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Steady-state diffusion in long axisymmetric structures is considered. The goal is to assess one-
dimensional approximations by comparing them with axisymmetric eigenfunction expansions. Two
problems are considered in detail: a finite tube with one end that is partly absorbing and partly reflect-
ing; and two finite coaxial tubes with different cross-sectional radii joined together abruptly. Both
problems may be modelled using effective boundary conditions, containing a parameter known as
the trapping rate. We show that trapping rates depend on the lengths of the finite tubes (and that
they decay slowly as these lengths increase) and we show how trapping rates are related to blockage
coefficients, which are well known in the context of potential flow along tubes of infinite length.
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1 Introduction

Problems involving wave propagation or diffusion in long rigid tubes of slowly varying cross-
section have an extensive literature, with associated approximations. One thinks of the Webster
horn equation or the Fick—Jacobs equation, which are one-dimensional partial differential equa-
tions, in which the unknown function depends on the longitudinal coordinate z and time ¢;
in steady situations (no dependence on f), ordinary differential equations are obtained. These
approximations are not expected to be useful when the geometry changes abruptly.

What can we do if the slowly varying assumption is violated? This happens if there is an abrupt
change in the tube’s diameter at z = 0 or if the tube contains an object such as a thin disc in the
plane z = 0. (More complicated situations are readily imagined, but the two examples mentioned
are sufficient for our purposes.) One possibility is to connect the solution on the two sides of
z =0 using certain interface conditions, while still retaining a one-dimensional model. This is
an old idea, in which the effects of a boundary with various structures (such as perforations or
decorations) are smeared out (homogenised) and replaced by an effective boundary or interface
condition. These conditions involve parameters that are supposed to encapsulate properties of the
boundary structures; these parameters have to be calculated or estimated by a separate procedure.
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In the diffusion literature, the approach just described is known as boundary homogenisation.
Quoting from [4]: ‘The key step of our analysis is the replacement of the initial three-dimensional
problem by an effective one-dimensional one. This replacement is not rigorous. Therefore, our
analytical results do not provide an exact solution to the problem.” This provides one motivation
for our work.

Another possibility is to tackle the fully three-dimensional problem using eigenfunction expan-
sions. Thus, if we assume that the tube has a circular cross-section, we can use cylindrical polar
coordinates (7, 0, z) and the method of separation of variables. We shall use this method for two
specific problems and then compare with one-dimensional approximations.

We shall give detailed consideration of two steady-state axisymmetric problems involving
Laplace’s equation, V2¢ =0, and tubular geometries. In the first problem (the ‘finite-tube prob-
lem’, Section 2), the rigid tube has finite length (0 <z < ¢) with ¢ = ¢, (a constant) at one
end (z =) and mixed conditions at the other (z= 0, where d¢p/dz=0for 0 <r<band ¢p =0
for b < r < a). When boundary homogenisation is used, the goal is to calculate ¥ (z) >~ ¢ with
¥ (z) = 0. To be more precise, we may define

v(z) ¢(r,0,z)rdrdo, (1.1)

1
where A(z) is the cross-section at z and |A(z)| is the area of that cross-section. The mixed
boundary conditions at z = 0 are replaced by a single (Robin) boundary condition,

¥'(0) =« (0), (1.2)

where « is a constant. In the diffusion literature, x is known as a trapping rate. Particles dif-
fusing in the tube are partially absorbed at z=0 and partially reflected; x characterises the
absorption rate.

Determining « is a separate and non-trivial task. For example, if we switch the mixed con-
ditions at z =0, so that ¢ =0 for 0 <r < b (representing an absorbing disc) and d¢/dz =0 for
b <r < a (a reflecting annulus), there is the approximation given in [2], obtained there using
Brownian dynamics simulations. Such approximations do not depend on ¢, the length of the
tube. A second motivation for our work was to quantify the dependence of «(£) on £. We shall
see that

k() =keo +0(€7') asl— oo, (1.3)

where ko, comes from solving a potential flow problem for a tube of infinite length. In fact, we
shall also see that ko, = C~!, where C is the blockage coefficient for the potential flow. The
slow decay with € in (1.3) is surprising because one might expect to see exponential decay. We
also obtain an estimate of the O(¢£~") term; it turns out to be simply —¢~! (see (2.26)), a result
obtained by applying an iterative method to an associated integral equation.

Much is known about blockage coefficients, such as how to compute them and how to estimate
them for obstacles of various shapes in an infinite tube. For details and references, see [14, 15].
Connections between C and « are expected to find further applications.

In the second problem (the ‘junction problem’, Section 3), two coaxial rigid tubes are joined at
z=0. The tubes have different radii and different finite lengths. The join is effected using a rigid
annulus, and there are Dirichlet boundary conditions at the two ends of the structure (¢ = ¢ at
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one end and ¢ = 0 at the other). This problem was studied by Berezhkovskii et al. [1] (using
boundary homogenisation, see Section 3.1) and by Kalinay and Percus [10] (using eigenfunction
expansions). The junction problem is more complicated than the finite-tube problem: instead of
mixed conditions at one end of the tube, we now have a mixture of boundary and continuity
conditions at z = 0. It turns out that (1.2) is to be replaced by a condition requiring that v'(0) is
proportional to the jump in ¥ across z = 0; the constant of proportionality is essentially « (see
(3.8)), and it is found to decay slowly, similar to (1.3); see (3.32) for more details. We also relate
k to the blockage coefficient for potential flow along two coaxial semi-infinite tubes, joined at
z=0, a problem that is studied in Section 3.2.
There are some concluding remarks in Section 4.

