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Abstract

Dependence structures for bivariate extremal events are analyzed using particular types of
copula. Weak convergence results for copulas along the lines of the Pickands–Balkema–
de Haan theorem provide limiting dependence structures for bivariate tail events. A
characterization of these limiting copulas is also provided by means of invariance
properties. The results obtained are applied to the credit risk area, where, for intensity-
based default models, stress scenario dependence structures for widely traded products
such as credit default swap baskets or first-to-default contract types are proposed.
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1. Introduction

The reasons for studying and modeling dependencies in finance and insurance are of dif-
ferent types. One motivation is that independence assumptions, which are typical of many
stochastic models, are often due more to convenience than to the nature of the problem at
hand. Furthermore, there are situations where the neglect of dependence effects may incur a
(dramatic) risk underestimation (see, e.g. Bäuerle and Müller (1998) and Daul et al. (2003)).
Besides this, widely used scalar dependence or risk measures such as linear correlation, tail-
dependence coefficients, and value at risk generally do not provide a satisfactory description
of the underlying dependence structure and have severe limitations when used for measuring
(portfolio) risk outside the Gaussian world (see, e.g. Embrechts et al. (2002) and Juri and
Wüthrich (2004) for counterexamples).

Taking care of dependencies therefore becomes important in extending standard models
to provide more efficient risk management. However, relaxing the independence assumption
yields much less tractable models. It is therefore not surprising that only recently, i.e. within
the last ten years, has the mathematical literature on the risk management of dependent risks
undergone significant development. The main message of much of this research is the following
(see, e.g. Dhaene and Goovaerts (1996), Dhaene and Denuit (1999), Frees and Valdez (1998),
Joe (1997), Schönbucher and Schubert (2001), and Juri and Wüthrich (2002), (2004), among
others). It is (intuitively) clear that the probabilistic mechanism governing the interactions
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between random variables is completely described by their joint distribution. On the other
hand, in most applied situations, the joint distribution may be unknown or difficult to estimate,
so that only the marginals are known (estimated or fixed a priori). To tackle this problem, a
flexible and powerful approach consists in trying to model the joint distribution by means of
copulas. The latter, which are often called dependence structures, can be viewed as marginal
free versions of joint distribution functions capturing scale-invariant dependence properties of
the random variables.

The drawback to the copula approach is that it is usually difficult to choose or find the
appropriate copula for the problem at hand. Often, the only possibility is to start with some
guess, such as a parametric family of copulas, and then try to fit the parameters (as in, e.g. Daul
et al. (2003)). As a consequence, the models obtained may suffer from a certain degree of
arbitrariness. As was shown by Juri and Wüthrich (2002), (2004), a partial remedy to this
weakness of the copula approach is provided by dependence models for (bivariate) conditional
joint extremes, from which limiting results along the lines of the Pickands–Balkema–de Haan
theorem are obtained. Such ‘copula-convergence theorems’ reflect a distributional approach
to the modeling of dependencies in the tails and provide natural descriptions of multivariate
extremal events. Moreover, they differ from classical bivariate extreme value results, since the
limits obtained are not bivariate extreme value distributions. A further advantage of these kinds
of results is that they can also allow us to better face the problem of the lack of data, which
is typical for rare events. In fact, there are situations in which the knowledge of the limiting
dependence structure reduces the issue of modeling tail events to the estimation of only one
parameter (Juri and Wüthrich (2002)).

1.1. Outline of the paper

The paper is structured as follows. In Section 2.1 we briefly recall the copula concept and
all of its properties that we will need in the rest of the paper. The idea of dependence structures
for tail events is then formalized in Section 2.2, where the concept of a lower tail-dependence
copula (LTDC) is introduced; this provides a natural description of conditional bivariate joint
extremes. Sections 3 and 4 contain the main results, which extend some of the work of Juri
and Wüthrich (2002), (2004). In particular, under suitable regularity conditions, Theorem 3.1
identifies possible LTDC limits, i.e. limit laws for bivariate joint extremes. Motivated by
classical results such as the central limit theorem and the Fisher–Tippett theorem, we show in
Section 4 that LTDC limits are characterized by invariance properties (see Theorems 4.1 and 4.2
and Corollary 4.1). In Section 5 we show how the results of the preceding sections can be
applied to the credit risk area, where, for intensity-based default models, we obtain dependence
structures characterizing the behavior under stress scenarios of widely traded credit derivatives
such as credit default swap baskets or first-to-default contract types. The proofs of our results,
where pertinent, are collected in Section 6.

2. Dependence structures for tail events

2.1. Preliminaries

As mentioned above, one of the main concepts used to describe scale-invariant dependence
properties of multivariate distributions is that of the copula. In this work, we focus on bivariate
continuous random vectors only; most of the following preliminary material can be found in
Nelsen (1999) or Joe (1997).

Definition 2.1. A two-dimensional copula is a two-dimensional distribution function re-
stricted to [0, 1]2 with standard uniform marginals.
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Copulas can be equivalently defined as functions C : [0, 1]2 → [0, 1] satisfying, for 0 ≤
x ≤ 1 and (x1, y1), (x2, y2) ∈ [0, 1]2 with x1 ≤ x2 and y1 ≤ y2, the conditions

C(x, 1) = C(1, x) = x, C(x, 0) = C(0, x) = 0, (2.1)

C(x2, y2) − C(x2, y1) − C(x1, y2) + C(x1, y1) ≥ 0. (2.2)

In fact, it is easily seen that (2.1) translates into the uniformity of the marginals and that (2.2),
which is known as the 2-increasing property, can be interpreted as P[x1 ≤ X ≤ x2, y1 ≤
Y ≤ y2], for a pair (X, Y ) having distribution function C. Note that (2.2) neither implies nor
is implied by the fact that C is increasing in each argument. However, (2.1) together with
(2.2) imply that C increases in each variable, and that C is Lipschitz continuous with Lipschitz
constant 1.

One of the most important and useful results about copulas is Sklar’s theorem, stated below
in its bivariate form. A proof of Theorem 2.1 can be found, e.g. in Nelsen (1999, p. 18) or in
Sklar (1959).

Theorem 2.1. (Sklar’s theorem.) (i) Let C be a copula and let F1 and F2 be univariate
distribution functions. Then, for (t1, t2) ∈ R

2,

F(t1, t2) := C(F1(t1), F2(t2)) (2.3)

defines a distribution function with marginals F1 and F2.

(ii) Conversely, for a two-dimensional distribution function F with marginals F1 and F2, there
is a copula C satisfying (2.3). This copula is not necessarily unique, but it is if F1 and F2 are
continuous, in which case, for any (x, y) ∈ [0, 1]2,

C(x, y) = F(F−1
1 (x), F−1

2 (y)), (2.4)

where F−1
1 and F−1

2 denote the generalized left-continuous inverses of F1 and F2, respectively.

Sklar’s theorem provides the motivation to refer to copulas as dependence structures that
capture scale-invariant dependence properties. In fact, we see from (2.3) that C couples the
marginals F1 and F2 to the joint distribution function F , thus separating dependence and
marginal behaviors. Further, it is easy to check that for random variables X1 and X2 with joint
distribution function F , copula C (in the sense that C is a copula satisfying (2.3)), and strictly
increasing functions f1, f2 : R → R, the variables f1(X1) and f2(X2) also have copula C.

An example of a copula is the following. Throughout the rest of the paper we will encounter
others.

Example 2.1. The Marshall and Olkin copula with parameters α, β ∈ [0, 1] is defined, for
x, y ∈ [0, 1], by

Cα,β(x, y) := (x1−αy) ∧ (xy1−β),

where, for real numbers s and t , the expression s ∧ t denotes their minimum.

2.2. Tail-dependence copulas

A natural way to construct dependence structures (copulas) for bivariate (lower) tail events
is first to consider two-dimensional, continuous conditional distribution functions where the
condition is that both variables fall below small thresholds. The second step is to obtain the
corresponding copula using the second part of Sklar’s theorem (i.e. (2.4)).
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Remark 2.1. In the sequel, we will assume that the considered copula C is such that the
functions x �→ C(x, y) and y �→ C(x, y) are strictly increasing for all x, y ∈ (0, 1]. We denote
by C the set of such copulas.

