We have A(p), the
pullback of A → S via the absolute Frobenius FrobS on S, and VA/S : A(p) → A, the
Verschiebung isogeny. The latter then induces the map

CA/S : Ω1
A/S → Ω1

A(p)/S ' Frob∗S Ω1
A/S,

whose highest exterior power gives

CA/S : detωA/S → (detωA/S)⊗p,

hence a section h ∈ H0
(

A, (detωA/S)⊗(p−1)
)

. Applying this to the universal abelian

scheme on the special fibre of ~MH p , we then have a global section

h ∈ H0
(

(~MH p )Fp , (detω)⊗p−1
)
,

which is known as the Hasse invariant of the moduli space. We have its extensions
to ~Mtor

H p and ~Mmin
H p , and denote them by h again. The reader is referred to [La12,

Section 6.3] for more details.

Remark 2.9 For A/S an abelian scheme of dimension n, the Hasse invariant h(A)
is non-vanishing if and only if A is ordinary, which means that A[p] has pn elements
at every geometric point of S.

Lemma 2.10 Recall the notation from Section 2.5.3. The natural map of sheaves on
(~Ma

H p )Fp (resp. (~Mγv
H p )Fp ) with p coprime to a (resp. v)

θ : π∗2 (detω)⊗p−1 → π∗1 (detω)⊗p−1

satisfies

θ(π∗2 h) = π∗1 h.

Proof This follows from the functoriality of the Cartier operator.
Let R be an Fp-algebra. Note that

θ(π∗2 h)(A→ B, v, v′) = h(B, v′), (π∗1 h)(A→ B, v, v′) = h(A, v),

where v (resp. v′) is a chosen basis of H0(A,Ω1
A/R) (resp. H0(B,Ω1

B/R)) so that

π∗2 (v′) = v. Thus we only need to show h(B, v′) = h(A, v).

On the other hand, writing π(p)
2 as the pullback of π2 via FrobR, we have

h(B, v′) Frob∗R(det v) = h(B, v′) Frob∗R
(
π∗2 (det v′)

)
= h(B, v′)π(p)∗

2 Frob∗R(det v′)

= π
(p)∗
2

(
h(B, v′) Frob∗R(det v′)

)
= π

(p)∗
2

(
CB/R(det v′)

)
= CA/R

(
π∗2 (det v′)

)
,

where the last equality is obtained by the étaleness of the projection π2. Moreover,
we have

CA/R

(
π∗2 (det v′)

)
= CA/R(det v) = h(A, v) Frob∗R(det v),
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which, combined with the chain of equalities above, gives

h(B, v′) = h(A, v),

as desired.

2.6.2 Lifting Hasse Invariants to Characteristic Zero

Consider the Hasse invariant

h ∈ H0
(

(~Mmin
H p )Fp , (detω)⊗p−1

)
.

Since the line bundle (detω)⊗p−1 on (~Mmin
H p )Fp is ample, for sufficiently large inte-

ger k the line bundle (detω)⊗k(p−1) is very ample.

Proposition 2.11 For k ∈ Z≥0 big enough, the section

hk ∈ H0
(

(~Mmin
H p )Fp , (detω)⊗(p−1)k

)
lifts to a section

h̃k ∈ H0
(
~Mmin

H p , (detω)⊗(p−1)k
)
.

Proof It is standard to show by Serre vanishing that H1
(
~Mmin

H p , (detω)⊗(p−1)k
)

= 0
when k is sufficiently large, which in turn gives the surjectivity of

H0
(
~Mmin

H p , (detω)⊗(p−1)k
)
→ H0

(
(~Mmin

H p )Fp , (detω)⊗(p−1)k
)
.

From now on, we fix such a lift as in Proposition 2.11, E := h̃k0 , such that k0 � 0
and p - k0.

3 Analytification of Siegel–Hilbert moduli schemes

3.1 Preliminary

We recall certain definitions and results from [KL] and [Lü], which will be applied to
the rigid analytifications of the Siegel–Hilbert moduli schemes, as well as their formal
models and the automorphic sheaves.

3.1.1 Relative Compactness

Let K be a finite extension of Qp and OK the ring of integers. For X a formal scheme
over SpfOK , we denote by Xrig the rigid analytic space associated to it, and by X0 its
special fibre. For U ⊂ X an admissible open, we let ]U0[ denote the tube of U, i.e.,
the pre-image in Xrig of the U0 under the natural specialization Xrig → X0, which is
surjective. If f : X → Y is morphism of rigid spaces, we call a morphism of $-adic
OK -flat formal schemes f : X→ Y a formal model of f , if f is the rigidification of f.

Definition 3.1 Let f : X → V be a quasi-compact morphism of rigid analytic
spaces, and U ⊂ X a quasi-compact (relative to X) admissible open. We say U is
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relatively compact in X over V , denoted by

U bV X,

if there exists an admissible covering of quasi-compact subsets {Vi} of V such that
locally (over each Vi) there is a closed V -immersion of X into an n-dimensional unit
ball Dn

V (1) under which U maps into a ball Dn
V (ε) for some ε < 1.

If V = Sp K, we simply write U bV X as U b X.

The notion of relative compactness in Definition 3.1 is independent of the
choice of covering {Vi}, essentially by Raynaud’s theorem that the category of
quasi-compact rigid spaces is equivalent to that of quasi-compact admissible formal
schemes localized by admissible blow-ups.