2 Finite-tube problem

Consider the following axisymmetric problem for a rigid tube of finite length £. The potential
¢(r, z) satisfies V¢ =0 for 0 < z < £, 0 < r < a together with the following conditions:

or,0)=¢y, 0<r<a, (2.1a)
0¢/0z=0, z=0, 0<r<b, (2.1b)
¢, 0)=0, b<r<a, (2.1¢)
o0p/or=0, r=a, 0O0<z<d. (2.1d)

Here, ¢ is a constant. (Evidently, the problem could be scaled so that ¢g=1 and a=1, if
desired.) A complementary problem (with the mixed conditions at z= 0 interchanged, so that
¢ =0 on the disc of radius b and d¢p/9dz = 0 on the annulus b < r < a) is studied in [4, 5].

The main quantity of interest is the flux

J=2n /Oa E;—(frdr. 2.2)

Green’s theorem shows that 7 does not depend on z, with 0 <z < £, but it does depend on £: we
write J(£). In particular, using (2.1b),

J)=2n /ba E;—¢ rdr, 2.3)

Z lz=0

an integral of d¢/dz over the annular region at z= 0. Alternatively, an application of Green’s
theorem in the finite tube to ¢ and z — £ gives

b

IO =na"

b
2%/(; o(r, 0)rdr, 2.4

giving 7 (€) in terms of an integral of ¢ over the disc at z = 0.

2.1 Boundary homogenisation

Suppose we approximate ¢(r,z) by a function of z only, (z); see (1.1). Laplace’s equation
becomes ¥”'(z) = 0, so that 1/ (z) = Az + B, with arbitrary constants 4 and B. The mixed boundary
conditions at z = 0 are replaced by (1.2), ¥'(0) = «¥(0), where « is a constant. Combining this
condition with 1 (£) = ¢, we obtain
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1 2
K and J(Z):nazgh/:na “do

1P(Z)=<1>01+KZ el

(2.5)
This calculation is very simple but, of course, we do not know «: the problem of calculating ¢
has been replaced by the problem of calculating «.

2.2 Rigid disc in an infinite tube

Returning to problem (2.1), suppose we extend ¢(r,z) into —¢ <z <0 as an odd function of
z, ¢(r, —z) = —¢(r,z), 0 <z < £. Then we see that the problem is equivalent to some kind of
potential flow past a thin rigid disc of radius b in a tube of cross-sectional radius a. Note that
extending ¢ in this way means that (2.1c) is satisfied automatically.

The simplest problem of this kind comes by letting £ — oo, with uniform flow along an infinite
tube. For this problem, the conditions ¢(r, ££) = t¢, (see (2.1a)) are replaced by

¢(r,z)=U(z£C)+o0(l) asz— Foo, (2.6)

where U is the constant speed of the flow far from the disc and C is the blockage coefficient.
(The o(1) terms in (2.6) are exponentially small.) We shall see later that « in (1.2) and C in (2.6)
are related.

The problem of uniform flow past a rigid disc has been studied previously [18, 17, 14, 15].
There are approximations when b/a is small and when the gap between the disc and the tube is
small (b/a >~ 1) [17, 14]. Here, we begin with a standard method (that could be used to compute
C numerically) but then we introduce approximations that lead to analytical estimates.

Two exact formulas are worth noting. Hurley’s formula [9], [ 14, equation (31)] gives

) b
We also have flux conservation through the gap,
“9
271/ —¢(r, 0+)rdr=ma*U. (2.8)
b 0z

Now, as it is sufficient to consider z > 0, we write

o0
¢(r,2)=UG+C)+Ua Y _ culoOuur)e ™, 0<r<a, z>0, (2.9)

n=1

where A, are positive solutions of J;(1,a) = 0 and J,, are Bessel functions. The (dimensionless)
coefficients ¢, and C/a are to be found. The representation (2.9) ensures that V2¢ = 0 and that
(2.1d) and (2.6) are satisfied. Applying (2.1b) and (2.1c¢) gives

> ey our) =1, 0=<r<b, (2.10a)
n=1

C o0

=+ ehar)=0, b<r<a. (2.10b)
a n=1
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These are dual series equations for ¢, and C [19], [6, Example 3.3.1]. For a numerical treatment,
see [17]. Also, if we multiply (2.10b) by r and then integrate from » = b to r = a, we obtain
C 2ab = Ji(Anb)