Let (U, V ) be a random vector with distribution function C ∈ C. For any (u, v) ∈ (0, 1]2,
the conditional distribution of (U, V ) given that U ≤ u and V ≤ v, denoted by F(C, u, v),
is given, for 0 ≤ x ≤ u and 0 ≤ y ≤ v, by

F(C, u, v)(x, y) = P[U ≤ x, V ≤ y | U ≤ u, V ≤ v] = C(x, y)

C(u, v)
. (2.5)

The marginal distribution functions of this F(C, u, v) are respectively given, for 0 ≤ x ≤ u

and 0 ≤ y ≤ v, by

FU(C, u, v)(x) = C(x, v)

C(u, v)
and FV (C, u, v)(y) = C(u, y)

C(u, v)
. (2.6)

Since these two functions are continuous, the unique copula corresponding to F(C, u, v) is
obtained from (2.4) and equals

F(C, u, v)(FU(C, u, v)−1(x), FV (C, u, v)−1(y))

= C(FU(C, u, v)−1(x), FV (C, u, v)−1(y))

C(u, v)
. (2.7)

Definition 2.2. For C ∈ C, we call the copula defined by (2.7) the lower tail-dependence
copula (LTDC) relative to C, and denote it by �(C, u, v).

Note that the assumption C ∈ C implies that {(u, v) ∈ [0, 1]2 : C(u, v) > 0} = (0, 1]2,
i.e. it ensures that the LTDC �(C, u, v) is well defined for all u, v ∈ (0, 1]. Furthermore,
limu,v→0 �(C, u, v) naturally describes the dependence structure underlying conditional
bivariate random samples in the lower tails.

Furthermore, starting with uniform marginals, i.e. with a copula C, is not a restriction, since
the dependence structure that would be obtained with different marginals is of the same type
as �(C, u, v). In fact, let X1 and X2 have joint distribution function G, strictly increasing,
continuous marginals G1 and G2, and copula C. Analogously to the above, for appropriate
z1, z2 ∈ R (i.e. such that the following expressions are well defined), consider the conditional
distribution function

Gz1,z2(x1, x2) := P[X1 ≤ x1, X2 ≤ x2 | X1 ≤ z1, X2 ≤ z2].

Furthermore, let G
z1,z2
1 (x1) := Gz1,z2(x1, z2) and G

z1,z2
2 (x2) := Gz1,z2(z1, x2). From Sklar’s

theorem, the copula relative to Gz1,z2 is given by

�(G, z1, z2)(u1, u2) := Gz1,z2((G
z1,z2
1 )−1(u1), (G

z1,z2
2 )−1(u2)).

Proposition 2.1. In the above setting, we have �(C, G1(z1), G2(z2)) = �(G, z1, z2).
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Remark 2.2. Sometimes it may be more natural to look at dependencies in the upper tails
rather than in the lower tails, e.g. in any situation where we are interested in the joint behavior
of random variables conditional on high thresholds. In such a case, in (2.5) we could consider
the expression P[U > x, V > y | U > u, V > v] instead of P[U ≤ x, V ≤ y | U ≤ u,

V ≤ v], yielding, by analogy with (2.7), a dependence structure for upper tail events.
Such dependence structures can also be obtained by replacing C in Definition 2.2 by the relative
survival copula Ĉ(x, y) := x + y − 1 + C(1 − x, 1 − y), x, y ∈ [0, 1]2. Indeed, it is easily
seen that for a random vector (X, Y ) with distribution function F , marginals F1 and F2, and
copula C, the copula of (−X, −Y ) is precisely Ĉ, and that, for (x, y) ∈ R

2,

P[X > x, Y > y] = Ĉ(1 − F1(x), 1 − F2(y)).

3. A limit theorem

The main result of this section is Theorem 3.1, in which limits of the type limt→0 �(C, r(t),

s(t)) are considered. An explicit form for the limit is provided under the assumption that the
functions, r and s, defining the direction under which the limit is taken satisfy suitable regularity
conditions. Furthermore, an example of a nonsymmetric LTDC limit, i.e. a limit obtained under
a direction (r, s) with r �= s, is given in Proposition 3.1, where we show that a dependence
model in the lower tails may be given by the Marshall and Olkin copula of Example 2.1. As
we will see in Section 5, this copula turns out to be a natural model for some credit derivatives.

For our purposes, the concept of regular variation appears to be the appropriate one.
A standard reference to the topic of regular variation is Bingham et al. (1987). Results for
the multivariate case can also be found in de Haan et al. (1984).

Definition 3.1. A measurable function f : (0, ∞) → (0, ∞) is said to be regularly varying at
0 with index ρ ∈ R if, for any x > 0,

lim
t→0

f (tx)

f (t)
= xρ.

We then write f ∈ R0
ρ . For ρ = 0, the function is said to be slow varying at 0.

Definition 3.2. A measurable function f : (0, ∞)2 → (0, ∞) is said to be regularly varying
at 0 with auxiliary functions r, s : (0, ∞) → (0, ∞) if limt→0 r(t) = limt→0 s(t) = 0 and
there is a positive, measurable function φ : (0, ∞)2 → (0, ∞) such that

lim
t→0

f (r(t)x, s(t)y)

f (r(t), s(t))
= φ(x, y) for all x, y > 0. (3.1)

We then write f ∈ R(r, s) and call φ the limiting function under the direction (r, s).

Remark 3.1. Definition 3.2 can be easily modified to include functions, such as copulas, having
a domain other than (0, ∞)2. This ensures, in particular, that the left-hand side of (3.2), below,
is well defined.

Theorem 3.1. Let C ∈ C∩R(r, s) with limiting function φ, and assume that r and s are strictly
increasing, continuous functions such that r ∈ R0

α and s ∈ R0
β for some α, β > 0. Then, for

any (x, y) ∈ [0, 1]2,

lim
t→0

�(C, r(t), s(t))(x, y) = φ(φ−1
X (x), φ−1

Y (y)), (3.2)
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where φX(x) := φ(x, 1) and φY (y) := φ(1, y). Moreover, there is a constant, θ > 0, such
that φ(x, y) = xθ/αh(yx−β/α) for x > 0, where

h(t) :=
{

φY (t) for t ∈ [0, 1],
tθ/βφX(t−α/β) for t ∈ (1, ∞).

(3.3)

Remark 3.2. Note that the limiting function, φ, in (3.1) is obtained from a pointwise conver-
gence. Because the domain of a copula is the compact set [0, 1]2, it follows that the assumption
C ∈ C ∩ R(r, s) implies that the convergence in (3.2) is uniform, i.e. that

lim
t→0

‖�(C, r(t), s(t)) − φ(φ−1
X (·), φ−1

Y (·))‖∞ = 0.

Remark 3.3. Observe that the hypothesis that r and s are continuous functions is a necessary
one, since otherwise counterexamples such as copulas with fractal support, as considered by
Fredricks et al. (2005), can be constructed. Let T = (tij) be a square matrix, with nonnegative
entries whose sum equals 1, determining the following subdivision of the unit square [0, 1]2

into rectangles. Let ci, i = 0, . . . , n, be the sum of the entries of the first i columns of T ,
with c0 := 0, and let rj , j = 0, . . . , n, be the sum of the entries in the first j rows of T , with
r0 := 0. Then the vectors r := (r0, . . . , rn) and c := (c0, . . . , cn) define partitions of [0, 1],
whence [0, 1]2 is partitioned into the rectangles Rij := [ci−1, ci]× [ri−1, ri]. Furthermore, for
a given copula C and a point (x, y) ∈ Rij, consider the new copula, T (C), defined by

T (C)(x, y) :=
∑

u<i, v<j

tuv + x − ci−1

ci − ci−1

∑
v<j

tiv + y − rj−1

rj − rj−1

∑
u<i

tuj

+ C

(
x − ci

ci − ci−1
,

y − rj

rj − rj−1

)
tij, (3.4)

where empty sums are defined to equal 0. Fredricks et al. (2005) showed that for any copula C

and any T �= 1 there is a unique copula, CT , that depends only on T and satisfies T (CT ) = CT .
Moreover, they showed that CT = limn→∞ T n(C), where T n(C) := T (T n−1(C)) for n ≥ 1,
T 1(C) := T (C), and T 0(C) := C. Now consider the case in which the starting copula C is the
independent copula, i.e. C(x, y) = C⊥(x, y) := xy, and the transformation matrix is given by

T =
⎛
⎝0.1 0 0.1

0 0.6 0
0.1 0 0.1

⎞
⎠ ,

whence c = r = (0, 0.2, 0.8, 1). Then

�(CT , tk, tk) = CT = lim
n→∞ T n(C), where tk = 0.2k, k ≥ 1.