Lemma 3.2 ([KL, 2.1.8]) Let i : Y ↪→ Y ′ and j : X ↪→ X′ be admissible open inclu-
sions, all of which are quasi-compact rigid spaces over the quasi-compact rigid space V ,
and f : Y ′ → X′ be a proper morphism. Suppose we have the following Cartesian dia-
gram

Y
f−−−−→ Xy i

y j

Y ′
f−−−−→ X′ ,

and suppose X bV X′. Then Y bV Y ′.

3.1.2 Overconvergence

Let X̄ be a quasi-compact rigid space over K, with a formal model X̄. Let D ⊂ X̄0

be a Cartier divisor. Choose a finite covering {Ui}i=1,...,n of X̄0 so that for any i the
ideal of D|Ui is generated by a single section hi ∈ OX̄0

. Choose for each hi a lifting

h̃i ∈ Γ(X̄,OX̄). For any r ∈ (|p|1/e, 1], define

X̄(r) =
⋃

1≤i≤n
{x ∈ X̄ | |h̃i | ≥ r},

which is independent of the choice of h̃i .

Proposition 3.3 ([KL, 2.3.2]) If X̄(1) bX̄ X′ for X′ a quasi-compact admissible open
of X̄, then for any r close enough to 1 we have X̄(r) ⊂ X′.

3.2 Lifting Frobenius

Let K be a finite extension of Qp. Let X be a scheme that is locally of finite type over
OK , and X the formal completion of X along its special fiber. Denote by Xrig the rigid
fibre of X via Raynaud’s functor.
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3.2.1 Passing to the Rigid Analytic Setting

We glue ~MH p ⊗Z(p) Z(p)[ζprH ] with ~Mord,tor
H p (resp. ~Mord,min

H p ) and denote the resulting

scheme by M̄H p (resp. M∗H p ).
Let M∗H p (resp. M̄H p ) be the formal completion of M∗H p (resp. M̄H p ) along the

special fiber over p. The same procedure of completion along the special fibre gives
the universal semi-abelian scheme

Ā→ M̄H p .

Combining with rigidification, we get the universal semi-abelian scheme

Ārig → M̄
rig
H p .

Take MH p to be the open formal subscheme of M∗H p whose points are in ~MH p , which
is hence equipped with the universal object

A = Ā|MH p →MH p .

Set

M
rig
H p = M̄

rig
H p ∩ (MH p )rig

Qp
,

with (MH p )rig
Qp

the rigid space associated to the Qp-scheme (MH p )Qp , which then
comes with the restriction

Arig = Ārig|
M

rig

H p
→M

rig
H p .

By adding the superscript ord, we have the analogous construction and notation
for the ordinary locus.

3.2.2 Canonical Subgroup and Frobenius

The complement D of the ordinary locus of the special fibre (M̄H p )0 of M̄H p is a
Cartier divisor, which is the vanishing locus of the Hasse invariant h, by Theorems 2.4

and 2.6. We apply the construction in Section 3.1.2 to X̄ = M̄
rig
H p , and then have for

r ∈ (|p|1/e, 1] the quasi-compact admissible opens M̄
rig
H p (r) ⊂ M̄

rig
H p . In particular, we

see by definition that M̄
rig
H p (1) = M̄

ord,rig
H p .

It is elementary to check by Definition 3.1 and [Lü, Corollary 5.11] that, for r, s ∈
(|p|1/e, 1) with s < r,

(3.2.1) M̄
rig
H p (r) b M̄

rig
H p (s)

and

M̄
ord,rig
H p b M̄

rig
H p (r).

We have the following result from [Fa] (cf. [AIP, 4.1.3] for extension to semi-
abelian schemes.)

Theorem 3.4 ([Fa, Theorem 6]) For each n ∈ Z≥1 and r sufficiently close to 1
(depending on n), there is a canonical subgroup of level n Hn(r) ⊂ Ārig[pn] the p-

divisible group G = Ārig[p∞] over M̄
rig
H p (r), which is locally free of rank pdg over
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OF , and whose restriction to the ordinary locus M
ord,rig
H p is the multiplicative subgroup

Arig[pn]mult ⊂ Arig[pn].
Moreover, the level-one canonical subgroup H1(r) is the kernel of the Frobenius on

G, and for any 1 ≤ m ≤ n, Hn(r)/Hm(r) is the canonical subgroup of Ārig[pn]/Hm(r)
of level n−m.

The multiplicative subgroup A[pn]mult ⊂ A[pn] is a finite flat group scheme of
order pndg . We have, by the proof of [Ka, 1.11.6], that A/A[pn]mult gives an element
in Mord

H p . We thus have a canonical map

ϕn : Mord
H p →Mord

H p , A 7→ A/A[pn]mult.

Proposition 3.5 If r is close enough to 1, then the morphism ϕ induces the following
morphism, which is finite flat of degree pndg :

ϕn(r) : M̄
rig
H p (r)→ M̄

rig
H p (rpn

).

Proof We have the map ϕn : M̄ord
H p → M̄ord

H p defined by Ā 7→ Ā/Ā[pn]mult, and then

the map ϕnrig
: M̄

ord,rig
H p → M̄

ord,rig
H p induced by the first one on the rigid fibre.

The claim then follows from the argument in the proof of [KL, 3.1.7], together
with the observation on abelian schemes in [Ka, 1.11.4].

Corollary 3.6 For r sufficiently close to 1, the sheaf Ārig[pn]/Hn(r) is finite flat.

Proof This is by Proposition 3.5.

3.3 The Formal Igusa Tower

Following the idea of Hida (see, e.g., [Hi02]), we define M̄
ur,ord
H p pn to be the Galois cover

of M̄ord
H p trivializing the étale sheaf Ā[pn]/Ā[pn]mult. The pre-image of Mord

H p under

the covering map is written as M
ur,ord
H p pn . We then have a proper map

M̄
ur,ord
H p pn → M̄ord

H p →M
∗,ord
H p ,

for which the Stein factorization is written as M
∗,ur,ord
H p pn .