— = 2.11
a a*—b? nZICn A 21D

after use of
1 q P
/ Jo,r)rdr= A—Jl()\nQ) — A—Jl(knp). (2.12)
p n n

The same formula for C, (2.11), is obtained by substituting (2.9) in (2.7).
Instead of trying to solve (2.10), let V(r) = 0¢/9z at z =0 for b < r < a; this is the flow speed
in the gap. Thus, using (2.1b) and (2.9),

g 0, 0<r<b,
U=UY" ca(hna)o(hnr) =
el V(ir),b<r<a.
This is a Dini—Bessel series. Orthogonality gives
na*U =2n f V(r)rdr (2.13)
b

(which is (2.8)) and

Cp =

2 a
_ V(r)Jo(A,r)rdr, 2.14
mwﬁmmﬂ (Mo dr (2.14)

using [16, 10.22.4 and 10.22.5]

a 2
/ JoQomiWoQunr) 1 drr = % JE(hn@) Sy (2.15)
0

Substituting for ¢, from (2.14) in (2.10a) leads to an integral equation for V(). This approach
will be pursued later when we return to the finite-tube problem in Section 2.3. However, for the
moment, we note that our calculations are exact, but we do not know V.

Let us make a plausible approximation for V. The simplest possibility is to take V(r) = U, a
constant; from (2.13), Uy = Ua?/(a* — b*). Then (2.14) gives the approximation

B 2bUpJ (hnb)
C UA2d3(a? — b?) JE (M)

Cn

which, when substituted in (2.11) gives the approximation

a 4a3b?
C=Cyre = @ gy Sb/a) (2.16)
where
[ 2 ST

(M@} JEOna@) = j3I3Gn)

and j, = A,a (so that Ji(j,) = 0). (The notation ‘app’ in (2.16) indicates ‘approximation’.) The
terms in the series Sy decay as n~3; as far as we know, Sy cannot be summed in closed form

n=1
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(although it can be written as an integral [13, equation (16)]). It will appear again later; see
(2.24). A generalisation, S, will also appear later; see (3.14) and Appendix A.

Although the approximation V' (r) >~ Uy may seem crude, it can be refined, taking into account
the fact that V(r) is infinite at the sharp edge of the disc (» = b). For details, with an application
to a disc that almost fills the tube (small gap, b/a >~ 1), see [15].

2.3 Finite-tube problem: Estimating «
2.3.1 An integral equation
Let us return to the finite-tube problem (2.1). Look for a solution in the form

o(r,2)
®o

o0
=14¢ (% - 1) + Z cnJo(yr)sinh {Ay(z =€)}, 0<r<a, O<z<{. (2.18)
n=1

This representation satisfies (2.1a) and (2.1d). From (2.2), the flux is given by
T ) =nma*poco/L. (2.19)

Applying the boundary conditions at z= 0, (2.1b) and (2.1c), we obtain dual series equations,

co+ Y endo(ar)(hnl) cosh A, =0, 0=<r<b, (2.20a)
n=1
co+ Y eao(har)sinh i, b=1, b<r<a. (2.20b)

n=1

Proceeding as in Section 2.2, let V(r) = d¢/9z at z=0 for b < r < a. Then, using (2.1b) and
(2.18), we obtain

ad 0, 0<r<b,
co+ Y cnJo(ur)(0nl) cosh 1, =

n=1 «/Pp)V(r), b<r<a.

Orthogonality gives
2¢ (¢ 14
=— | Vrd= 4 2.21
a=—s [ Vore=——gw 221)
and
Anf cosh 1,0 2t faV(M(A Y d
CpAnt C nt = T 5, < r nF)r ar
¢0a2‘]g()¥na) b 0

using (2.15). Substitution in (2.20b) gives an integral equation for V,

oo

20 (¢ Jo(AnF)Jo(Ay
1=—/ V(s){l—i—c—lZL;(S)tanh)\nﬁ}sds, b<r<a. (2.22)
¢0a2 b 14 ()‘na) J() ()‘na)

n=1

This reduction to an integral equation is exact. However, we shall approximate because we are
only interested in calculating ¢ (see (2.21)) and, moreover, we shall assume that £/a > 1.
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2.3.2 Approximation for large £

For large ¢, tanh A,,£ >~ 1, so we can discard the sum term in (2.22) (because of the factor a/¢).
Thus, at leading order,

2¢ (¢
l>— V(s)s ds = co, (2.23)
$oa* Jp
which gives J(£) ~ mwa®¢o /L. This very simple approximation does not depend on b, although it
is exact when b = 0.
In order to improve our approximations, we use an iterative approach. Thus, suppose that
V(r)=Vy/t+V1/€* + -, where Vg is a constant defined by ¢oa® =2V, [, rdr, which gives
= ¢pa’/(a® — b?). Substitution in (2.22) then gives

20 L a% V; Voa = Jo(Anr)o(hn
1:_/ <_0_|__1) 2/ Oa 0(hr)of S)SdS, b<r<a.
b $oa

¢oa? AR (x a) Jg(ha)
Rearranging
2V = Jo(hs a
co=1-— 0 Z o 2r) Jo(Aps)s ds
$oal = (1,a) J3(hn) J
2ba> o Jo(h Anb
—1+ 2a . Z o( nr)J;( )
Ua* — b?) = (Aa)* I (Ana)

But the right-hand side is a function of #, so average over the annulus: multiply by 2r/(a> — b?)
and integrate between r = b and r = a:

_ o Ji(hab) ¢
= 1z(a2 b2)2 Z P o) Jy P
B Pad o Ji0ub)
T Ua? — b2 Z (on@)? JE(hna)’ (229)

The series seen here is Sy(b/a), defined by (2.17). It occurred in our approximation to the block-
age coefficient C for potential flow past a thin rigid disc in a tube of infinite length, Cir, given
by (2.16). If we accept that approximation, we obtain the relation

co=1-C" /¢ (2.25)

and then (2.19) gives an approximation for the flux 7 (¢).

