
A spectral incarnation of affine character sheaves

David Ben-Zvi, David Nadler and Anatoly Preygel

Compositio Math. 153 (2017), 1908–1944.

doi:10.1112/S0010437X17007278

https://doi.org/10.1112/S0010437X17007278 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007278
https://doi.org/10.1112/S0010437X17007278


Compositio Math. 153 (2017) 1908–1944

doi:10.1112/S0010437X17007278

A spectral incarnation of affine character sheaves

David Ben-Zvi, David Nadler and Anatoly Preygel

Abstract

We present a Langlands dual realization of the putative category of affine character
sheaves. Namely, we calculate the categorical center and trace (also known as the
Drinfeld center and trace, or categorical Hochschild cohomology and homology) of the
affine Hecke category starting from its spectral presentation. The resulting categories
comprise coherent sheaves on the commuting stack of local systems on the two-torus
satisfying prescribed support conditions, in particular singular support conditions,
which appear in recent advances in the geometric Langlands program. The key technical
tools in our arguments are a new descent theory for coherent sheaves or D-modules with
prescribed singular support and the theory of integral transforms for coherent sheaves
developed in the companion paper by Ben-Zvi et al. [Integral transforms for coherent
sheaves, J. Eur. Math. Soc. (JEMS), to appear].
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1. Introduction

Let G be a complex reductive group with Langlands dual G∨. Thanks to Kazhdan–
Lusztig [KL87], the affine Hecke algebra of G∨ admits a spectral description in terms of
the K-group of equivariant coherent sheaves on the Steinberg variety of G, which results in
a classification of irreducible representations (the Deligne–Langlands conjecture). Thanks to
Bezrukavnikov [Bez16], the affine Hecke category similarly admits a spectral description in
terms of the category of equivariant coherent sheaves on the Steinberg variety, which one might
hope to apply to describe the representation theory of the affine Hecke category. The main results
of this paper are the calculation of the categorical center and trace of the affine Hecke category
starting from this spectral presentation. The resulting categories comprise coherent sheaves on
the commuting stack, the derived stack of G-local systems on the two-torus, satisfying prescribed
support conditions, in particular singular support conditions that appear in recent advances in
the geometric Langlands program [AG15].
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A spectral incarnation of affine character sheaves

It is known that the categorical center [BFO12, BN09] and trace [BN09] of the finite Hecke

category are equivalent to Lusztig’s character sheaves. Thus, one can view the results of this

paper as giving a spectral construction of the putative category of affine character sheaves as the

geometric Langlands category in genus one. The automorphic geometry of affine character sheaves

continues to be the subject of much ongoing work, motivated by representation theory of groups

over local fields, with recent notable advances by Lusztig [Lus12, Lus14] and Bezrukavnikov et al.

[BKV15] (the latter use the center of the affine Hecke category as a model for affine character

sheaves). It is the natural home to a huge wealth of enumerative questions in representation

theory and gauge theory (see, for example, [SV11, SV12, BN13b]).

Independently of specific applications, our proofs develop new descent techniques of broad

applicability to coherent sheaves in derived algebraic geometry and D-modules in microlocal

geometry. In this introduction, we first explain the general techniques and then their specific

application to the affine Hecke category. We conclude with a brief further discussion of the place

of this work within geometric representation theory.

We will work throughout over a field k of characteristic zero. All constructions and

terminology will refer to natural derived enhancements. For example, we will use the term

category to represent pre-triangulated k-linear dg category or stable k-linear ∞ category.

1.1 Singular support

To any coherent D-module M on a smooth scheme Z, one can associate a closed conic coisotropic

subvariety µ(M) ⊂ T ∗Z called the singular support of M. The intersection of the singular

support with the zero-section is the traditional support of M, and M is a vector bundle with flat

connection if and only if the singular support lies in the zero-section. In general, the singular

support records those codirections in which the propagation of sections of M are obstructed. In

more traditional language, if one thinks of M as a generalized system of linear partial differential

equations (PDEs), then the singular support comprises the wavefronts of distributional solutions.

Important categories of D-modules are cut out by singular support conditions: holonomic

D-modules are those whose singular support is of minimal dimension and hence Lagrangian;

Lusztig’s character sheaves are adjoint-equivariant D-modules on a reductive group with

nilpotent singular support. As is familiar with linear PDEs, many aspects of D-modules, such

as their classifications and functoriality, are best understood by viewing them microlocally via

singular support.