Similarly as before, we have the universal semi-abelian scheme

Ān → M̄
ur,ord
H p pn

and the universal abelian scheme

An →M
ur,ord
H p pn

by restriction. Consider the associated rigid space M̄
ur,ord,rig
H p pn and the open subspace

M
ur,ord,rig
H p pn by taking intersection with (Mord

H p pn )rig
Qp

, the rigid space associated to the

Qp-scheme (Mord
H p pn )Qp . We then have the finite étale map

Ign : M̄
ur,ord,rig
H p pn → M̄

ord,rig
H p ,

which is a Galois cover of M̄
ord,rig
H p .
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For r close enough to 1, we set

M̄
ur,rig
H p pn (r)→ M̄

rig
H p (r)

to be the Galois cover of M̄
rig
H p (r) trivializing the finite flat sheaf Ārig[pn]/Hn(r) (see

Corollary 3.6). In particular, the ordinary locus M
ur,ord,rig
H p pn = M̄

ur,rig
H p pn (1), which justi-

fies the notation. Set

M
ur,rig
H p pn (r) = M̄

ur,rig
H p pn (r) ∩ (MH p pn )rig

Qp

for r close enough to 1, with (MH p pn )rig
Qp

the rigid space associated to the Qp-scheme
(MH p pn )Qp . For s < r with s close enough to 1, we have

(3.3.1) M̄
ur,rig
H p pn (r) b M̄

ur,rig
H p pn (s),

by Lemma 3.2 and (3.2.1).
Again by the proof of [Ka, 1.11.6], we have a well-defined map

ϕn : M
ur,ord
H p pn →M

ur,ord
H p pn , An 7→ An/An[p]mult.

sitting in the following commutative diagram

M
ur,ord
H p pn

ϕn

−−−−→ M
ur,ord
H p pny Ign

y Ign

MH p

ϕ1

−−−−→ MH p .

Proposition 3.7 For r close enough to 1, the map ϕn induces the following morphism,
which is finite flat of degree pdg :

ϕ̄n(r) : M̄
ur,rig
H p pn (r)→ M̄

ur,rig
H p pn (rp).

Proof This follows from Proposition 3.5 and [KL, 2.2.1].

4 Overconvergence of Siegel–Hilbert Modular Forms

4.1 P-adic Banach Spaces

Set Z̄ord,rig ⊂ M̄
ur,ord,rig
H p pn to be the tube of (M̄

ur,ord
H p pn )0\(M

ur,ord
H p pn )0, and set Zord,rig to be

its intersection with M
ur,ord,rig
H p pn .

Lemma 4.1 (Köcher Principle) Assume dg > 1 (to exclude the modular curve case).
For r < 1 sufficiently close to 1, we have the natural isomorphisms

H0
(

M̄
ur,rig
H p pn (r), ωκ

) ∼−→ H0
(

M
ur,rig
H p pn (r), ωκ

) ∼−→ H0
(

M
ur,rig
H p pn (r)\Zord,rig, ωκ

)
.

Proof It suffices to show that on formal affine open subsets, the natural map

H0(M̄
ur,ord
H p pn , ωκ)→ H0(M

ur,ord
H p pn , ωκ)

is an isomorphism. Furthermore, by the existence of the Galois covering of Mord
H p

by M
ur,ord
H p pn , we just need to show the isomorphism for n = 0. This then reduces to
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the Köcher principle for classical forms without level at p, which can be shown as in
[FC, Proposition 1.5, Chapter V].

Recall we have the connected component Mγv
H p pn of Mv

H p pn for any prime ideal
v ⊂ O and double coset γv.

Define M
γv,ur,rig
H p pn (r) by the Cartesian diagram

M
γv,ur,rig
H p pn (r) −−−−→ (Mγv

H p pn )rig
Qpy y π1,γv

M
ur,rig
H p pn (r) −−−−→ (MH p pn )rig

Qp
.

Note that the left vertical map is finite étale, being the base change of the finite
étale map π1,γv . We also denote it by π1,γv and the other projection by π2,γv .

Proposition 4.2 Let r < 1 be sufficiently close to 1. We have that O
(

M
γv,ur,rig
H p pn (r)

)
is

a p-adic Banach space with respect to the norm

| f |r := sup
x∈M

γv ,ur,rig

H p pn (r)

| f (x)|

for a function f ∈ O
(

M
γv,ur,rig
H p pn (r)

)
. This is the same as the norm

| f |◦r := sup
x∈M

γv ,ur,rig

H p pn (r)\π−1
1,γv

(Zord,rig)

| f (x)|.

Proof We use the argument in the proof of [KL, 4.1.6].
First note that | f |◦r is a well-defined norm on the p-adic Banach space

O
(

M
γv,ur,rig
H p pn (r)\π−1

1,γv
(Zord,rig)

)
,

with the latter space being finite over M̄
ur,rig
H p pn (r)\Z̄ord,rig and hence quasi-compact. (If

F is a coherent sheaf on a quasi-compact rigid space X, then F(X) is a p-adic Banach
space.)