2.3.3 Estimating k
We have two estimates for 7, namely

ragy (| O
12 12

Ta ok

J() = el

) and JW)=

see (2.5) for the second. Equating these and solving for k, we obtain

11
K(0) = — — —. (2.26)
Cie  ©
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Recall that Cj" pertains to an infinite tube whereas «(¢) is for a finite tube of length €. We see
that the difference decays slowly as £ — oo.

The observation that x(c0) = C~! is to be expected. If we approximate ¢(r, z) for an infinite
pipe (with far field given by (2.6)) by a one-dimensional function ¥ (z), we must have ¥ (z) =
U(z 4+ C). Suppose the rigid object in the tube is confined to the region |z| < & for some 4, and
then apply the condition v/'(z9) = k2 ¥ (z9) (compare with (1.2)), where zo > h; we have written
2, to indicate that we are representing the solution in an infinite pipe with a boundary condition
applied at zy. Doing this gives k% = 1/(C + z). (For a thin disc, we can take zo = 4 = 0.) This
simple calculation shows that we should expect « to depend on the location at which the boundary
condition ¥’ =k is imposed. Indeed, if we use a different location, using ¥'(z1) = kL ¥(z1),
we obtain k!, = 1/(C + z;) and then, eliminating C, we obtain

1 1

— —— =Zy —Z]. (227)

0 1
Koo Koo

We conclude that, unlike the blockage coefficient C, « is not dependent solely on the shape of
the rigid object in the tube.

2.4 Finite-tube problem: The one-dimensional approximation

Let us construct ¥ from ¢, using (1.1), which reduces to
2 [ z
V)= fo o) dr =0 {1+ ¢o <Z -1)},

an exact formula, after using (2.18). Evidently, ¥ (£) = ¢y whereas imposition of ¥'(0) = « ¥ (0),
(1.2), gives a relation between « and ¢,

U1 —co)

K (2.28)
Now, the leading-order estimate for ¢, (2.23), is ¢y >~ 1, and so the exact formula (2.28) does not
provide a useful estimate of x. However, if we use the refined estimate for ¢y, (2.25), in (2.28),
we recover the formula (2.26).

3 Junction problem

Two finite rigid coaxial tubes join abruptly at z=0. The wider tube has length ¢,, and cross-
sectional radius a. The narrower tube has length ¢, and cross-sectional radius b < a. The potential
¢ satisfies d¢/dr = 0 on the tube walls together with d¢/9z = 0 on the annular region, b < r < a,
z = 0—. Dirichlet boundary conditions are imposed at the two ends of the structure. Thus, we
have V2¢ = 0 inside the structure, together with the following boundary conditions:

o(r, ) =¢9, 0<r<b, (3.1a)
ap/or=0, r=>b, 0<z<l{,, (3.1b)
09/0z=0, z=0—, b<r<a, (3.1¢)
ap/or=0, r=a, —4{,<z<0, (3.1d)
¢(r,—¢,)=0, 0<r<a. (3.1e)
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This problem is similar to one considered in [1] and [10] (but note that we have interchanged
a and b).
As in Section 2, the main quantity of interest is the flux,
r@ ¢ a, —¢,<z<0,
J =2r / 3—r dr with p(z)=
0 z

b, 0<z<d,;

J does not depend on z. In particular, using (3.1c¢),

b
jzzn/ 9
0 0z

Applying Green’s theorem in the narrow tube to ¢(r, z) and z — €, gives

rdr. (3.2)
z=0

0=nb*py—2n /0 ' d(r, 04+)rdr — 2,7
Similarly, applying Green’s theorem in the wide tube to ¢(7, z) and z + ¢,, gives
0=2m /Oa ¢(r,0—)yrdr—2¢,J.
Adding these two equations, noting that ¢(r, 0+) = ¢(r, 0—) for 0 < r < b, we obtain

by +0,)T =wh*py + 27 /-a ¢(r, 0—)rdr. (3.3)
b

3.1 Boundary homogenisation
As in Section 2.1, suppose we approximate ¢(r, z) by a function v(z), with ¥”'(z) = 0. Imposing
V() = o and Y(—£,)=0 gives
Y(@z)=A4Az+1¢,), —L,<z<0 and Y(@)=¢o+Bz—-1¢,), 0<z<{,,

where 4 and B are arbitrary constants. The flux is wa?4 for —£,, <z < 0 and wb?B for 0 <z < £,,.
For these to match, a>4 = b?B. Thus, in terms of 4,

VO0-)=4, Y'O0+)=(a/b)’4, Y(O0-)=A4L,, Y(O+)=do—(a/b)’4t,.  (3.4)

We need one more condition to determine A4.
In [1, equation (2.3)], the following conditions are imposed at z = 0:

G, (0=) = G,(04) = Ky Ga(04) — K, G,y (0-). (35

These two relations involve the functions G,, and G,, and the parameters «,, and «;,.