The fact that �(CT , tk, tk) = CT can be explained with the help of Figure 1, in which the
support of T n(C) is plotted for n = 1, 2, 3, 4 and the shaded regions are those where the
measure relative to T n(C) concentrates its mass (indeed, we see from (3.4) that the support of
T n(C) is given by the rectangles corresponding to the nonzero elements of T ). Observe that
since C is the independent copula, the measure relative to T n(C) spreads its mass uniformly
on the shaded squares. Taking, for example, the upper-right panel of Figure 1, we see that
restricting ourselves to [0, t1]2 = [0, 0.2]2 yields exactly the same picture as in the upper-left
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Figure 1: The support of T n(C), for n = 1, 2, 3, 4.

panel. This means that if (U, V ) has copula T n(C) for some n ≥ 1, then [(U, V ) | U, V ≤ t1]
has cumulative distribution function T n−1(C(xt1, yt1)), x, y ∈ [0, 1]. It follows that the copula
of [(U, V ) | U, V ≤ t1] is exactly T n−1(C), i.e. �(T n(C), t1, t1) = T n−1(C). Using the same
arguments, we find in general that �(T n(C), tk, tk) = T n−k(C). Finally, because �(·, tk, tk)
is continuous (see Lemma 4.3, below), it follows that

�(CT , tk, tk) = lim
n→∞ �(T n(C), tk, tk) = lim

n→∞ T n−k(C) = CT .

Remark 3.4. For α = β = 1, Theorem 3.1 generalizes Theorem 2.4 of Juri and Wüthrich
(2004), which states that

lim
u→0

�(C, u, u)(x, y) = G(g−1(x), g−1(y)), (3.5)

where g : [0, ∞) → [0, ∞) is the strictly increasing, continuous function defined by g(x) :=
limu→0 C(xu, u)/C(u, u), G(x, y) = yθg(x/y) for (x, y) ∈ (0, 1]2 (and vanishes elsewhere),
and θ is a positive constant. In particular, Theorem 2.4 of Juri and Wüthrich (2004) applies
to archimedean copulas having regularly varying generators, in which case the LTDC limit is
the Clayton copula of Example 4.3, below, with parameter equal to minus the regular variation
parameter (see Theorem 3.4 of Juri and Wüthrich (2004) and Theorem 3.3 of Juri and Wüthrich
(2002)).

Remark 3.5. Following the previous remark, the analytical expression (3.5) for the limiting
copula is due to the fact that homogeneous functions of order θ (in our case G(x, y) =
yθg(x/y)) have closed-form expressions. Analogously, the closed-form expression (3.3)
comes from the fact that generalized homogeneous functions such as φ in Theorem 3.1 also have
closed-form representations (see the proof of Theorem 3.1, below, and Aczél (1966, p. 231)
for more details). Unfortunately, this is not the case in higher dimensions; thus, assuming that
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Theorem 3.1 could be extended along the same lines to the multivariate case, the limiting copula
would not have a closed-form expression (see Section 4.1).

Remark 3.6. There are many papers in the literature concerning multivariate extremes.
In particular, bivariate extreme value distributions are obtained as limit laws of suitably nor-
malized componentwise maxima; see, e.g. de Haan and Resnick (1977), Resnick (1987,
Chapter 5), Coles and Tawn (1991), (1994), and Joe (1997, Chapter 6). It can be shown
that the copula of any bivariate extreme value distribution satisfies the max-stability property,
i.e.

Ct(u, v) = C(ut , vt ) for all (u, v) ∈ [0, 1]2 and any t > 0. (3.6)

As was mentioned in Juri and Wüthrich (2004), bivariate extreme value copulas differ from
LTDC limits, the difference being similar to the one between the univariate generalized
extreme value distributions and the generalized Pareto distribution. In fact, the generalized
Pareto distribution lives on the log scale compared to generalized extreme value distributions
(see Theorem 4.2 of Juri and Wüthrich (2004)). For instance, the Gumbel copula satisfies (3.6)
but is not a LTDC limit. For a more detailed discussion about relations with other results from
the area of multivariate extremes, we refer the reader to Juri and Wüthrich (2004).

We finish this section with an example of an LTDC limit that is not of the form (3.5).
Below we will see that Theorem 4.1 provides a whole family of other examples of this type.

Proposition 3.1. Let a, b : [0, 1] → [0, 1] be two increasing functions, with a(0) = b(0) = 0
and a(1) = b(1) = 1, such that t �→ a(t)/t and t �→ b(t)/t are decreasing on (0, 1]. Then

C(x, y) := (a(x)y) ∧ (xb(y)) (3.7)

defines a copula. Additionally, for a ∈ R0
α and b ∈ R0

β with (α, β) ∈ [0, 1]2 \ {(0, 0)}, and for
directions r and s such that

lim
t→0

r(t)b(s(t))

a(r(t))s(t)
= 1, (3.8)

we have
lim
t→0

�(C, r(t), s(t))(x, y) = (xαy) ∧ (xyβ), (3.9)

which is the Marshall and Olkin copula with parameters 1 − α and 1 − β.

Remark 3.7. Condition (3.8) is satisfied in the case in which a(t) = tα , b(t) = tβ , r(t) = tγ ,
and s(t) = tδ , with βδ + γ = αγ + δ.

4. Invariant copulas

There are many examples of (functional) limit theorems where the limit obtained is invariant
under some kind of transformation. This is the case for the central limit theorem, where stable
laws (which coincide with the class of possible limit laws for sums of independent, identically
distributed random variables) are invariant under the sum operator. A similar result holds for the
generalized extreme value distribution, which is the limit of maxima of independent, identically
distributed random variables, as stated in the Fisher–Tippett theorem (Embrechts et al. (1997,
Theorem 3.2.3)).

In our context, (2.7) can be seen as the result of a copula transformation mapping a copula,
C ∈ C, to its LTDC, �(C, u, v). Motivated by the above classical results, it therefore seems
natural to look at copulas that are invariant under the LTDC transformation (2.7).
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Definition 4.1. We say that C ∈ C is invariant on the unit square if �(C, u, v) = C for all
(u, v) ∈ (0, 1]2.

Lemma 4.1. Let (U, V ) have distribution function C ∈ C, and let (u, v) ∈ (0, 1]2. Then, for
(x, y) ∈ [0, u] × [0, v], �(C, u, v) satisfies the identity

C(x, y)

C(u, v)
= �(C, u, v)

(
C(x, v)

C(u, v)
,
C(u, y)

C(u, v)

)
.

From Lemma 4.1, C is invariant on the unit square if and only if, for any (u, v) ∈ (0, 1]2,

C(x, y)

C(u, v)
= C

(
C(x, v)

C(u, v)
,
C(u, y)

C(u, v)

)
for all (x, y) ∈ [0, u] × [0, v].

A weaker type of invariance than that defined in Definition 4.1 is exemplified by copulas C

such that �(C, u, v) = C holds only for a particular set of parameters (u, v) ∈ (0, 1]2.

Definition 4.2. A copula C ∈ C is said to be invariant on the diagonal if �(C, u, u) = C for
all u ∈ (0, 1]. Similarly, C ∈ C is said to be invariant on the curve D = {(r(t), s(t)) : t ∈ T },
T ⊂ R, where r, s : T → (0, 1], whenever

�(C, r(t), s(t)) = C for all t ∈ T .

Invariant copulas on the diagonal have been considered by Juri and Wüthrich (2002),
(2004), and examples of such copulas are given in Examples 4.1 and 4.3, below.

Example 4.1. For α ∈ [0, 1], consider the Cuadras–Augé copula

Cα(x, y) := (x1−αy) ∧ (xy1−α).

The copula Cα can be seen as a particular case of the Marshall and Olkin copula of Example 2.1
with identical parameters, and is a geometric mixture, with weights α and 1 − α, of the upper
Fréchet bound C+(x, y) := x ∧ y and the independent copula C⊥(x, y) = xy. In fact,

Cα(x, y) = C+(x, y)αC⊥(x, y)1−α.

For random variables U and V with joint distribution function Cα , for x and y with 0 ≤ x,
y ≤ u we have

FU(Cα, u, u)(x) = FV (Cα, u, u)(x) = Cα(x, u)

Cα(u, u)
= x

u
,

F (Cα, u, u)(x, y) = Cα(x, y)

Cα(u, u)
= Cα

(
x

u
,
y

u

)
.

Thus, from (2.7) we immediately find that Cα is an invariant copula on the diagonal.

A particular family of curve-invariant copulas is the one of Definition 4.3, below. We will
see in Corollary 4.1 that this family of copulas coincides with the LTDC limits obtained in
Theorem 3.1.
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Definition 4.3. Let α, β, and θ be positive constants and let P and Q be increasing, continuous
univariate distribution functions on [0, 1]. We denote by H(α, β, θ) the set of two-dimensional
distribution functions H on [0, 1]2 that can be expressed as

H(x, y) = xθ/αh(yx−β/α), where h(t) :=
{

Q(t) if t ∈ [0, 1],
tθ/βP (t−α/β) if t ∈ (1, ∞).