Then we only need to show that

(4.1.1) | f |r = | f |◦r , ∀ f ∈ O
(

M
γv,ur,rig
H p pn (r)

)
,

which will then realize

O
(

M
γv,ur,rig
H p pn (r)

)
↪→ O

(
M

γv,ur,rig
H p pn (r)\π−1

1,γv
(Zord,rig)

)
as a closed subspace. For this, recall we have the Köcher principle and the fact that
the natural projection

M
γv,ur,ord,rig
H p pn

π1,γv

−−→M
ur,ord,rig
H p pn

Ign

−→M
rig
H p

is finite étale. The former is Lemma 4.1, and the latter holds because both π1,γv and
Ign are finite étale by construction. Then by the argument in the proof of [KL, 4.1.6],
we are reduced to show (4.1.1) for r = 1, n = 0, and may assume f extends to
f ∈ O(M̄ord

H p ) (by Lemma 4.1). In this case we may assume that its image f0 ∈
O(M̄ord

H p )0 is non-zero. If | f |◦1 < | f |1 = 1, then f0 is nilpotent on the open subset
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(Mord
H p )0 of (M̄ord

H p )0. Thus it vanishes on (Mord
H p )0 and hence on the whole (M̄ord

H p )0 by
Theorem 2.6, a contradiction.

Corollary 4.3 Let θ : π∗2,γv

(
(detω)k0(p−1)

)
→ π∗1,γv

(
(detω)k0(p−1)

)
be the canoni-

cal map of sheaves on M
γv,ur,rig
H p pn . Then for r sufficiently close to 1,

θ
(
π∗2,γv

(E)
)

= fk0π
∗
1,γv

(E) ∈ H0
(

M
γv,ur,rig
H p pn (r), π∗1,γv

(
(detω)k0(p−1)

))
for some fk0 ∈ O

(
M

γv,ur,rig
H p pn (r)

)
. Here we have used the same symbol E to denote the

pullback of E from M
rig
H p to its Galois cover M

ur,rig
H p pn .

Moreover, we have that fk0 − 1 is topologically nilpotent. In fact, for any 0 < ε ≤ 1,
there is an r ≤ 1 such that | fk0 − 1|r ≤ |p|ε.

Proof We see that the proof of [KL, 4.1.7] applies. We only give a sketch here. As
before, we reduce to the case n = 0. The first assertion then follows from the fact that
the special fibre (M

∗,ord
H p )0 is normal, by Theorem 2.7. To show the second assertion,

first note that the case r = 1 follows from Lemma 2.10 and Proposition 4.2. The case
for a general r then follows from the r = 1 case, as well as Proposition 3.3.

Using Corollary 4.3 we now show the following.

Proposition 4.4

(i) We have the inclusion

π2,γv (M
γv,ur,ord,rig
H p pn ) ⊂M

ur,ord,rig
H p pn ,

and the inclusion

π2,γv

(
M

γv,ur,rig
H p pn (r)

)
⊂M

ur,rig
H p pn (r)

for r sufficiently close to 1.

In particular, the inclusions above hold for π2,a on M
a,ur,ord,rig
H p pn , with a ⊂ O an

ideal.
(ii) For r → 1−, π2,(p) induces a map

M
(p),ur,rig
H p pn (rp)→M

ur,rig
H p pn (r).

Proof (i) The first assertion follows from the construction of M
ur,ord,rig
H p pn .

For the second inclusion, we argue as in the proof of [KL, 4.1.10]. First observe
that it is enough to show this for E-valued points for any finite extension E/Qp. By

the construction of M
γv,ur,rig
H p pn (r) we may assume n = 0. Let f : A → B be an element

in M
γv,ur,rig
H p (r)(E). We may enlarge E so that A extends to a semi-abelian scheme Ā

over OE. We may and do assume that Ā is an abelian scheme, because otherwise
r = 1 and we go back to the first assertion. Then we can extend Ker( f ) to a finite flat
subgroup scheme of Ā. The quotient of Ā by this subgroup scheme is denoted by B̄,
and the projection Ā → B̄ by pr. Let vĀ (resp. vB̄) be a basis of H0(Ā,Ω1

Ā/OE
) (resp.

H0(B̄,Ω1
B̄/OE

)). Then we must have

pr∗(det vB̄) = a det vĀ
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for some a ∈ OE.
Now, by the definition of overconvergence, it suffices to show that

|E(A, det vĀ)| ≤ |E(B, det vB̄)|.

By Corollary 4.3 we have

E(B, det vB̄) = fk0 E
(

A, pr∗(det vB̄)
)
,

with fk0 − 1 topologically nilpotent. On the other hand, we have the equality

E
(

A, pr∗(det vB̄)
)

= a(1−p)k0 E(A, det vĀ).

Now the result follows because | fk0 (A, vĀ)| = 1 and |a(1−p)k0 | ≥ 1.
(ii) This is proved as in [KL, 4.3.3]. By Proposition 3.7, for s close enough to 1 we

have the natural map

ϕ̄n(s) : M
ur,rig
H p pn (s)→M

ur,rig
H p pn (sp)

by restricting to the intersection of the map in Proposition 3.7 with (MH p pn )rig
Qp

. For

r → 1−, by part (i) we see π2,(p) induces a map

M
(p),ur,rig
H p pn (rp)→M

ur,rig
H p pn (s)

for some rp ≤ s. If s ≥ r, we are done. Now assume s < r. Thus it suffices to show
that their composition

M
(p),ur,rig
H p pn (rp)

π2,(p)

−−−→M
ur,ord,rig
H p pn (s)

ϕ̄n(s)
−−−→M

ur,rig
H p pn (sp)

factors through M
ur,rig
H p pn (rp) ⊂ M

ur,rig
H p pn (sp), for which it is in turn enough to show the

further composition with M
rig
H p (sp)

M
(p),ur,rig
H p pn (rp)

π2,(p)

−−−→M
ur,rig
H p pn (s)

ϕ̄n(s)
−−−→M

ur,rig
H p pn (sp)

Ign

−→M
rig
H p (sp)

factors through M
rig
H p (rp).