The constants «,, and «,, are known as ‘boundary trapping rates’ [1]. Thus «,, is the trapping
rate for diffusing particles approaching z =0 from the wide part of the structure (that is, from
z < 0) and «,, is the rate for particles arriving from the narrow part. These two rates are related,
as we shall see.

The first of (3.5) is identified in [1] as flux conservation, so we put G,,(z) = a*v/(z) for —£,, <
z<0and G,(z) = b*Y(z) for 0 < z < £,,. The second of (3.5) then becomes

@Y (0=) = kb Y (0+) — kY (0—). (3.6)
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In [1, equation (2.5)], it is argued that the boundary trapping rates satisfy
Kkn = (a/byk, =k, (3.7)

say. (The authors appeal to ‘the condition of detailed balance’ but an elementary argument
suffices. If we replace the boundary condition (3.1e) by ¢(r, —¢,,) = ¢y, the exact solution is
o(r, z) = ¢y with zero flux. The corresponding one-dimensional solution is ¥ (z) = ¢, but this
solution will only satisfy (3.6) if (3.7) holds.) Using (3.7) reduces (3.6) to

a*y'(0—) = b {y(0+) — ¥ (0-)} . (3.8)

We notice that the right-hand side of (3.8) contains the discontinuity in ¥ across the junction at
z =0 whereas ¢(r, 04) = ¢(r,0—) for 0 <r < b.

Substituting from (3.4) in (3.8), we find that 4 = kb*¢y/(a® + k) and
T az bz ¢o

= m with Q= aZK,, + bZZW. (39)
aK

J =nd’4

It is known [1] that x — oo as b — a, and so the correct result is obtained in this limit.

3.2 Two semi-infinite tubes

Returning to problem (3.1), suppose we let £,, — oo and ¢, — oo, and consider uniform flow
along two coaxial semi-infinite tubes, joined together with a rigid annulus at z=0. For this
problem, the boundary conditions (3.1a) and (3.1e) are replaced by far-field conditions,
U,(z+ C)+o(l) asz— o0, 0<r<bd,
¢(r,z) =

Uz + o(1) asz— —oo, 0<r<a.

Flux conservation shows that the constants U and U, are related by ma?U = wb?U,. The constant
C is unknown; it is the blockage coefficient. As all boundary conditions are Neumann conditions,
we are free to exclude an additive constant in the behaviour of ¢ (7, z) as z — —oo.

If we apply Green’s theorem to ¢ (7, z) and z in the narrow tube, we obtain

b
U,Cnb* =27 / é(r, 04)r dr.
0
If we do the same in the wide tube, we obtain
2 / ¢(r,0—)rdr=0.
0
As U,b? = Ud? and ¢(r, 0+) = ¢(r, 0—) for 0 < r < b, we obtain
C 2 /a¢(0)d (3.10)
=—— r, 0—)rdr. .
Ua2 b
Our goal is to obtain an approximation to C; (3.10) shows that we are mainly interested in ¢ in

the wide tube. (Of course, a full solution would require matching to ¢ in the narrow tube through
the aperture at z = 0; see [20] for some details.)
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As the flow is axisymmetric, write ¢ in the wide tube as

o0
¢(r.2)=Uz+Uay_ culo(ur) €, z<0, 0<r<a, (3.11)

n=1

where J)(1,a) = 0, as before. Differentiating,

U+U Y ea(hna)o(hnr) =

n=1

Vir), 0<r<b
s b<r<a,

where V(r) is the unknown speed in the aperture, V(r) = d¢/0z at z=0, 0 <r < b and we have
used (3.12c¢). Orthogonality gives

b
na*U =2n / V(ryrdr (3.12)
0

(which is flux conservation again) and

Cn =

—UA = J2(A " / V(r)Jo(Aur)rdr.

Also, substituting (3.11) in (3.10) gives

c 2§: /aj(x yrd Zbicnj(kb)
=—- c ryrdr=— —
an:lnb 0\An an:lknl n
4b K Ji(Aab) b

A s AOaD) (T G dr, 313
Ua? 2 GroaP T2 Gna) o (rJo(rr)r dr (3.13)

using (2.12). The formula (3.13) is exact, but we do not know V().