(4.1)

Theorem 4.1. Let α, β, θ > 0 and H ∈ H(α, β, θ). The copula relative to H is given by

	(P, Q, α, β, θ)(u, v)

:=
{

Q−1(v)θ/βP (P −1(u)Q−1(v)−α/β) for P −1(u)β ≤ Q−1(v)α,

P −1(u)θ/αQ(P −1(u)−β/αQ−1(v)) for P −1(u)β > Q−1(v)α,
(4.2)

and is invariant on D = {(P (tα), Q(tβ)) : t ∈ (0, 1]}.
Remark 4.1. (a) From Theorem 4.1, we immediately obtain

lim
t→0

�(	(P, Q, α, β, θ), P (tα), Q(tβ)) = 	(P, Q, α, β, θ);

i.e. 	(P, Q, α, β, θ) is a LTDC limit. Furthermore, note that 	(g, g, 1, 1, θ) is precisely the
copula in (3.5).

(b) Observe that H in Theorem 4.1 is supposed to belong to H(α, β, θ), i.e. it is assumed that H
is a two-dimensional distribution function, whence H has to satisfy the rectangle condition. If
H does not have a singular component then the rectangle condition can be checked by showing
that the first-order and the mixed second-order derivatives of (6.6), below, are nonnegative.
However, this need not always be the case for arbitrary choices of P, Q, α, β, and θ . This is the
reason behind the hypothesis H ∈ H(α, β, θ) in Theorem 4.1: we assume that the conditions
necessary for H to be well defined are satisfied.

Example 4.2. The copula 	(Id, Id, β(α + β − αβ)−1, α(α + β − αβ)−1, 1) is the Marshall
and Olkin copula, which, by Theorem 4.1, is invariant on

D = {(tβ/(α+β−αβ), tα/(α+β−αβ)) : t ∈ (0, 1]} = {(tβ, tα) : t ∈ (0, 1]}.

Similarly, 	(Id, Id, α, β, 1) is the Marshall and Olkin copula with parameters (α + β − 1)/α

and (α + β − 1)/β.

Example 4.3. For P(x) = 21/θ (1 + x−θ )−1/θ , the copula 	(P, P, θ, θ, θ) is the Clayton
copula with parameter θ ; i.e. for (x, y) ∈ [0, 1]2,

	(P, P, θ, θ, θ)(x, y) = (x−θ + y−θ − 1)−1/θ . (4.3)

By Theorem 4.1, this copula is invariant on D = {(P (tθ ), P (tθ )) : t ∈ (0, 1]} = {(tθ , tθ ) : t ∈
(0, 1]} for all θ ; i.e. 	(P, P, θ, θ, θ) is invariant on (0, 1]2. The copula (4.3) is commonly
referred to as the Clayton copula, although Clayton (1978) did not mention copulas and it was
known before that paper appeared. The multivariate extension is sometimes attributed to Cook
and Johnson (1981).
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Theorem 4.2 characterizes the possible LTDC limits, stating that they coincide with the
set of invariant copulas on (0, 1]2. In particular, the family H(α, β, θ) characterizes LTDC
limits on curves D = {(r(t), s(t)) : t ∈ T }, provided that the starting copula C belongs to
C ∩ R(r, s) and that r and s are strictly increasing, continuous, and regularly varying at 0 (see
Corollary 4.1).

Theorem 4.2. If C ∈ C and C0 are copulas such that limu,v→0 ‖�(C, u, v) − C0‖∞ = 0,
then C0 is invariant on the unit square.

Corollary 4.1. Assume that C satisfies the hypotheses of Theorem 3.1 and consider the copula
C0 = limt→0 �(C, r(t), s(t)). Then there is a constant, θ > 0, such that C0 = 	(φX, φY , α,

β, θ) according to (4.2). As a consequence, C0 is invariant on

D = {(φX(tα), φY (tβ)) : t ∈ (0, 1]}.

The proof of Theorem 4.2 is based on the fact that �(C, u′, v′) can be seen as the LTDC
obtained from another LTDC, �(C, u, v), with u ≥ u′ and v ≥ v′ (see Lemma 4.2).
The second ingredient in the proof is the continuity of �(·, u, v) (see Lemma 4.3). We state
these preliminary results below and not just in the proofs in Section 6, since we believe them
to be interesting in their own right.

Lemma 4.2. Let C ∈ C. For 0 ≤ u′ ≤ u ≤ 1 and 0 ≤ v′ ≤ v ≤ 1 we have

(i) �(C, u′, v′) = �(�(C, u, v), u∗, v∗), where u∗ = C(u′, v)/C(u, v) and v∗ =
C(u, v′)/C(u, v), and

(ii) �(�(C, u, v), u′, v′) = �(C, u∗, v∗), where u∗ and v∗ satisfy the relations C(u∗, v) =
u′C(u, v) and C(u, v∗) = v′C(u, v), respectively.

Lemma 4.3. For any u, v ∈ (0, 1], the map C → C given by C �→ �(C, u, v) is continuous
with respect to the ‖ · ‖∞-norm.

Remark 4.2. The parameters α and β of the LTDC limit 	(P, Q, α, β, θ) can be interpreted
as parameters describing the direction under which the limit is taken, since, as stated in
Theorem 4.1, 	(P, Q, α, β, θ) is invariant on D = {(P (tα), Q(tβ)) : t ∈ (0, 1]}. However,
such a distribution is not identifiable. In fact, α, β, and θ are defined up to a positive
multiplicative constant; thus, 	(P, Q, α, β, θ) could be defined using two parameters only.
More precisely, for η := β/α,

	(P, Q, α, β, θ) = 	(P, Q, 1, η, θ) =: 	(P, Q, η, θ).

Moreover, for all k > 0 we have

	(P, Q, η, θ) = 	(Pk, Qk, kη, kθ),

where Pk(x) := P(xk) and Qk(x) := Q(xk), x ∈ [0, 1].
We finish this section with a proposition.

Proposition 4.1. The only copula that is absolutely continuous and invariant on [0, 1]2 is the
Clayton copula.
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4.1. Multivariate extensions

All the results obtained so far have been formulated in the bivariate case. However,
observe that the concept of an LTDC can easily be extended to higher dimensions. Let U =
(U1, . . . , Un) be a random vector with standard uniform marginals such that its distribution func-
tion (copula), C, is strictly increasing in all its components. Then, for any u = (u1, . . . , un) ∈
(0, 1]n, consider the distribution function Fi|u of Ui given the event {U1 ≤ u1, . . . , Un ≤ un}
(written {U ≤ u}), which is given by

Fi|u(xi) = C(u1, . . . , ui−1, xi, ui+1, . . . , un)

C(u1, . . . , ui−1, ui, ui+1, . . . , un)
,

whence the copula of U given {U ≤ u} is

�(C, u1, . . . , un)(x1, . . . , xn) := C(F−1
1|u(x1), . . . , F

−1
n|u(xn))

C(u1, . . . , un)
.

In this setup, it can be easily shown that Proposition 4.1 also holds in higher dimensions;
i.e. that the only absolutely continuous copula which is invariant on the unit cube is the Clayton
copula. The proof of this generalized result is almost the same as that in the bivariate case:
differentiating with respect to ui and uj yields the equation analogous to (6.20), for some
parameter θij, and symmetry arguments can be used to show that θij does not depend on i or
j and, therefore, that θij = θ . In addition, note that the upper Fréchet bound is also invariant,
but does not satisfy the assumption of absolute continuity. Actually, we conjecture that it is the
only non-absolutely continuous copula which is invariant.

Results for limiting copulas in the n-dimensional case (n ≥ 2) can be obtained by the argu-
ments used in Section 3, with Definition 3.2 generalized appropriately for functions r1, . . . , rn
and φ. More precisely, assuming that the ri are regularly varying with ri ∈ R0

αi
for some αi ,

it can be shown that a limiting function φ exists and that Theorem (2.1) of de Haan et al. (1984)
still holds. In other words, φ is necessarily a generalized homogeneous function; i.e. there
exists a θ ∈ R such that, for all x1, . . . , xn, t ,

φ(tα1x1, t
α2x2, . . . , t

αnxn) = tθφ(x1, x2, . . . , xn).

Unfortunately, an explicit expression for φ can be derived only for n = 2.

5. An application to credit risk

The main risk drivers of almost all credit derivatives such as, e.g. credit default swap baskets
or first-to-default contract types are given by the relevant default times. Among the most
popular (univariate) default time models are those that are intensity based. As was shown by
Schönbucher and Schubert (2001), a copula approach allows us to naturally model arbitrary
dependence structures in such an intensity-based framework.