Tracing the construction we know that for r → 1− the latter composition is in-
duced by the map

M
(p),ur,ord
H p pn

π1,(p)

−−−→M
ur,ord
H p pn

Ign

−→Mord
H p

[·p]
−−→Mord

H p ,

where the map [ · p] is the multiplication by p on the level structure of the universal
abelian scheme. To see this, using Proposition 3.3, we only have to check the state-
ment for the case r = 1, which is easily seen. Meanwhile, we notice that [ · p] induces
the identity map on Hasse invariant, because the Hasse invariant is independent of

level structures. Hence it maps M
rig
H p (rp) to itself. This concludes the proof.

4.2 Hecke Operators on Overconvergent Siegel–Hilbert Modular Forms

Let L/Qp be a finite extension and R an L-affinoid algebra with a fixed sub-
multiplicative semi-norm extending the norm on L, and Y ∈ R such that

|Y | < |p|
1

p−1−1.
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We use the convention that for a Qp-analytic space X, XR = X ×Sp Qp SpR. Define

MH p pn,κ,r(L) = H0
(

M
ur,rig
H p pn (r)L, ω

κ
)
,

MH p pn,κ+Y,r(R) = H0
(

M
ur,rig
H p pn (r)R, ω

κ
)
,

M†H p pn,κ(L) = lim
−→

r→1−1

MH p pn,κ,r(L),

M†H p pn,κ+Y (R) = lim
−→

r→1−1

MH p pn,κ+Y,r(R).

Remark 4.5 Let U +
F be the group of totally positive units in OF , and UF,N its sub-

group of elements that are congruent to 1 modulo N. As noted in [KL, 1.11.8] and
Remark 2.1, the moduli spaces we have constructed are for G′ = G ×ResF/Q Gm Gm,
where the two maps in the product are the determinantal and diagonal ones. This is
because multiplying by U +

F on the polarizations of tuples in MH p pn is an isomorphism
for the subgroup U 2

F,N ⊂ U +
F . We thus get an action of the finite group U +

F /U
2
F,N on

MH p pn , which induces a natural action on H0(M
ur,rig
H p pn (r), ωκ). Hence the U +

F /U
2
F,N -

invariants of the spaces above are the spaces of forms on G = ResF/Q GSp2g .

By abuse of notation, we call these spaces the spaces of overconvergent Siegel–
Hilbert modular forms of level H p pn and of weight κ (resp. κ + Y ) with coefficients
in L (resp. R).

By Proposition 4.4 (i), we have two projections

π1,γv , π2,γv : M
γv,ur,rig
H p pn (r) −→M

ur,rig
H p pn (r).

We then get the (pullback of) canonical map of sheaves on M
γv,ur,rig
H p pn (r)R

π∗2,γv
ωκ −→ π∗1,γv

ωκ,

whose composition with multiplication by f
Y

k0(p−1)

k0
gives the map

π∗2,γv
ωκ −→ π∗1,γv

ωκ
· f

Y
k0(p−1)

k0

−−−−−→ π∗1,γv
ωκ.

Here

f
Y

k0(p−1)

k0
:= exp

( Y

k0(p − 1)
log fk0 )

is a well-defined element in O(M
γv,ur,rig
H p pn (r)R) for r such that | fk0 − 1|r ≤ |p|ε, where

ε is chosen to satisfy |Y | |p|ε < |p|1/(p−1). We remark that the analyticity of f
Y

k0(p−1)

k0

follows from the assumption that |Y | < |p|
1

p−1−1 (and the assumption that p - k0).
Applying π1,γv∗ to the above map, and pre-composing it with the map from ωκ

and composing it with the trace map, we obtain

ωκ → π1,γv∗π
∗
2,γv
ωκ −→ π1,γv∗π

∗
1,γv
ωκ

π1,γv∗◦· f
Y

k0(p−1)
k0

−−−−−−−−−→ −→π1,γv∗π
∗
1,γv
ωκ

Tr
−→ ωκ.
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Then taking global sections, we get an endomorphism Tγv of H0
(

M
ur,rig
H p pn (r)R, ωκ

)
.

The resulting Hecke operator will denoted by Tv,i (resp. Sv) if γv = Tv,i (resp. Sv).

Letting r → 1−, we obtain the Hecke operator on M†H p pn,κ+Y (R), which is denoted
by the same symbol. The ring of endomorphisms generated by all the Hecke opera-
tors (with v and γv varying) is denoted by T†H p pn,κ+Y . The product of Tv,1’s for all v|p
is denoted by U(p).

The construction made above and Corollary 4.3 thus give rise to the following.

Proposition 4.6 Let ψt : R → L′ be the character to a finite extension L′/L that
sends Y to (p − 1)k0t for some t ∈ Z≥0. We have the following commutative diagram
compatible with the actions of Hecke operators T:

(4.2.1)

M†H p pn,κ+Y (R)
Id⊗ψt−−−−→ M†H p pn,κ(L′)

·Et

−−−−→ M†
H p pn,κ·Nm(p−1)k0t (L′)

T

y T

y
M†H p pn,κ+Y (R)

Id⊗ψt−−−−→ M†H p pn,κ(L′)
·Et

−−−−→ M†
H p pn,κ·Nm(p−1)k0t (L′)

Proof Let T = Tγv . Then we are supposed to check that for v f ⊗x ∈ M†H p pn,κ+Y (R),

(4.2.2) ψt

(
T( f ⊗ x)

)
∪ Et = T

(
f ⊗ ψt (x) ∪ Et

)
.