Recent advances in the geometric Langlands program [AG15], building upon the study of

categorical support in [BIK08], have brought sharpened attention to and deepened understanding

of a parallel theory of singular support for coherent sheaves. We will continue by briefly

highlighting some of the key ideas in this story, with a further discussion to be found in § 2.

The natural working context is now not a smooth scheme but a quasi-smooth derived scheme.

Recall that a derived scheme Z is quasi-smooth if and only if it is a derived local complete

intersection in the sense that it is Zariski-locally the derived zero-locus of a finite collection

of polynomials. Equivalently, a derived scheme Z is quasi-smooth if and only if its cotangent

complex LZ is perfect of tor-amplitude [−1, 0]. More generally, it is possible to expand the

working context to include derived stacks that are quasi-smooth in the sense that they admit a

smooth atlas of quasi-smooth derived schemes.

To any quasi-smooth derived stack Z, with underlying classical stack Zcl, one can attach its

shifted cotangent bundle

T ∗−1
Z = SpecZcl Sym((L−1

Z [−1])∨).
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The shifted cotangent bundle T ∗−1
Z is a classical stack with a natural map T ∗−1

Z → Zcl with fibers
the shift into degree 0 of the degree −1 cohomology of LZ . There is a natural closed embedding
Zcl ⊂ T ∗−1

Z of the zero-section which is an isomorphism over the smooth locus of Z.
Let DCoh(Z) denote the derived category of coherent complexes on Z, and Perf(Z) the

derived category of perfect complexes. Functions on the shifted cotangent bundle T ∗−1
Z naturally

map to the graded center of the homotopy category of DCoh(Z). In this way, any coherent
complex M ∈ DCoh(Z) has a natural singular support µ(M) ⊂ T ∗−1

Z that is a closed conic
subset. The singular support µ(M) records the failure of M to be a perfect complex: µ(M)∩Zcl

is the traditional support of M, and M ∈ Perf(Z) if and only if µ(M) ⊂ Zcl. More precisely,
the singular support µ(M) measures codirections of smoothings of Z in which M is obstructed
from extending as a coherent complex (see Remark 2.1.3). To any conic Zariski-closed subset
Λ ⊂ T ∗−1

Z , there is a full subcategory

DCoh(Z) ⊃ DCohΛ(Z)

consisting of coherent sheaves M with singular support µ(M) ∈ Λ. Provided Λ contains the
zero-section Zcl, we also have

DCohΛ(Z) ⊃ Perf(Z).

Coherent complexes with interesting singular support arise from pushforward along proper
but not smooth maps. A map of quasi-smooth stacks f : W → Z induces a correspondence

T ∗−1
W T ∗−1

Z ×Z W
f∗oo f̃ // T ∗−1

Z .

In analogy with traditional microlocal subsets, one can pushforward and pullback support
conditions by taking them across the correspondence. One can measure the singularities of
the map via its characteristic locus, the closed conic subset of covectors that pullback to the
zero-section

Λf = f̃(W ×T ∗−1
W

(T ∗−1
Z ×Z W )) ⊂ T ∗−1

Z .

Assuming f is proper, pushing forward perfect complexes along f produces coherent complexes
with singularities in Λf ⊂ T ∗−1

Z .
The appearance of singular support in this paper will result from studying descent along

proper but not smooth maps. A main technical tool will be a new descent theory for coherent
complexes with prescribed singular support. The arguments apply equally well in the more
familiar setting of D-modules and provide a new microlocal descent theory there as well.

1.2 Convolution categories
Next, we introduce the general formalism of convolution categories of coherent complexes. We
then state our main results about the calculations of their monoidal centers and traces.

Let p : X → Y be a proper map of derived stacks. We will ultimately apply this to simple
concrete examples, but in general assume that X,Y are reasonable (perfect stacks over k in the
sense of [BFN10], in particular, quasi-compact with affine diagonal) and that X is smooth.

In [BNP], we prove general representability results for functors between categories of coherent
sheaves as integral transforms with coherent kernels. In our present setting, we find that the
integral transform construction provides a canonical equivalence

Φ : DCoh(X ×Y X)
∼ // Funex

Perf(Y )(DCohX,DCohX) ΦK (F ) = pY ∗(p
∗
X(F )⊗K ).