In this section we first review the setup of Schönbucher and Schubert (2001), and then show
how our LTDC limits can be used as dependence structures for credit stress scenarios.

5.1. Intensity-based default models

For σ -algebras A and B with A ⊂ B, and for a set B ∈ B, in the sequel we will use
the notation A ∧ B := {A ∩ B : A ∈ A}. Furthermore, all filtrations are supposed to satisfy
the usual conditions. Finally, for a review of point process intensities, we refer the reader to
Brémaud (1981).
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Schönbucher and Schubert (2001) proposed the following intensity-based default model,
which we here recall in the two-dimensional case. Let λi, i = 1, 2, be nonnegative càdlàg
processes adapted to a filtration, (Gt )t≥0, representing general market information other than
explicit information on the occurrence of defaults. For standard, uniformly distributed random
variables U1 and U2, which are assumed to be independent of G∞ := ⋃

t≥0 Gt , we define the
default times as the random variables

τi := inf{t > 0 : γi(t) ≤ Ui}, i = 1, 2, (5.1)

where the γi(t) := exp(−�i(t)) are called countdown processes, with �i(t) := ∫ t

0 λi(s) ds.
Note that, conditioned on G∞, we have

P[τ1 ≤ t1, τ2 ≤ t2 | G∞] = Ĉ(γ1(t1), γ2(t2)), (5.2)

where C is the distribution function of (U1, U2). Thus, we see that by defining default times
as in (5.1), given general market information the default dependence mechanism is completely
described by C.

Remark 5.1. The motivation behind (5.1) comes from the fact that, for a Cox process with
intensity λ, the time, τ , of the first jump can be written as

τ = inf

{
t > 0 :

∫ t

0
λ(s) ds ≥ Z

}
,

where Z is exponentially distributed with parameter 1 (see Lando (1998)).

In general, the intensity of a point process depends on the information upon which it is
conditioned. Denoting by Ni the default counting process of counterparty i = 1, 2, and by
F i

t the augmented filtration of σ(Ni(s) : 0 ≤ s ≤ t), we find that λi is the F i
t -intensity of Ni .

However, it is in the spirit of any multivariate model also to consider the information relative
to the other counterparties, such as the one given by C and Ht := ∨

i=1,2(F
i
t ∨ Gt ), t ≥ 0.

Indeed, we find from Schönbucher and Schubert (2001) that the Ht -intensity, hi , of Ni equals

hi(t) := λi(t)γi(t)∂i log(C(γ1(t), γ2(t))). (5.3)

Because of the term ∂i log(C(γ1(t), γ2(t))), the intensity of a single counterparty is also affected
by the dependence structure of the several counterparties. In the case in which U1 and U2 are
independent, i.e. whenever C = C⊥, the right-hand side of (5.3) reduces to λi(t), i.e. to the
F i

t -intensity of Ni . Furthermore, with the additional information that the other obligor has
already defaulted, i.e. {τj = tj }, j �= i, tj > 0, the default intensity of the surviving
counterparty takes the form

h
−j
i (t) := λi(t)γi(t)

∂ijC(γ1(t), γ2(t))

∂jC(γ1(t), γ2(t))
. (5.4)

A special case of (5.3) and (5.4) is when C equals the Clayton copula with parameter θ ,
of Example 4.3. In that case,

hi(t) =
(

C(γ1(t), γ2(t))

γi(t)

)θ

λi(t) and h
−j
i (t) = (1 + θ)hi(t).

As stated in Schönbucher and Schubert (2001), such a dependence structure reflects one of the
main features of a model introduced by Davis and Lo (2001a), (2001b), where knowledge of
one obligor’s default determines a jump in the spread of the other obligor by a factor of 1 + θ .
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5.2. Dependence structures for stress scenarios

Stress scenarios for default times arise in many different situations. For example, pension
funds have to invest only in investment-grade bonds for regulatory reasons. Thus, a default
(or downgrade) of a bond in the pension fund’s portfolio determines the replacement of that
bond, possibly resulting in (large) losses due to the bond’s value decrease. Another example
is given by first-to-default credit default swap baskets, where, in the case of an ‘early’ default,
the protection seller receives the premium only for a short time but has to deliver the notional
very soon.

More generally, knowing or modeling the dependence structure of the various default times,
and in particular the joint behavior under adverse market conditions, avoids risk underestima-
tion, allowing for risk-adjusted pricing (e.g. of credit derivatives). Such stress situations can
be described by conditional distributions of the type

P[τ1 ≤ t1, τ2 ≤ t2 | G∞ ∧ {τ1 ≤ T , τ2 ≤ T }], (5.5)

as T tends to 0. Since the conditional distribution of τi given H i
t equals γi(t), it follows from

Proposition 2.1 and (5.2) that the copula relative to the conditional distribution in (5.5) is given
by �(Ĉ, 1 − γ1(T ), 1 − γ2(T )), where Ĉ is the survival copula of C.

Example 5.1. (First-to-default time.) The conditional distribution of the first-to-default time
τ := τ1 ∧ τ2 conditioned on G∞ ∧ {τ1 ≤ T , τ2 ≤ T } is given, for t ≤ T , by

P[τ ≤ t | G∞ ∧ {τ1 ≤ T , τ2 ≤ T }] = 1 − P[τ1 > t, τ2 > t | G∞ ∧ {τ1 ≤ T , τ2 ≤ T }]
= 1 − C∗(1 − γ1(t), 1 − γ2(t)),

where C∗ is the survival copula of �(Ĉ, 1 − γ1(T ), 1 − γ2(T )).

Suppose now that λi is regularly varying at 0 with parameter δi ≥ 0, which, as is easy to
check, implies that 1 −γi ∈ R0

1+δi
. Furthermore, assume that Ĉ ∈ C ∩R(1 −γ1, 1 −γ2) with

limiting function φ. Then, from Corollary 4.1, there is a constant, θ > 0, such that

lim
T →0

�(Ĉ, 1 − γ1(T ), 1 − γ2(T )) = 	(φX, φY , 1 + δ1, 1 + δ2, θ).

As a special case, for γ1 = γ2 =: γ and δ1 = δ2 = 0 we have

lim
T →0

�(Ĉ, 1 − γ (T ), 1 − γ (T )) = 	(g, g, 1, 1, θ), g := φX,

which corresponds to the limiting copula (3.5).
As we mentioned at the end of Section 3, a special case of Theorem 3.1 is when the starting

copula is archimedean with a regularly varying generator. In this case, the LTDC limit on the
diagonal is the Clayton copula. Thus, the Davis–Lo model can be seen as a stress-scenario
model.

6. Proofs

Proof of Proposition 2.1. For wi := Gi(zi), i = 1, 2, we have, by definition,

�(C, G1(z1), G2(z2))(u1, u2) = C(FU1(C, w1, w2)
−1(u1), FU2(C, w1, w2)

−1(u2))

C(G1(z1), G2(z2))
.

https://doi.org/10.1239/jap/1152413742 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413742


Dependence in tail distributions 577

Furthermore,

FU1(C, w1, w2)(v1) = C(v1, w2)

C(w1, w2)
= C(v1, G2(z2))

C(G1(z1), G2(z2))
= G(G−1

1 (v1), z2)

G(z1, z2)

= G
z1,z2
1 (G−1

1 (v1)),

whence FU1(C, w1, w2)
−1(u1) = G1((G

z1,z2
1 )−1(u1)). Similarly, FU2(C, w1, w2)

−1(u2) =
G2((G

z1,z2
2 )−1(u2)). Thus,

�(C, G1(z1), G2(z2))(u1, u2) = C(G1((G
z1,z2
1 )−1(u1)), G2((G

z1,z2
2 )−1(u2)))

G(z1, z2)

= G((G
z1,z2
1 )−1(u1), (G

z1,z2
2 )−1(u2))

G(z1, z2)

= Gz1,z2((G
z1,z2
1 )−1(u1), (G

z1,z2
2 )−1(u2))

= �(G, z1, z2)(u1, u2).

Proof of Theorem 3.1. The proof of this theorem is based on the following lemma, whose
proof is straightforward and is therefore left to the reader.

Lemma 6.1. Suppose that the random vectors (Xn, Yn) have continuous, strictly increasing
marginals and are such that limn→∞(Xn, Yn) = (X, Y ) in distribution for some (X, Y ). Then

lim
n→∞ ‖Cn − C‖∞ = 0,

where Cn and C denote the copulas of (Xn, Yn) and (X, Y ), respectively.