(This suffices for the proof, since the Tγv ’s generate the Hecke algebra.)
Now, unwinding the definition of the Hecke operator T, we see that for A→ B an

isogeny in M
γv,ur,rig
H p pn (r),

T( f ⊗ x)(A) = f (B)⊗ f
Y

k0(p−1)

k0
x.

Then, applied to (A→ B), the left hand side of the equality (4.2.2) is equal to

f (B)⊗ ψt (x) ∪ Et (B),

while the right hand side is equal to(
f (B)⊗ ψt (x)

)
∪ f t

k0
Et (A),

since ψt (Y ) = k0(p − 1)t . Now the result follows from Corollary 4.3.

Proposition 4.7 For s < r < 1 with s sufficiently close to 1, the following natural
inclusion is completely continuous:

Res(s, r) : H0
(

M
ur,rig
H p pn (s), ωκ

)
↪→ H0

(
M

ur,rig
H p pn (r), ωκ

)
.

Proof It is equivalent to showing this for the natural inclusion

H0
(

M̄
ur,ord,rig
H p pn (s), ωκ

)
↪→ H0

(
M̄

ur,rig
H p pn (r), ωκ

)
by the Köcher principle Lemma 4.1.

Recall M̄
ur,rig
H p pn (r) b M̄

ur,rig
H p pn (s) from (3.3.1). Now we conclude by [KL, Proposition

2.4.1].
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Lemma 4.8 Suppose r is close enough to 1. The Hecke operator U(p) on the R-module
MH p pn,κ+Y,r(R) can be constructed as the composition of the natural inclusion Res(rp, r)
and the following map induced by π2,(p):

(4.2.3) H0
(

M
ur,rig
H p pn (r), ωκ

)
→ H0

(
M

ur,rig
H p pn (rp), ωκ

)
.

Proof This follows from Proposition 4.4 (ii).

Corollary 4.9 For r close enough to 1, the action of U(p) on MH p pn,κ+Y,r(R) is com-
pletely continuous.

Proof We know by Proposition 4.7 that the map Res(r, rp) is completely continu-
ous. Moreover, the map (4.2.3) is continuous. Since a composition of a continuous
map followed by a completely continuous one is again completely continuous, we are
done.

Remark 4.10 It is the eigenvalues of the Hecke operator U(p) that we will interpo-
late, since we only construct a one-parameter family of overconvergent Siegel–Hilbert
eigenforms.

4.3 Constructing Families of Overconvergent Siegel–Hilbert Modular Forms

4.3.1 The Setup

Recall that Tg is the standard diagonal maximal torus of GSp2g/Z. Denote by c : Tg →
Gm the character:

c :



a1

. . .
ag

ba−1
1

. . .
ba−1

g


7→ a1 · · · agb−2.

Let W be the rigid space whose E-valued points are continuous homomorphisms
in Homcont

(
Tg(O⊗Z Zp), E×

)
for any (not necessarily finite) field extension E/Qp.

In the rest of the paper, we fix a classical weight κ and a finite extension L/Qp. For
our purpose we only need the part of the weight space that “differs” from our fixed
weight κ by parallel weights. Thus let Wκ be the admissible subspace of W whose
E-valued points, for E ⊂ Cp a closed subfield containing L, are

Wκ(E) = {χ = κ · (τ ◦ c ◦Nm): Tg(O⊗Z Zp)→ E×}

for some continuous character τ : Z×p → E× satisfying

vp

(
1− τ (t)

)
>

1

p − 1
, t ∈ Z×p .
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We define a rigid analytic function Y on Wκ as follows: if χ ∈Wκ(E) is as above,
and is associated to τ : Z×p → E×, then the value of Y at χ is given by

Y (χ) =
log τ (t)

log t

for t ∈ Z×p sufficiently close to the identity.

By the construction above, we have that |Y | < |p|
1

p−1−1, hence the Banach module
M†H p pn,κ+Y (R) of overconvergent forms is well-defined, for any SpR ⊂ Wκ. Let

T†,ur
H p pn,κ+Y be the closure of the ring of endomorphisms on M†H p pn,κ+Y (R) generated

by the Hecke operators at the places away from the level, under the norm defined in
Proposition 4.2.

Proposition 4.11 The R-algebra T†,ur
H p pn,κ+Y is commutative.

Proof Let Wcl
κ be a Zariski dense set of integral weights in the Y -neighbourhood

of κ, which can be achieved by taking the parameters t to be sufficiently large powers
of p, by Proposition 4.6. By the analyticity obtained in Proposition 4.6, each element
in T†,ur

H p pn,κ+Y is determined by the Zariski dense set Wcl
κ . We then have the injection

T†,ur
H p pn,κ+Y ↪→

∏
w∈Wcl

κ

T†,ur
H p pn,w,

where each factor is the specialization. On the other hand, each Hecke ring T†,ur
H,pn,w

with the fixed integral weight w is commutative, being the completion of a commu-
tative algebra of Hecke correspondences. Thus the product over Wcl

κ is commutative,
so is its subring T†,ur

H p pn,κ+Y .

Let

Zκ = Sp T†,ur
H p pn,κ+Y

be the rigid space over L associated to the R-algebra T†,ur
H p pn,κ+Y . It comes with the

weight map w : Zκ → SpR ⊂Wκ. Define Xκ = Zκ×Gm. Write xp for the canonical
co-ordinate on Gm.

4.3.2 Construction by the Coleman–Mazur Machinery

Now we are ready to define the one-parameter families of overconvergent Siegel–
Hilbert modular forms of level H p pn as Coleman and Mazur proceed in [CM]. For
our purpose, it is enough to construct it over any affinoid quasi-compact subset
SpR ⊂Wκ. We fix such an R from now on.