Here the functor category consists of exact Perf(Y )-linear functors where Perf(Y ) is monoidal
and DCoh(X) is a module with respect to the tensor product. Note that the functor category is
naturally monoidal with respect to composition of functors and has a natural module DCoh(X).

1910

https://doi.org/10.1112/S0010437X17007278 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007278


A spectral incarnation of affine character sheaves

Since X is smooth, the diagonal ∆ : X →X×X has finite tor-dimension, so that convolution
equips the category of integral kernels DCoh(X ×Y X) with a natural monoidal structure

(X ×Y X)× (X ×Y X) X ×Y X ×Y X
δ23oo π13 // X ×Y X F1 ∗F2 = π13∗δ

∗
23(F1 �F2).

Moreover, convolution also makes DCoh(X) into a natural DCoh(X ×Y X)-module

X × (X ×Y X) X ×Y X
δ12oo π3 // X M ∗F = π3∗δ

∗
12(M�F ).

We have the following basic compatibility.

Proposition 1.2.1. The integral transform construction is naturally a monoidal equivalence

Φ : DCoh(X ×Y X)
∼ // Funex

Perf(Y )(DCoh(X),DCoh(X))

compatible with actions on the module DCoh(X).

Remark 1.2.2. One can also equip DCoh(X ×Y X) with the alternative !-convolution structure
F1 ∗! F2 = π13∗δ

!
23(F1 � F2). However, tensoring with the pullback p∗2ωX of the dualizing

complex intertwines the two monoidal structures. Likewise, tensoring with ωX intertwines the
two module structures on DCoh(X). Note, however, that this does not intertwine the two natural
self-dualities on Perf(X) ' DCoh(X) unless X is Calabi–Yau, in which case the two monoidal
structures coincide.

A natural challenge in geometric representation theory is to understand the module theory of
the convolution category DCoh(X ×Y X). It provides a highly structured version of the module
theory of the affine Hecke algebra. In this paper, we will take the initial fundamental step and
calculate its monoidal center and trace.

Definition 1.2.3. Let A be an algebra object in a symmetric monoidal ∞ category C.

(1) The center (or Hochschild cohomology) is the morphism of bimodules object

Z (A) = HomAop⊗A(A,A) ∈ C.

It comes with a natural E2-monoidal structure and universal central map Z (A) → A.

(2) The trace (or Hochschild homology) is the tensor of bimodules object

Tr(A) = A⊗Aop⊗A A ∈ C.

It comes with a natural S1-action and universal trace map A → Tr(A).

Remark 1.2.4. We refer the reader to [Lur, §§ 5.3 and 6.1] for the E2-structure on the center
(Deligne conjecture) and S1-action on the trace (cyclic structure).

Remark 1.2.5. We will apply the above definitions to DCoh(X ×Y X) considered as an algebra
object in small stable categories. One could also pass to large categories and consider the
cocompletion of ind-coherent sheaves QC!(X×Y X) = Ind DCoh(X×Y X). The center is sensitive
to the difference in context, while the trace is not: the trace of the cocompletion is canonically
equivalent to the cocompletion of the trace. We do not address the center of the cocompleted
category here.
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The geometric avatar of the above definitions is the loop space (it can be realized as a trace
in a suitable nonlinear setting).

Definition 1.2.6. The loop space of a derived stack Y is the derived mapping stack

LY = Map(S1, Y ) ' Y ×Y×Y Y.

Example 1.2.7. For G a group and Y = BG the classifying stack, we have LY ' G/G the adjoint
quotient.

The geometric avatar of the universal central map and trace map is the correspondence

X ×Y X (X ×Y X)×X×X X ' X ×Y×X X
δoo π // Y ×Y×Y Y ' LY.

It corresponds to the cobordism with corners (the ‘whistle diagram’ in topological field theory)
between an interval with marked boundary and the circle.

Example 1.2.8. For H ⊂ G a subgroup, and the natural map X = BH → Y = BG, the
correspondence becomes

H\G/H G/Hoo // G/G

where the latter two terms are adjoint quotients.

It is shown in [BFN10] that the resulting transforms π∗δ
∗ and δ∗π

∗ on quasi-coherent sheaves
induce respective equivalences

Tr(QC(X ×Y X))
∼ // QC(LY )

∼ // Z (QC(X ×Y X)).