Now let (U, V ) have distribution function C. Note that

C(r(t)x, s(t))

C(r(t), s(t))
= P[U ≤ r(t)x | U ≤ r(t), V ≤ s(t)], (6.1)

C(r(t), s(t)y)

C(r(t), s(t))
= P[V ≤ s(t)y | U ≤ r(t), V ≤ s(t)], (6.2)

C(r(t)x, s(t)y)

C(r(t), s(t))
= P[U ≤ r(t)x, V ≤ s(t)y | U ≤ r(t), V ≤ s(t)]; (6.3)

i.e. the distributions in (6.1)–(6.3) are respectively the conditional distributions of U/r(t),
V/s(t), and (U/r(t), V/s(t)), given that U ≤ r(t) and V ≤ s(t). Since copulas are invariant
under strictly increasing transformations of the underlying variables, it follows that we can use
the conditional distributions in (6.1)–(6.3), instead of FU(C, r(t), s(t)), FV (C, r(t), s(t)), and
F(C, r(t), s(t)), to construct �(C, r(t), s(t)). Furthermore, since C ∈ C and because r and
s are strictly increasing and continuous, it follows that the distributions in (6.1)–(6.3) are also
continuous and strictly increasing. By hypothesis, we have C ∈ R(r, s), i.e.

lim
t→0

C(r(t)x, s(t)y)

C(r(t), s(t))
= φ(x, y) for all x, y ∈ [0, 1],

implying that the expressions in (6.1)–(6.3) respectively converge to φX, φY , and φ, as t → 0.
Thus, by applying Lemma 6.1, we obtain

lim
t→0

�(C, r(t), s(t))(x, y) = φ(φ−1
X (x), φ−1

Y (y)),
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from which (3.2) follows. Since r ∈ R0
α and s ∈ R0

β , Theorem 2.1 of de Haan et al. (1984)
implies that there is a θ > 0 such that, for all t, x, y > 0,

φ(tαx, tβy) = tθφ(x, y). (6.4)

Furthermore, according to Aczél (1966, p. 231) the most general solution to the functional
equation (6.4) is given by

φ(x, y) =

⎧⎪⎨
⎪⎩

xθ/αh(yx−β/α) if x �= 0,

cyθ/β if x = 0 and y �= 0,

0 if x = y = 0,

where c is a constant and h is a function of one variable. Because φ(0, y) = 0 and φY (y) =
φ(1, y) = h(y), it follows that c = 0 and that the restriction of h to [0, 1] equals φY .
Furthermore, for x ∈ (0, 1] we have

φX(xα/β) = φ(xα/β, 1) = xθ/βh(1/x),

whence, for t = 1/x > 1, we obtain h(t) = h(1/x) = x−θ/βφX(xα/β) = tθ/βφX(t−α/β),
from which (3.3) and, therefore, the proof of Theorem 3.1 follow.

Proof of Proposition 3.1. In order to prove that (3.7) defines a copula, we have to prove
(2.1) and (2.2). For x ∈ [0, 1], the conditions C(x, 0) = C(0, x) = 0 are satisfied because
a(0) = b(0) = 0. Furthermore, since x �→ a(x)/x is decreasing, with a(1) = 1, we have
a(x) ≥ x for any x ∈ [0, 1]. Thus, because b(1) = 1, we obtain C(x, 1) = a(x) ∧ x = x.
Similarly, C(1, y) = y for y ∈ [0, 1], which proves (2.1). Now, for 0 < x1 ≤ x2 ≤ 1 and
0 < y1 ≤ y2 ≤ 1,

� := C(x2, y2) − C(x1, y2) − C(x2, y1) + C(x1, y1)

= x2y2

(
a(x2)

x2
∧ b(y2)

y2

)
− x1y2

(
a(x1)

x1
∧ b(y2)

y2

)
− x2y1

(
a(x2)

x2
∧ b(y1)

y1

)

+ x1y1

(
a(x1)

x1
∧ b(y1)

y1

)
.

Since x �→ a(x)/x and x �→ b(x)/x are decreasing, six different cases have to be considered.

(i) If a(x2)/x2 ≤ a(x1)/x1 ≤ b(y2)/y2 ≤ b(y1)/y1 then

� = (y2 − y1)(a(x2) − a(x1)) ≥ 0,

since a is increasing.

(ii) If b(y2)/y2 ≤ b(y1)/y1 ≤ a(x2)/x2 ≤ a(x1)/x1 then

� = (x2 − x1)(b(y2) − b(y1)),

which is nonnegative.

(iii) If a(x2)/x2 ≤ b(y2)/y2 ≤ b(y1)/y1 ≤ a(x1)/x1 then

� = x1(b(y1) − b(y2)) + a(x2)(y2 − y1),
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which is nonnegative if and only if

b(y2) − b(y1)

y2 − y1
≤ a(x2)

x1
. (6.5)

Since x �→ b(x)/x is decreasing, the left-hand side of (6.5) can be bounded as follows:

b(y2) − b(y1)

y2 − y1
= b(y2)

y2

y2

y2 − y1
− b(y1)

y1

y1

y2 − y1
≤ b(y1)

y1
.

By hypothesis and since a is increasing, we have b(y1)/y1 ≤ a(x1)/x1 ≤ a(x2)/x1, from
which (6.5) follows.

(iv) If b(y2)/y2 ≤ a(x2)/x2 ≤ a(x1)/x1 ≤ b(y1)/y1 then

� = (a(x1) − a(x2))y1 + (x2 − x1)b(y2),

which can be shown to be nonnegative using the same arguments as in (iii).

(v) If a(x2)/x2 ≤ b(y2)/y2 ≤ a(x1)/x1 ≤ b(y1)/y1 then

� = (y2 − y1)a(x2) − x1b(y2) + y1a(x1).

By hypothesis,

x1b(y2) ≤ a(x1)y2 = a(x1)y1 + a(x1)(y2 − y1) ≤ a(x1)y1 + a(x2)(y2 − y1),

where the last inequality follows because a is increasing. This shows that � ≥ 0.

(vi) If b(y2)/y2 ≤ a(x2)/x2 ≤ b(y1)/y1 ≤ a(x1)/x1 then

� = (x2 − x1)b(y2) − y1a(x2) + x1b(y1).

As in (v), it follows that � ≥ 0.

To prove (3.9), consider

C(r(t)x, s(t)y)

C(r(t), s(t))
= [a(r(t)x)s(t)y] ∧ [r(t)xb(s(t)y)]

[a(r(t))s(t)] ∧ [r(t)b(s(t))]
=

([
a(r(t)x)

a(r(t))
y

]
∧

[
x

b(s(t)y)

b(s(t))

r(t)

a(r(t))

b(s(t))

s(t)

])

×
(

1 ∧
[

r(t)

a(r(t))

b(s(t))

s(t)

])−1

.

Since, by hypothesis, a ∈ R0
α , b ∈ R0

β , and limt→0 r(t)b(s(t))/(a(r(t))s(t)) = 1, it follows
that

lim
t→0

C(r(t)x, s(t)y)

C(r(t), s(t))
= (xαy) ∧ (xyβ) =: φ(x, y);

i.e. C ∈ C∩R(r, s) with limiting function φ. Since 0 < α, β ≤ 1, we have φX(x) = φ(x, 1) =
x and φY (y) = φ(1, y) = y, whence, from Theorem 3.1,

lim
t→0

�(C, r(t), s(t))(x, y) = φ(φ−1
X (x), φ−1

Y (y)) = (xαy) ∧ (xyβ).
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Proof of Lemma 4.1. Because C ∈ C, FU(C, u, v) and FV (C, u, v) are strictly increasing.
From Sklar’s theorem and (2.5) and (2.6), we obtain

�(C, u, v)

(
C(x, v)

C(u, v)
,
C(u, y)

C(u, v)

)
= �(C, u, v)(FU(C, u, v)(x), FV (C, u, v)(y))

= F(C, u, v)(x, y)

= C(x, y)

C(u, v)
.

This completes the proof of Lemma 4.1.