Set H to be the (topological) commutative ring generated by the formal vari-
ables X(p), together with Xv,i ,Yv (here i = 1, . . . , g) for all prime ideals v ⊂ O away
from the level. Let ι : H→ O(Xκ) be the map sending

Xv,i 7→ tv,i , Yv 7→ sv, X(p) 7→ xp.
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Here we have denoted by tv,i and sv the image of the Hecke operators Tv,i and Sv

in O(Xκ) respectively, regarded as functions on Zκ. Then H acts on M†H p pn,κ+Y (R)
with the action factoring through ι(H).

For r sufficiently close to 1, we know by Corollary 4.9 that U(p) acts completely
continuously on (MH p pn,κ+Y,r)(R). This implies that the action of ι(α)U(p) on
MH p pn,κ+Y,r(R) is completely continuous for any α ∈ H. Following [CM, Section 4],
for each α ∈ H, we can form the Fredholm series

Pα(T) = det
R

(
1− ι(α)U(p)T|MH p pn,κ+Y,r(R)

)
∈ R[[T]],

which is independent of the choice of r (for r sufficiently close to 1) by the following
lemma.

Lemma 4.12 Let 0 < r < r′ < 1 with r sufficiently close to 1. Then the Banach
R-module MH p pn,κ+Y,r(R) admits an orthogonal basis that is also an orthogonal basis
for the R-submodule MH p pn,κ+Y,r′(R).

Proof Since MH p pn,κ+Y,r(R) = MH p pn,κ+Y,r(Qp)⊗̂QpR, we may assume R = Qp and

Y = 0. Recall that, as r is sufficiently close to 1, the natural map M
∗,ur,rig
H p pn (r) →

M
∗,rig
H p (r) is finite étale. We can conclude the proof by [KL, 2.4.5], namely in the

notation of loc. cit. we let F be the push-forward of ωκ under the composition (recall
the notation from Section 3.3)

M̄
ur,rig
H p pn (r)→M

∗,ur,rig
H p pn (r)→M

∗,rig
H p (r),

which is proper. Moreover, we have the line bundle L = (detω)p−1, which is ample
over M∗H p , and D ⊂ (M∗H p )Fp , the divisor where the Hasse invariant h vanishes. Then
[KL, 2.4.5] gives the result we require.

Set Eκ = Ered
κ ⊂ Xκ to be the nilreduction of the Zariski-closed subspace of Xκ

cut out by the ideal generated by the functions Pα
(

(xpι(α))−1
)

for all the α ∈ H

such that ι(α) is a unit. Alternatively, we can define Eκ as follows.
The entire series associated to α ∈ H, Pα(T) ∈ R[[T]], defines a closed subspace

Zα ⊂ SpR× A1,

where T is regarded as the co-ordinate on A1. For each α ∈ H such that ι(α) is unit,
we can define the map

rα : Xκ = Zκ × Gm → SpR× A1 : x = (z, s) 7→
(

w(z),
s(

ι(α)
)

(x)

)
,

where we have regarded ι(α) as a function on Xκ. Then we set Eκ to be the nilreduc-
tion of ⋂

α∈H,
ι(α)∈O(Xκ)×

r−1
α (Zα).

The following theorem is obtained from the above construction formally, as
in [CM].
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Theorem 4.13

(i) Let E ⊂ Cp be a closed subfield containing L. For an E-valued point x ∈ Eκ(E),

there is a non-zero simultaneous eigenvector fx ∈ M†H p pn,κ+Y (x)(E) for all the Hecke

operators in T†H p pn,κ+Y such that the Hecke eigenvalues λTv,i (z), λSv (x), λU(p) (x) for
the operators Tv,i , Sv and U(p) satisfy

λTv,i (x) = tv,i(x), λSv (x) = sv(x), λU(p) (x) = xp(x).

For a fixed Y0 ∈ E with vp(Y0 − 1) > 1
p−1 , the above assignment induces a bijec-

tion between the points {x ∈ Eκ(E)}Y (x)=Y0 and systems of T†H p pn,κ+Y -eigenvalues

of an eigenvector f ∈ M†H p pn,κ+Y0
(E) of finite slope at p.

(ii) The rigid analytic space Eκ is a curve. The weight map w : Eκ →Wκ is, locally in
the domain, finite flat. The image of any component of Eκ under this map misses
at most finitely many points in Wκ.

The following theorem plays a similar (yet weaker) role as the expected result that
classical Siegel–Hilbert eigenforms are Zariski dense in the rigid analytic space Eκ.

Theorem 4.14 Let f be a classical Siegel–Hilbert modular eigenform of weight κ
and of level H p pn. There exists, for any positive integer t with vp(t) large enough, a
Siegel–Hilbert modular eigenform ft of weight κ ·Nm(p−1)k0t and of the same level, such
that the Hecke eigenvalues on the ft ’s converge p-adically to that of f , as vp(t) → +∞.
Furthermore, if f is cuspidal, then the ft can also be taken to be cuspidal.

Proof The proof is completely similar to that of [KL, 4.5.6].
As before, we take the weight space Wκ centered in κ to be SpR since the con-

struction is local. By the construction of Eκ, when ι(α) is unit, we have a map

rα : Eκ −→ Zα.

By the method of [CM, Chapter 7], we see the projection rα is finite.
Let x ∈ Eκ(L) be the point corresponding to f . By the arguments of [CM, 6.2.2

and 6.3.2] we may assume

(4.3.1) r−1
α

(
rα(x)

)
= {x}.