One can view our main results as a refinement for coherent sheaves in the presence of singularities.
Let us first discuss the center where we need only impose traditional support conditions.

Definition 1.2.9. Let DCohprop/Y (LY ) ⊂ DCoh(LY ) denote the full subcategory of coherent
sheaves that are proper over Y in the sense that their pushforward to Y is coherent (equivalently,
their support is proper over Y since we assume Y has affine diagonal, hence LY is affine over Y ).

An initial justification for the above definition is the fact that the functor δ∗π
∗ : QC(LY ) →

QC(X ×Y X) naturally restricts to a functor δ∗π
∗ : DCohprop/Y (LY ) → DCoh(X ×Y X).

The following theorem is our first main result. Its proof appeals to a substantial part of the
theory of integral transforms for coherent sheaves developed in the companion paper [BNP].

Theorem 1.2.10. Suppose p : X → Y is a proper, surjective map of derived stacks with X,Y
smooth.

Then the functor δ∗π
∗ : DCohprop/Y (Y ) → DCoh(X ×Y X) is the universal central map

underlying a canonical equivalence of E2-monoidal categories

DCohprop/Y (LY )
∼ // Z (DCoh(X ×Y X)).

Now let us turn to the trace where we will need to consider singular support conditions.
Define the support condition ΛX/Y ⊂ T ∗−1

LY (see § 2 for a precise discussion) to be the pull–push
of support conditions

ΛX/Y = p∗δ
!T ∗−1
X×YX

.
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Definition 1.2.11. Let DCohΛX/Y
(LY ) ⊂ DCoh(LY ) denote the full subcategory of coherent

complexes whose microlocal support lies in ΛX/Y ⊂ T ∗−1
LY .

An initial justification for the above definition is the fact that the functor π∗δ
∗ : QC(X×Y X)

→ QC(LY ) naturally restricts to a functor π∗δ
∗ : DCoh(X ×Y X) → DCohΛX/Y

(LY ).

The following theorem is our second main result. Its proof appeals to the microlocal descent

theory developed in this paper and outlined in the next section.

Theorem 1.2.12. Suppose p : X → Y is a proper, surjective and quasi-smooth map of derived

stacks with X,Y smooth.

Then the functor π∗δ
∗ : DCoh(X ×Y X) → DCohΛX/Y

(LY ) is the universal trace map

underlying a canonical equivalence of S1-categories

Tr(DCoh(X ×Y X))
∼ // DCohΛX/Y

(LY ).

Remark 1.2.13. As mentioned earlier, the trace is not sensitive to whether we pass to cocomplete

categories: the trace of the cocompletion is canonically equivalent to the cocompletion of the

trace. Thus, the above theorem also implies the equivalence for ind-coherent sheaves

Tr(QC!(X ×Y X))
∼ // QC!

ΛX/Y
(LY ) = Ind DCohΛX/Y

(LY ).

1.3 Base change and descent with support

Before continuing to applications, let us highlight the microlocal descent theory developed in § 2

that contributes to the proof of Theorem 1.2.12. It is of independent interest and has broader

applicability to D-modules as well as coherent sheaves.

When working with fixed support conditions, natural functors on coherent sheaves need

not respect the prescribed support conditions. For example, recall that perfect complexes are

precisely coherent complexes with singular support in the zero-section. In general, pushforward

of perfect complexes along a proper map takes perfect complexes to coherent complexes that are

not perfect. If we insist on working with perfect complexes, then we must ‘correct’ pushforwards

so their singular support lies in the zero-section. One fallout is that standard identities such as

base change need not hold for such modified functors.

In § 2, we introduce general geometric situations where base change holds for functors with

prescribed support conditions. This is a key step in establishing a general descent pattern (with

respect to both pullback and pushforward) for coherent sheaves with prescribed support. A

natural framework for such results is the geometry of pairs (X,ΛX) of a quasi-smooth derived

stack X and a conic Zariski-closed subset ΛX ⊂ T ∗−1
X . Morphisms are maps of pairs (X,ΛX) →

(Y,ΛY ) given by a map X → Y whose induced microlocal correspondence

T ∗−1
X T ∗−1

Y ×Y X
df∗oo f̃ // T ∗−1

X

takes the support condition of the domain to that of the target f∗ΛX = f̃((df∗)−1(ΛX)) ⊂ ΛY .