Proof of Theorem 4.1. We will first prove that 	(P, Q, α, β, θ) defined by (4.2) is a copula
and then show the invariance property. The function H defined by (4.1) can be rewritten as

H(x, y) =
{

xθ/α[yx−β/α]θ/βP ([yx−β/α]−α/β) if xβ < yα,

xθ/αQ(yx−β/α) if xβ ≥ yα,

=
{

yθ/βP (y−α/βx) if xβ < yα,

xθ/αQ(yx−β/α) if xβ ≥ yα.
(6.6)

By hypothesis, the marginals, P and Q, of H are strictly increasing, continuous functions. It
thus follows from Sklar’s theorem that the copula associated with H is

H(P −1(u), Q−1(v)) =
{

Q−1(v)θ/βP (P −1(u)Q−1(v)−α/β) if P −1(u)β < Q−1(v)α,

P −1(u)θ/αQ(P −1(u)−β/αQ−1(v)) if P −1(u)β ≥ Q−1(v)α,

(6.7)
which is precisely 	(P, Q, α, β, θ). We now show that 	(P, Q, α, β, θ) is invariant on the
curve D = {(P (tα), Q(tβ)) : t ∈ (0, 1]}. For notational convenience we denote 	(P, Q, α,

β, θ) by C. To derive the LTDC associated with C, we first note that, from (6.7),

C(P (tα), Q(tβ)) = tθ ,

C(x, Q(tβ)) =
{

tθP (P −1(x)t−α) if P −1(x) < tα,

P −1(x)θ/αQ(P −1(x)−β/αtβ) if P −1(x) ≥ tα,
(6.8)

C(P (tα), y) =
{

Q−1(y)θ/βP (tαQ−1(y)−α/β) if tβ < Q−1(y),

tθQ(t−βQ−1(y)) if tβ ≥ Q−1(y).

Now let (x, y) ∈ [0, P (tα)] × [0, Q(tβ)]. From (2.6) and (6.8), the marginals of F(C, P (tα),

Q(tβ)) are given by

FU(C, P (tα), Q(tβ))(x) = C(x, Q(tβ))

C(P (tα), Q(tβ))
= tθP (P −1(x)t−α)

tθ
= P(P −1(x)t−α),

FV (C, P (tα), Q(tβ))(y) = C(P (tα), y)

C(P (tα), Q(tβ))
= Q(t−βQ−1(y)).

Their inverses are

FU(C, P (tα), Q(tβ))−1(x) = P(P −1(x)tα),

FV (C, P (tα), Q(tβ))−1(y) = Q(tβQ−1(y)).
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Assume now that x and y are such that P −1(x)β < Q−1(y)α . From (6.8) we obtain

F(C, P (tα), Q(tβ))(x, y) = C(x, y)

C(P (tα), Q(tβ))
= Q−1(y)θ/βP (P −1(x)Q−1(y)−α/β)

tθ
.

Thus, for any (x, y) ∈ (0, 1]2 such that P −1(F−1
U (x))β ≤ Q−1(F−1

V (y))α , i.e. P −1(x)β ≤
Q−1(y)α , we have

�(C, P (tα), Q(tβ))(x, y)

= F(C, P (tα), Q(tβ))(FU(C, P (tα), Q(tβ))−1(x), FV (C, P (tα), Q(tβ))−1(y))

= t−θ (tβQ−1(y))θ/βP (P −1(x)tα(tβQ−1(y))−α/β)

= Q−1(y)θ/βP (P −1(x)Q−1(y)−α/β)

= C(x, y).

Similarly, if (x, y) ∈ [0, P (tα)] × [0, Q(tβ)] is such that P −1(x)β ≥ Q−1(y)α , then

F(C, P (tα), Q(tβ))(x, y) = P −1(x)θ/αQ(P −1(x)−β/αQ−1(y))

tθ
.

Thus,

�(C, P (tα), Q(tβ))(x, y)

= F(C, P (tα), Q(tβ))(FU(C, P (tα), Q(tβ))−1(x), FV (C, P (tα), Q(tβ))−1(y))

= t−θP −1(x)θ/αQ(P −1(y)−β/αQ−1(x))

= C(x, y).

Hence, for all (x, y) ∈ [0, 1]2, we have �(C, P (tα), Q(tβ))(x, y) = C(x, y), i.e. C is invariant
on D = {(P (tα), Q(tβ)) : t ∈ (0, 1]}. This completes the proof of Theorem 4.1.

Proof of Lemma 4.2. (i) Let C∗ = �(�(C, u, v), u∗, v∗). From Lemma 4.1, for 0 ≤ x ≤
u∗ and 0 ≤ y ≤ v∗ we have, on the one hand,

�(C, u, v)(x, y)

�(C, u, v)(u∗, v∗)
= C∗

(
�(C, u, v)(x, v∗)
�(C, u, v)(u∗, v∗)

,
�(C, u, v)(u∗, y)

�(C, u, v)(u∗, v∗)

)
. (6.9)

On the other hand, again from Lemma 4.1, we have

�(C, u, v)(u∗, v∗) = �(C, u, v)

(
C(u′, v)

C(u, v)
,
C(u, v′)
C(u, v)

)
= C(u′, v′)

C(u, v)
. (6.10)

Furthermore, FU(C, u, v)−1(u∗) = u′ and FV (C, u, v)−1(v∗) = v′, by definition of u∗ and
v∗. Because

�(C, u, v)(x, y) = C(FU(C, u, v)−1(x), FV (C, u, v)−1(y))

C(u, v)
, (6.11)

it follows, upon dividing (6.11) by (6.10), that

�(C, u, v)(x, y)

�(C, u, v)(u∗, v∗)
= C(FU(C, u, v)−1(x), FV (C, u, v)−1(y))

C(u′, v′)
.
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Let s = FU(C, u, v)−1(x) and t = FV (C, u, v)−1(y). Then substitution into (6.9) yields

C(s, t)

C(u′, v′)
= C∗

(
C(s, v′)
C(u′, v′)

,
C(u′, t)
C(u′, v′)

)
(6.12)

for all (x, y) in [0, u∗]×[0, v∗]. Because C is continuous, FU(C, u, v) and FV (C, u, v) are also
continuous, on [0, u] and [0, v] respectively. Hence, (6.12) holds for all (s, t) ∈ [0, u′]×[0, v′]
because FU(C, u, v)−1(u∗) = u′ and FV (C, u, v)−1(v∗) = v′.

Finally, if 0 < u′ ≤ u ≤ 1 and 0 < v′ ≤ v ≤ 1, then �(C, u′, v′) = �(�(C, u, v), u∗, v∗),
where u∗ and v∗ respectively satisfy u∗ = C(u′, v)/C(u, v) and v∗ = C(u, v′)/C(u, v).

(ii) Now let C∗ = �(�(C, u, v), u′, v′), which satisfies

�(C, u, v)(x, y)

�(C, u, v)(u′, v′)
= C∗

(
�(C, u, v)(x, v′)
�(C, u, v)(u′, v′)

,
�(C, u, v)(u′, y)

�(C, u, v)(u′, v′)

)

for 0 ≤ x ≤ u′ and 0 ≤ y ≤ v′.
Since

C(x, y)

C(u, v)
= �(C, u, v)

(
C(x, v)

C(u, v)
,
C(u, y)

C(u, v)

)
,

for all x ≤ u′ and y ≤ v′ we find that

C(FU(C, u, v)−1(x), FV (C, u, v)−1(y))

C(FU(C, u, v)−1(u′), FV (C, u, v)−1(v′))

= C∗
(

C(FU(C, u, v)−1(x), FV (C, u, v)−1(v′))
C(FU(C, u, v)−1(u′), FV (C, u, v)−1(v′))

,

C(FU(C, u, v)−1(u′), FV (C, u, v)−1(y))

C(FU(C, u, v)−1(u′), FV (C, u, v)−1(v′))

)
.

Let u∗ = FU(C, u, v)−1(u′) and v∗ = FV (C, u, v)−1(v′), which respectively satisfy
C(u∗, v) = u′C(u, v) and C(u, v∗) = v′C(u, v). Then, for all x ≤ u∗ and y ≤ v∗,

C(x, y)

C(u∗, v∗)
= C∗

(
C(x, v∗)
C(u∗, v∗)

,
C(u∗, y)

C(u∗, v∗)

)
;

i.e. C∗ = �(C, u∗, v∗), by Sklar’s theorem, since the functions x �→ C(x, v∗)/C(u∗, v∗) and
y �→ C(u∗, y)/C(u∗, v∗) are continuous.

Finally, if 0 < u′, u ≤ 1 and 0 < v′, v ≤ 1, then �(�(C, u, v), u′, v′) = �(C, u∗, v∗),
where u∗ and v∗ respectively satisfy C(u∗, v) = u′C(u, v) and C(u, v∗) = v′C(u, v). More-
over, because C(u∗, v) = u′C(u, v) ≤ C(u, v) and x �→ C(x, v)/C(u, v) is an increasing
function, it follows that u∗ ≤ u. Similarly v∗ ≤ v, which completes the proof of Lemma 4.2.