To proceed, we approximate and try V(r)= U,(b* —r*)~%, with 0 <g < 1; conservation
gives U, = (1 — q)a®b*~2U. A local analysis near the corner at (r,z) = (b, 0) gives ¢ =1 [12,
Section 63]. Note that g = 0 would mean that V' (r) has been approximated by a constant whereas
q= % would be appropriate when two identical semi-infinite tubes are joined with a rigid iris (a
thin screen with a hole of radius b). Then (3.13) gives

. 4bU, Ji(Anb) /b B
CxCip = —1 b — 1) 1 Jo(Aur)rd
tube = /22 Z(A T Oond) o( r) " Jo(Aur)r dr
=279 (2 — q) (b/a)""' S,(b/a), (3.14)
where
2\ Ji(AnaX) Ji—g(AnaX) J(],,X)J (jnX)
S,0=>""= S Z ! — 12q , (3.15)
= (ha) "1 Jy(hna) Jr 20
Jn = Aya and we have used [7, 6.567.1]
b b2—2q F(l _ q)
2 2\—
/0 (b —l") qu()\,nl")l"d}"Z lefq()\.nb). (316)

Note that the series Sy appeared earlier; see (2.17). Asymptotic approximations to C for b/a < 1
are developed in Appendix A.
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3.3 Junction problem: Estimating «

Let us return to the junction problem (3.1).

3.3.1 The wide tube

In the wide tube, we can write

P2 ey (Z 1)+ 2 i) sinh e+ ) (3.17)
0 W

for —¢,, <z < 0and 0 <r < a, where J; (A,,a) = 0. This representation satisfies (3.1d) and (3.1¢).
Atz =0, we have

m=1

co+ Y cuo(hnr) sinh A€, = ?, 0<r<b, (3.18)
0
m=1
where ¢(r) = ¢(r,0), 0 <r < b; ¢(r) is the unknown potential in the aperture. Differentiating
(3.17),
= (Lw/Po)V(r), 0 <r<b,
o+ Y emloQmr)(Amty) cosh Ay by, = (3.19)
m=1 0, b<r<a,
where V(r)=0¢/dz atz=0, 0 <r < b and we have used (3.1c). Orthogonality gives
26, /b V(r)rd b J (3.20)
co= ryrdr= .
*7 goa? Jo poma?
using (3.2) and, using (2.15),
Ambyy cosh A€ 26, /bV()](A W d
CmAmtw COS mtw = — 5 5., < r mP)V ar.
o2 S30ma) Jo "

If we eliminate c,, from (3.17) and assume that V(r) is constant, we obtain [11, equation (3)].
Instead of doing that, we eliminate c,, from (3.18), giving an equation relating two unknown
functions, V" and ¢,

o0

24, b a JO()\mr)JO()\mS)
—_— Vi 14— ————~tanh A, ¢, tsds= , 0< b. 3.21
2 Jy (S){ o L G } o0, Osr<bo G2D

m=1
3.3.2 The narrow tube

Let us make a similar calculation for the narrow tube, starting with

¢(;, D _ 144, (zi - 1) + 3 duo(nr) sinh {n(z — £}, (3.22)
0 n

m=1

for0 <z < £, and 0 <r < b, where u,, are positive solutions of J;(u,,b) = 0 and the coefficients
d,, are to be determined. This representation for ¢ ensures that (3.1a) and (3.1Db) are satisfied. At
z=0,

o0
1 —dy =" dudo(ttr) sinh iy, = ?, 0<r<b. (3.23)
0

m=1
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Differentiating (3.22),

dO + Z deO(:u'mr)(Hfmgn) cosh /vl‘men = (fn/(bo)V(l"), 0 =r< b. (324)

m=1
From this equation, we obtain
20, [° ¢,
dy = o2 ), V(ryrdr= Son b J (3.25)
and, using (2.15),

dy ik, cosh p,, L, b)/ V() Jo(pmr)r dr.

¢0b2J2(/'Lm
Eliminating d,, from (3.23),

2¢, b Jo(mr)Jo(tms) _
- / V(s){l + = ; b ) tanhumﬁn}sds =p(r)—¢y 0<r<b. (3.26)

Chapman and Parker [3] eliminate ¢ between (3.18) and (3.23) and V' between (3.19) and
(3.24), giving a set of dual series equations for ¢,, and d,,. They solve these equations numer-
ically, with a focus on computing ¢y, which is related to the flux by (3.20). See also [20,
Section I11.B].

3.3.3 Anintegral equation for V
Eliminating ¢ between (3.21) and (3.26), we obtain

2¢,, Jomr)Jo(Ams)
= A V(S){l + — thanhkmﬁw}sds

2£n b JO(/*Lmr)JO(MmS) _
+ 5 / V(s ){1 + — Z bR Gunb) tanh ,u,,,ﬁ,,}sds = ¢y, (3.27)

m=1

which is an exact integral equation for V(r), 0 < r < b. It is unlikely that analytical solutions can
be found, so we seek approximations.