Note there is also a natural pullback f !ΛY = df∗(f̃−1(ΛY )) ⊂ T ∗−1
X .

To understand descent, we first derive a general form of base change with prescribed support.
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Definition 1.3.1. A strict Cartesian diagram of pairs is a Cartesian diagram of quasi-smooth
derived stacks which is also a commutative diagram of maps of pairs

(Z,ΛZ)
p2 //

p1
��

(X ′,ΛX′)

q

��
(X,ΛX) p

// (Y,ΛY ).

Furthermore, the pullbacks of support conditions should satisfy the strictness condition

ΛZ ⊃ p!
1ΛX ∩ p!

2ΛX′ .

Remark 1.3.2. Let us mention in a simple traditional setting the meaning of a map of pairs and
what kind of notion strictness is. Take f : X → Y a smooth map of smooth manifolds, and
consider the associated Lagrangian correspondence

T ∗X T ∗Y ×Y X
f∗oo f̃ // T ∗Y.

Fix support conditions ΛX ⊂ T ∗X,ΛY ⊂ T ∗Y . Then f is a map of traditional pairs if the
correspondence takes the support condition of the domain to that of the target: f∗(ΛX) =
f̃((f∗)−1(ΛX)) ⊂ ΛY . If f is a fibration, then f is a strict map of traditional pairs if the same
additionally holds in the opposite direction: f !(ΛY ) = f∗(f̃−1(ΛY )) ⊂ ΛX .

In Propositions 2.3.7 and 2.3.8, we prove that for strict Cartesian diagrams of pairs with
suitable properness and quasi-smoothness assumptions, both dual forms of base-change identities
hold. These base-change identities allow us to prove descent theorems for both pullbacks and
pushforwards by applying the Beck–Chevalley Condition [Lur, Corollary 6.2.4.3]. Given an
augmented simplicial diagram f : (X•,Λ•) → (X−1,Λ−1) of maps of pairs, we refer to the
induced diagrams

(Xn+1,Λn+1)

g̃

��

d0 // (Xn,Λn)

g

��
(Xm+1,Λm+1)

d0 // (Xm,Λm)

as the Beck–Chevalley squares. We then prove the following in Theorem 2.4.1.

Theorem 1.3.3. Suppose f : (X•,Λ•) → (X−1,Λ−1) is an augmented simplicial diagram of
maps of pairs with all stacks quasi-smooth and maps proper. Suppose further that the following
points apply.

(i) The face maps are quasi-smooth.

(ii) All Beck–Chevalley squares are strict Cartesian diagrams of pairs.

(iii) Pullback with prescribed support along the augmentation

f! : QC!
Λ−1

(X−1) // QC!
Λ0

(X0)

is conservative (for example, as holds when f∗Λ0 = Λ−1).
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Then the augmentation provides an equivalence with the totalization of the cosimplicial
category furnished by pullbacks with support conditions:

QC!
Λ−1

(X−1)
∼ // Tot{QC!

Λ•(X•), f
!
•}.

If in addition, each of the QC!
Λk

(Xk) is compactly generated for k > 0, then the same is true
for k = −1, and the augmentation provides an equivalence with the geometric realization of the
simplicial category furnished by pushforwards:

DCohΛ−1(X−1) |DCohΛ•(X•), f•∗|.∼oo

Remark 1.3.4. In the theorem, the criterion f∗Λ0 = Λ−1 for the conservativity of the pullback
with prescribed support along the augmentation is a reformulation of [AG15, Theorem 7.8.2].

The arguments in the proof of the above theorem may be equally well implemented in
the alternative setting of D-modules. Namely, with analogous geometric hypotheses, the proof
holds with D-modules with prescribed singular support substituted for coherent sheaves with
prescribed singular support. As far as we know, this is a new result going beyond the descent
patterns appearing in [BD] and should have broad utility. For example, closely tied to the
applications of this paper, it can be used to provide an alternative proof of one of the main
results of [BN09] identifying the categorical trace of the finite Hecke category with character
sheaves.