By this property, we only need to find a family of elements in Zα(L) converging to
rα(x) := x0.

Let w ∈ SpR denote the weight of x. Let x1, . . . , xr be the points in Zα that lie
over the weight w and correspond to other (finitely many by [CM, 1.3.7]) roots of
Pα(T)w ∈ L[T], the specialization by w of Pα(T) ∈ R[[T]]. The ι(α)U(p)-eigenvalue
of xi (0 ≤ i ≤ r) is denoted by λi . By the (local) finite flatness of the weight map w
(shrinking SpR if necessary) we may assume there are disjoint connected compo-
nents {Zi}i=0,...,r of Zα, such that for any 0 ≤ i ≤ r,
• xi is the only point in Zi among the points {x0, . . . , xr}.
• T/λ0 is topologically unipotent on Z0, and is topologically nilpotent on Zi for any

i ≥ 1.
• Zi is finite over SpR.
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Thus
⋃r

i=1 Zi is finite flat over SpR, hence corresponds to a polynomial F(T) ∈
R[[T]] dividing Pα(T). By the construction, we have the following well-defined idem-
potent operator

e = lim
n→∞

( ι(α)U(p)

λ0

) n! F(αU(p))

F(λ0)−1
,

which is easily checked to be the identity on a point in Z0 and kill any points in Zi

for i ≥ 1.
Consider the integers t such that Y−1

(
Y (x) + (p − 1)k0t

)
∈ SpR. We form the

Siegel–Hilbert modular eigenform of level H p pn and weight κ + (p − 1)k0t :

gt = e(Et · f ) = e(Et · g0).

By Proposition 4.6 (applying the first row of diagram (4.2.1) to f ) and the conti-
nuity of the Hecke action on M†H p pn,κ+Y (R), we have that

gt 6= 0, if vp(t)� 0.

We can write Et · g0 as a finite sum of classical eigenforms. If f is cuspidal to begin
with, then Et · g0 can be written as a finite sum of cuspidal eigenforms. Pick one of
them so that the associated point xt ∈ Eκ has image in Z0 under the projection rα.
By this construction, the point x is the limit of rα(xt ) when t goes to 0 p-adically.
Now by (4.3.1), we have that x is the limit of xt . Let ft be the classical Siegel–Hilbert
modular form corresponding to xt . This finally concludes the proof.

Remark 4.15 Using the result of Bijakowski [Bi] on classicality of overconvergent
automorphic forms on PEL Shimura varieties of type (A) and (C) in the unramified
case, we should be able to prove the density of classical points in the eigenvariety E

when p is a good prime for the moduli problem.

4.4 Complement

In this final subsection we give a complement to Theorem 4.14 that is needed for the
application [Mo].

Thus let v be a prime of O with v - p. Fix a Bernstein component Bv of GSp2g(Fv).
Recall that Bv is given by the (equivalence class of) data given by a pair (M, τ ),
where M is a Levi subgroup of GSp2g/Fv

, and τ is a supercuspidal representation
of M(Fv), up to twisting by unramified characters of M(Fv). Let E be a number
field over which Bv is defined, and denote by zv = E[Bv] the affine coordinate ring
of Bv, which is known as the Bernstein centre of Bv. We have an idempotent element
ev ∈ zv, such that for any irreducible admissible representation πv of GSp2g(Fv), we
have πv belongs to the component Bv if and only if ev · πv 6= 0.

Now we come back to the context of the previous subsections. Let l be the rational
prime below the prime v, and let m be the exact power such that lm divides N. We
assume that n is sufficiently large that the following holds: denoting by Kv(m) the
principal congruence subgroup at the prime v of level n, with associated idempotent
eKv(m). Then we assume that n is large enough that eKv(m) · ev = ev, with ev being
the idempotent associated to the Bernstein component Bv as above. We may also
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assume that the extension L/Qp in the last subsection to be large enough to contain
the number field E.

We note that in the particular case where Bv is the Iwahori component associated
to the (standard) Iwahori subgroup Iv ⊂ GSp2g(Fv), then for any πv belonging to Bv,

we have U(p) acts invertibly on πIv
v (cf. [BC, Section 6.4.1]).

Back to the fixed Bernstein component Bv as above. The Bernstein centre zv acts
on the space of overconvergent Siegel–Hilbert modular forms M†H p pn,κ+Y (R). Indeed
by the theory of Bernstein centre it suffices to see that the local Hecke algebra of
GSp2g(Fv) with respect to the congruence subgroup Kv(m) acts on M†H p pn,κ+Y (R).
Since v - p, this follows by a similar argument as in Section 4.2.

As in [BC, Chapter 7], we can then form the space of overconvergent Siegel–
Hilbert modular forms associated to the idempotent ev:

evM†H p pn,κ+Y (R).

Then the same argument as in the proof of Theorem accum4.14 but with the con-
structions applied to the space evM†H p pn,κ+Y (R), yields the following.

Theorem 4.16 Let f be a classical cuspidal Siegel–Hilbert modular eigenform of
weight κ and of level H p pn. Let π be the cuspidal automorphic representation of
GSp2g(AF) generated by f , and assume that πv belongs to Bv. There exists, for any pos-
itive integer t with vp(t) large enough, a Siegel–Hilbert cuspidal eigenform ft of weight
κ ·Nm(p−1)k0t and of the same level, such that the Hecke eigenvalues on the ft ’s converge
p-adically to that of f , as vp(t)→ +∞. Furthermore the ft can be taken to have the fol-
lowing property: denoting by πt the cuspidal automorphic representation of GSp2g(AF)
generated by ft . Then πt,v belongs to Bv.
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