Proof of Lemma 4.3. To prove the continuity of �(·, u, v), we have to bound differences of
the form

|�(C′, u, v)(s, t) − �(C, u, v)(s, t)|, (6.13)

where C, C′ ∈ C and s, t ∈ [0, 1]. Since the functions C(·, v)/C(u, v) and C(u, ·)/C(u, v)

are continuous and take the respective values 0 at u and 1 at v, we may assume without loss of
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generality that s = C(x, v)/C(u, v) and t = C(u, y)/C(u, v) for some (x, y) ∈ [0, u]×[0, v].
From Lemma 4.1, it then follows that

�(C, u, v)(s, t) = C(x, y)

C(u, v)
.

Now let � := C′ − C and consider

αC(x, y) := C(x, y)

C(u, v) + �(u, v)
and δ�(x, y) := �(x, y)

C(u, v) + �(u, v)
. (6.14)

We obtain

C′(x, v)

C′(u, v)
= C(x, v) + �(x, v)

C(u, v) + �(u, v)
= αC(u, v)s + δ�(x, v),

C′(u, y)

C′(u, v)
= αC(u, v)t + δ�(u, y).

Thus, from Lemma 4.1 we obtain

�(C′, u, v)(αC(u, v)s + δ�(x, v), αC(u, v)t + δ�(u, y)) = C′(x, y)

C′(u, v)
. (6.15)

The expression in (6.13) can be bounded as follows:

|�(C′, u, v)(s, t) − �(C, u, v)(s, t)|
≤ |�(C′, u, v)(s, t) − �(C′, u, v)(αC(u, v)s + δ�(x, v), αC(u, v)t + δ�(u, y))|

+ |�(C′, u, v)(αC(u, v)s + δ�(x, v), αC(u, v)t + δ�(u, y)) − �(C, u, v)(s, t)|
≤ |αC(u, v)s + δ�(x, v) − s| + |αC(u, v)t + δ�(u, y) − t | +

∣∣∣∣C′(x, y)

C′(u, v)
− C(x, y)

C(u, v)

∣∣∣∣.
(6.16)

Here the last inequality follows because any copula is Lipschitz continuous with Lipschitz
constant 1, and because of (6.14) and (6.15). Furthermore, from the definitions of αC and δ�

and because x ≤ u and s ≤ 1, we have

|αC(u, v)s + δ�(x, v) − s| =
∣∣∣∣ −�(u, v)s

C(u, v) + �(u, v)
+ �(x, v)

C(u, v) + �(u, v)

∣∣∣∣
≤ 2|�(u, v)|

C(u, v) + �(u, v)

≤ 2‖�‖∞
C(u, v) − ‖�‖∞

, (6.17)

where the denominator on the right-hand side is positive for C′ sufficiently close to C, i.e. if
C′(u, v) > ε > 0 for some ε. Similarly,

|αC(u, v)t + δ�(u, y) − t | ≤ 2‖�‖∞
C(u, v) − ‖�‖∞

. (6.18)
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Furthermore, since x ≤ u and y ≤ v, we have∣∣∣∣C′(x, y)

C′(u, v)
− C(x, y)

C(u, v)

∣∣∣∣ = |�(x, y)C(u, v) − C(x, y)�(u, v)|
C′(u, v)C(u, v)

≤ 2|C(u, v)�(u, v)|
C′(u, v)C(u, v)

≤ 2‖�‖∞
C′(u, v)

. (6.19)

From (6.16), (6.17), (6.18), and (6.19), we obtain

|�(C′, u, v)(s, t) − �(C, u, v)(s, t)| ≤ 4‖�‖∞
C(u, v) − ‖�‖∞

+ 2‖�‖∞
C′(u, v)

,

where the right-hand side is independent of s and t and can be made arbitrarily small as ‖�‖∞
becomes small. This completes the proof of Lemma 4.3.

Proof of Theorem 4.2. Let (un) and (vn) be two sequences defined recursively by the fol-
lowing relationship. Let α and β be two constants in (0, 1], with (α, β) �= (1, 1), such that
C(un+1, vn)/C(un, vn) = α and C(un, vn+1)/C(un, vn) = β for all n ≥ 1, given that un and
vn are strictly positive. Owing to the continuity of C, the sequences (un) and (vn) are well
defined but not necessarily unique. Those sequences can be defined starting in (1, 1), so that
u1 = α and v1 = β.

Because α, β ∈ (0, 1], we have 0 ≤ un+1 ≤ un and 0 ≤ vn+1 ≤ vn. Let u = limn→∞ un

and v = limn→∞ vn. If u > 0 and v > 0 then C(u, v)/C(u, v) = α = β, i.e. α = β = 1,
contradicting the hypothesis that (α, β) �= (1, 1) and meaning that either u = 0 or v = 0.

Consider the copula Cn = �(C, un, vn). From Lemma 4.2, it follows that

�(C, un+1, vn+1) = �(�(C, un, vn), u
∗
n+1, v

∗
n+1),

where u∗
n+1 = C(un+1, vn)/C(un, vn) and v∗

n+1 = C(un, vn+1)/C(un, vn). In other words,
we have u∗

n+1 = α and v∗
n+1 = β, whence �(C, un+1, vn+1) = �(Cn, α, β) = Cn+1.

Thus, Cn = �(C, un, vn) and as either un → 0 or vn → 0 as n → ∞, Cn converges
towards C0 in the same limit. Because, for given α and β, �(·, α, β) is a continuous function
(from Lemma 4.3), C0 necessarily satisfies �(C0, α, β) = C0. This completes the proof of
Theorem 4.2.

Proof of Corollary 4.1. Since C0 = limt→0 �(C, r(t), s(t)), it follows from Theorem 3.1
that C0(x, y) = φ(φ−1

X (x), φ−1
Y (y)), where, for x > 0,

φ(x, y) = xθ/αh(yx−β/α), h(x) =
{

φY (x) if x ∈ [0, 1],
xθ/βφX(x−α/β) if x ∈ (1, ∞).

In other words,

C0(x, y) = φ(φ−1
X (x), φ−1

Y (y))

=
{

φ−1
Y (y)θ/βφX(φ−1

Y (y)−α/βφ−1
X (x)) if φ−1

X (x)β < φ−1
Y (y)α,

φ−1
X (x)θ/αφY (φ−1

Y (y)φ−1
X (x)−β/α) if φ−1

X (x)β ≥ φ−1
Y (y)α,

i.e. C0 = 	(φX, φY , α, β, θ) according to (4.2). This completes the proof of Corollary 4.1.
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Proof of Proposition 4.1. Let C be an absolutely continuous and invariant copula on the unit
square. From Lemma 4.1, for all x, y, u, v ∈ (0, 1] we have

C(xu, yv)

C(u, v)
= C

(
C(xu, v)

C(u, v)
,
C(u, yv)

C(u, v)

)
.

Since C is absolutely continuous, differentiating with respect to x and y yields

uvC12(xu, yv)

C(u, v)
= vC2(u, yv)

C(u, v)

uC1(xu, v)

C(u, v)
C12

(
C(xu, v)

C(u, v)
,
C(u, yv)

C(u, v)

)
,

where C1, C2, and C12 denote the partial derivatives of C with respect to the corresponding
variables. This equation can be written as

C(u, v)C12(xu, yv)

C2(u, yv)C1(xu, v)
= C12

(
C(xu, v)

C(u, v)
,
C(u, yv)

C(u, v)

)
.

Inserting x = y = 1, we obtain

C(u, v)C12(u, v)

C2(u, v)C1(u, v)
= C12(1, 1) =: θ + 1,

which can be rewritten as
C12(u, v)

C1(u, v)
= (θ + 1)

C2(u, v)

C(u, v)
.

Integrating with respect to v yields

log C1(u, v) = (θ + 1) log C(u, v) + κ(u), (6.20)

for some function κ(u). In order to determine the function κ , note that log C1(u, 1) =
(θ + 1) log u + κ(u). Substituting this into (6.20) yields

log
C1(u, v)

C1(u, 1)
= (θ + 1) log

C(u, v)

u
,

and taking the exponential on both sides produces the identity

−1

θ

d

du
C(u, v)−θ = C1(u, v)

C(u, v)θ+1 = C1(u, 1)

uθ+1 = C1(u, 1)

C(u, 1)θ+1 = −1

θ

d

du
C(u, 1)−θ

= −1

θ

d

du
u−θ .

Integrating with respect to u yields

C(u, v)−θ = u−θ + λ(v),

for some function λ(v). Setting u = 1, we see that λ(v) = v−θ − 1, whence C(u, v) =
(u−θ + v−θ − 1)−1/θ , which is the Clayton copula with parameter θ . Conversely, since the
Clayton copula is absolutely continuous and also invariant on [0, 1]2, it follows that it is the
only copula with these properties.
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