To state the version of the preceding theorem for D-modules, we only need to change our
microlocal setting back to the usual cotangent bundle. The natural framework is now the
geometry of traditional pairs (X,Λ) of a smooth derived stack X and a conic Zariski-closed
subset Λ ⊂ T ∗X.

Let DΛ(X) denote the full subcategory of the ind-completion of coherent D-modules
comprising objects with singular support lying in Λ ⊂ T ∗X. We refer the reader to [GR] for the
necessary foundations for the following theorem, in particular the !-functoriality of D-modules
viewed as crystals. Its proof is formally the same as that of Theorem 1.3.3, and we will not return
to D-modules in the rest of the paper.

Theorem 1.3.5. Suppose f : (X•,Λ•) → (X−1,Λ−1) is an augmented simplicial diagram of
maps of traditional pairs with all stacks smooth and maps proper. Suppose further that:

(i) the face maps are smooth;

(ii) all Beck–Chevalley squares are strict Cartesian diagrams of pairs;

(iii) pullback with prescribed support along the augmentation

f! : DΛ−1(X−1) // DΛ0(X0)

is conservative.

Then the augmentation provides an equivalence with the totalization of the cosimplicial
category furnished by pullbacks with support conditions:

DΛ−1(X−1)
∼ // Tot{DΛ•(X•), f

!
•}.

Remark 1.3.6. In the descent theorem for coherent sheaves, we were able to give a criterion
on support for the conservativity of pullback along the augmentation. We were also able to
identify compact objects and give a pushforward formulation of descent on small categories. We
are unsure if the analogous results hold for D-modules in complete generality, though there are
broad situations where they do.
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1.4 Application to affine Hecke categories
Let us now turn to the motivating application for the development of the preceding theory.

Let G be a complex reductive group and B ⊂ G a Borel subgroup. Let q : BB → BG
denote the natural induction map of classifying stacks. Passing to loop spaces, we obtain the
Grothendieck–Springer map of adjoint quotients

Lq : B/B ' G̃/G // G/G

where G̃ classifies pairs of a Borel subgroup B′ ⊂ G and a group element g ∈ B′, and Lq projects
to the group element and forgets the Borel subgroup.

Now we apply the preceding theory with X = B/B, Y = G/G, and p = Lq. Note that B/B
and G/G are smooth, and p : B/B → G/G is projective. Note as well that our starting point
already involves loop spaces, though that structure plays no role with respect to our general
results.

Definition 1.4.1. (1) The global Steinberg stack is the fiber product

StG = B/B ×G/G B/B.

(2) The global affine Hecke category is the small stable monoidal category

Haff
G = DCoh(StG).

Remark 1.4.2. One can interpret the loop space L(BG) ' G/G as the moduli stack of G-local
systems on the circle S1. Similarly, one can interpret the global Steinberg stack StG ' L(B\G/B)
as the moduli of G-local systems on the cylinder S1×I with B-reductions at the boundary circles
S1 × ∂I.

We will state the form our general results take when applied to the affine Hecke category.

Definition 1.4.3. The commuting stack is the moduli of local systems on the two-torus T =
S1 × S1 or, equivalently, the twice-iterated loop space

LocG(T ) ' L(L(BG)) ' {(g1, g2) ∈ G×G | g1g2g
−1
1 g−1

2 = 1}/G.
Remark 1.4.4. Unlike the Steinberg stack itself, the commuting stack has a nontrivial derived
structure and must be treated as a derived stack.

Let g denote the Lie algebra of G. The fiber of the cotangent complex of LocG(T ) at a
local system P can be calculated by the de Rham cochains C∗(T, g∗P)[1], where g∗P denotes the
coadjoint bundle of P. Focusing on the degree −1 term coming from the commutator equation,
we see that there is a natural map

µ : T ∗−1
LocG(T ) ' C0(T, g∗P) // g∗/G.

Let h denote the Lie algebra of the universal Cartan of G, and W the Weyl group. Recall
the dual characteristic polynomial map or, equivalently, the projection to the coadjoint quotient

χ : g∗/G // g∗//G ' h∗/W.

Define the global nilpotent cone N ⊂ T ∗−1
LocG(T ) to be the closed conic subset given by the

inverse image of zero under the composition

T ∗−1
LocG(T )

µ // g∗/G
χ // h∗/W.
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Definition 1.4.5. (1) Let DCohP(LocG(T )) ⊂ DCoh(LocG(T )) denote the full subcategory of
coherent sheaves whose pushforward along the restriction map LocG(T ) → LocG(S1) along the
first loop S1

→ T is coherent.