3.3.4 Approximation for long tubes

When ¢,,/a and £,,/b are large, we can replace both hyperbolic tangents in (3.27) by 1. Moreover,
at leading order, we can discard the infinite series because they are multiplied by a/¢,, or b/¥¢,,.
Doing this leaves the simple approximation

20, 2t b
—+= / V(s)s ds = o (3.28)
a2 b2 0
which gives
T ~na*b’¢y/ 2 where Q=da*(, + b0, (3.29)
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appeared in (3.9). Also, comparing (3.29) with (3.20) gives
co =~ b,/ Q. (3.30)

To improve our approximation, we proceed as in Section 2.3.2 and use an iterative approach.
Suppose that V = Vo' + V1€, + - - -, where Vy is chosen so that V(s) = Vy(s)¢;,! satisfies
(3.28). If we choose Vo(r) = W,(b* — r*)~%, we obtain W, = ¢pol,,a*b*(1 — g)/ Q. Hence, we
find that V] satisfies

24, Vi(s) an(s) Jo(rm)o(As)
e { Z (@2 () }Sds

2gn /b { VI(S) + bVO(S) > JO(/*Lmr)JO(/LmS)

5 3 5 }sds:O, 0<r<b.
b ew E'lEW m=1 (I‘Lmb)Jo (Mmb)

Using (3.16), we have

b _ olwd®B*T(2—¢q)
V[O V()(S) Jo()»S)S ds = BYES) ()\.b)l_q Jl_q()\b)
whence
2 (6, L\ [? G0a®b(b/a)IT (2 — q) = Jo(Am?) J1—g(Amb)
2 <a_2 + b_2>/ i s =~ Z P12 )

_ ¢0a’bT(2—q) i Jo(tnr) J1—g(1mb)
2071 Q — (Un@? 95 (@)

But, as the right-hand side depends on 7, we average over the disc: multiply by 2r/b* and
integrate between » = 0 and r = b, using

b b b
/ Jo(Apr)rdr = A_Jl (Awb) and / Jo(pmr)rdr=0.
0 m 0

Doing this gives

2 /0, £\ [° $oa’ (b/a)T (2 — q)

where S,(X) is defined by (3.15). For the flux, we obtain

b bV Y
j=2ﬂ/ V(s)sds:Zn/ O ) sds
0 o \&w &

. wa’b*¢y 1 a*(b/a)?
Q 20-2Q

re-g Sqw/a)) ,

where Q is defined by (3.29). The sum appearing here also appears in a comparable approxi-
mation for the blockage coefficient C for uniform flow along two coaxial tubes joined together,
Ci¥ , defined by (3.14). Using this, we obtain
naey rna*b*gy (1 B 2cf§,§’e>

J=—F—a="% Q

(3.31)
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3.3.5 Estimating k

We have two estimates for 7, namely (3.9) and (3.31). Equating these gives

L1, e
Ak 1+Q Q Q ’

Solving for «, we obtain

_ | il (3.32)
Tom T ALb '

Again, we see the slow decay of « with increasing tube lengths.
If we combine the leading-order estimate for « with (3.7), we obtain
b2 b?
Ky = ~

2 2 (PP °
a a Ctube

For small b/a, we can use the asymptotic approximation (A3), giving

2
b4 (3 rG-q

where it was assumed that V(r) is proportional to (b> — #2)~¢ with 0 < g < 1. The proper choice
forgisgq= %; this gives 4 ~1.23.

If we take g = 0 (so that V() is approximated by a constant, the average flux into the narrow
pipe), we obtainA = 371 ~1.18.

If we take ¢ = 5, we obtain 4 =4 /7 ~ 1.27. This is the limiting value in [1, equation (2.4a)].
The inverse square -root behaviour at » = b implies that the underlying flow problem has been
replaced by the problem of flow through a hole in a thin rigid screen, leading to an error that
can be estimated using (3.33). (For details and references on this ‘iris problem’, see [14, 15].)
Qualitatively, this is a mistake because it ignores the presence of the narrow tube; however,
quantitatively, the values of 4 for g =} (4 ~1.23) and ¢ = } (4 = 1.27) are close.

Of course, the assumption that V(r) is proportional to (b*> — %)~ is itself an approximation:
in principle, the exact solution for V' could be found by solving the integral equation (3.27), but
this seems to be difficult analytically without further approximations. Numerical solutions could
be sought, but doing this would be expensive (and it would be outside the scope of this paper).

3.4 Junction problem: The one-dimensional approximation ¢

Let us construct ¥ from ¢, using (1.1), which reduces to
V(z)= / @(r,z)r dr = doco ( + 1) —0,, <z <0, (3.34a)
V(z)= 7 / @(r,z)r dr =g {1 + dy (Zi - 1)} , 0<z<d, (3.34b)
0 n

after use of (3.17) and (3.22). These satisfy {(—¢£,)=0 and ¥ (€,) = ¢. Flux continuity,
@' (0—) = b*y/'(0+) gives a’cy/l,, = b*dy/L,, which is seen to hold; compare (3.20) and
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(3.25). Then, applying the condition (3.8) at z = 0 gives
a*co = kb (1 — ¢y — dy) = k(b*L,, — Qcy),

which gives an exact formula for «,

a2 Co

K=——"—"—.
bzﬂw — QC()

(3.35)

Now, the leading-order estimate for ¢, (3.30), is ¢y >~ b*£,,/ K2, and so (3.35) does not give a

useful estimate of k. However, if we use the refined estimate for ¢, (3.31), we recover (3.32).
As J =ma*¢oco /by, = wb*¢ody/L,, we can write (3.34) as

na* Y (z)= Tz + L), —t, <z<0,
ab* () =Tz — L+ L,)dy), 0<z<,.

Kalinay and Percus [10, equation (39)] obtained similar formulas. However, their analysis of (3)
does not take account of finite tube lengths and does not gives estimates of «.

4 Discussion

We have given a detailed study or two problems involving what are nominally one-dimensional
geometries: long tubes with mixed boundary conditions at one end (the ‘finite-tube problem’
discussed in Section 2) or with an abrupt change in cross-section (the ‘junction problem’ dis-
cussed in Section 3). Such problems are often tackled using one-dimensional models coupled
with certain effective boundary conditions; generically, these conditions contain a parameter «.
The same problems can also be tackled using eigenfunction expansions (separation of variables).
This approach is more complicated but, in principle, it is exact: it can accommodate all lateral
variations of the solution. Comparing the two approaches has given us some insight into « and
its properties. For long tubes, we might expect to see connections with the blockage coefficient
C; this quantity is uniquely defined by solving a related potential flow problem. Indeed, we find
that, generically, « is proportional to 1/C. But we also found that ¥ depends on the length of the
tube ¢; it approaches its limiting value slowly (as £~!) as ¢ increases. We also saw that moving
the location of the effective boundary condition (from z = zj to z = z) ) also affects «; see the text
around (2.27). These properties mean that we cannot view « as being an intrinsic property of the
boundaries or interfaces being modelled.

A further difficulty comes when « is viewed as a boundary property. For example, « has been
related to ‘the Hill formula [8] for the flux to an isolated disk on a reflecting wall’ [2, p. 2]. In
detail, Hill [8, p. 4919] solved V¢ = 0 in the half-space z > 0 with a rigid/reflective boundary
at z=0 apart from a circular ‘window’ on which he imposed the boundary condition ¢ = 0.
This implies that ¢ can be extended into the region z < 0 as an odd function of z, ¢(r, —z) =
—@(r,z). In other words, the window is regarded as a circular aperture in a thin rigid plane
(leading to a problem that Hill could solve using oblate spheroidal coordinates). But the window
could be the mouth of a tube extending into z < 0, or maybe a cone; in situations such as these,
we cannot impose ¢ = 0 on the window, we have to impose continuity conditions between the
two regions, just as we did for the finite-tube problem (Section 2) and for the junction problem
(Section 3). Thus, the geometry on both sides of the reflecting wall should be taken into account:
the conceptual replacement of the entry cross-section of the narrow tube by an absorbing disc
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can lead to errors. Similar errors are to be expected when one-dimensional models are used for
more complicated geometrical configurations. Quantifying these errors is difficult, because they
depend on the parameters and geometry of the specific problem of interest: care is warranted.
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Appendix A The series S,(X)
Recall S,(X), defined by (3.15). We are interested in the behaviour of S,(X) as X — 0. We use

a method based on Mellin transforms. From [16, 10.9.29], we have

. . _ L c+ioco F(—t) F(zt +3— C]) (an/2)2f+2*q
Jl(]nX)Jl—q(]nX)_ /;_ioo F(t+2)Tt+2—q)T(t+3—q)

>

2mi
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where—%+%q<c<0and0§q<1.Hence

1M D= T2t 43— q) (X /2)* 2
5= 0 /c_ioo F(t+2)Tt+2—-q)T(t+3—¢q) Ree) dr, (A
where
= !
R(t)=
RPN

does not depend on g. For large n, j, ~ (n + %)n [16,10.21.19] and

Joln) ~ ~/2/(jin) €08 (i — 7/4) ~ /2/(7w?n)(—1)"

[16, 10.7.8] whence JZ(j,) ~ 2/(n*n) and

R(t) Z (nﬂ)m : _ 2 2t+] anx 2t+1 (_20’

2/(72n)
where ¢ is the Riemann zeta function [16, 25.2.1]. As ¢(—2¢) has a simple pole at t = —%, the
formula (A1) holds for -3 34 2q <c<—3 Moving the contour to the right, we pick up a residue
from the pole at = —35. We know that {(z) has just one s1ngular1ty, the simple pole at z =1 with
residue 1, so that ¢(z) : 1/(z — 1) near z= 1. Hence ¢(—2¢) =~ )/(t+ 2) near t = — 5, giving

a residue there of —%. Thus

FrHre-9X/2)' 1 (-1)  X'""77Q2—q)
rOrG-9ré-g92 2 293G -G -g

for small X. For Sy, this result agrees with an estimate used in the text below [2, equation (4)].

The formula (A2) can be used to estimate the blockage coefficient for the junction problem
with two semi-infinite tubes when one tube is much narrower than the other, X = b/a <« 1. From
(3.14), we obtain

SqX) =~ —

(A2)

b2 —q)
Cx2 T2 —g) X' S ()~ 5—— . A3
2-9) g (X) >~ C—orC—9 (A3)

In particular, when g = % (which is appropriate for the two-tube geometry), we obtain

C _6(I(®)
7= (F( )) ~0.81. (A4)

For comparison, C/b~8/(3m)~ 0.85 when ¢ =0 and C/b~ /4 ~0.79 when ¢ = %
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