(2) Let DCohN (LocG(T )) ⊂ DCoh(LocG(T )) denote the full subcategory of coherent
complexes whose singular support lies in the global nilpotent cone N ⊂ T ∗−1

LocG(T ).

Theorem 1.4.6. (1) There is a canonical monoidal equivalence

Haff
G = DCoh(StG)

∼ // Funex
Perf(G/G)(Perf(B/B),Perf(B/B)).

(2) There is a canonical E2-monoidal identification of the center

DCohP(LocG(T ))
∼ // Z (Haff

G ).

(3) There is a canonical S1-equivariant identification of the trace

Tr(Haff
G )

∼ // DCohN (LocG(T )).

Remark 1.4.7. Let us point out a particularly curious aspect of the theorem.
On the one hand, the description of the center is strongly asymmetric between the two loops

of T . This is not surprising considering the two loops play different roles: the first is implicit in
the adjoint quotients L(BG) ' G/G,L(BB) ' B/B and hence in the global Steinberg stack as
well StG = L(B\G/B); the second arises in the geometric identification of the center.

On the other hand, the description of the trace is symmetric in the two loops.

Finally, our arguments also apply to more traditional versions of the affine Hecke category
where we linearize and constrain our focus to nilpotent elements. Fix the isomorphism g∗ ' g

of an invariant inner product. Let B = G/B denote the flag variety and T ∗B → g∗ ' g the
Springer/moment map.

Let us introduce the unipotent Steinberg stack

Stu
G = T ∗B/G×g/G T

∗B/G ' (T ∗B/G×g T
∗B/G)/G.

Note that Stu
G has a nontrivial derived structure since we work over g rather than the nilpotent

cone. Note as well that we could equivalently work over the formal completion of g along the
nilpotent cone. Introduce the unipotent affine Hecke category

H
aff,u
G = DCoh(Stu

G)

and the unipotent commuting stack

LocG(T )u = {(g1, g2) ∈ Ĝu ×G | g1g2g
−1
1 g−1

2 = 1}/G

of local systems where the first monodromy g1 ∈ Ĝu is in the formal neighborhood of the
unipotent elements Gu ⊂ G. Now compatibly with Theorem 1.4.6, our methods provide the
following result.
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Theorem 1.4.8. There are canonical identifications

DCohP(LocG(T )u)
∼ // Z (Haff,u

G ) Tr(Haff,u
G )

∼ // DCoh(LocG(T )u)

which are E2-monoidal and S1-equivariant, respectively.

Note that there is no singular support condition on the trace category (unlike in the global
case above, coherent sheaves on the unipotent Steinberg stack Stu

G are not forced to have nilpotent
singular support).

Furthermore, one can introduce the natural Gm-dilation action on g and the induced action
on Stu

G. Introduce the Gm-equivariant unipotent affine Hecke category

H
aff,u
G×Gm

= DCoh(Stu
G/Gm)

and the twisted unipotent commuting stack

LocG(T )u
Gm

= {(g1, g2, z) ∈ Ĝu ×G×Gm | g1g2(g−1
1 )zg−1

2 = 1}/(G×Gm)

where the first monodromy g1 ∈ Ĝu is in the formal neighborhood of the unipotent elements
Gu ⊂ G, and (g−1

1 )z ∈ Ĝu denotes the dilation of its inverse by the scalar z ∈ Gm. Now our
methods provide the following theorem.

Theorem 1.4.9. There are canonical identifications

DCohP(LocG(T )u
Gm

)
∼ // Z (Haff,u

G×Gm
) Tr(Haff,u

G×Gm
)
∼ // DCoh(LocG(T )u

Gm
),

which are E2-monoidal and S1-equivariant, respectively.

1.4.1 Hecke categories, character sheaves, and geometric Langlands. We conclude this
section with a brief, informal discussion of the place of Theorem 1.4.6, and its variants, within
geometric representation theory. To match with the conventions of the subject, and for the
purposes of this section only, the reductive group denoted above by G will be denoted G∨ since
it will arise naturally as a Langlands dual group.

The unipotent Steinberg stack Stu
G∨ plays the central role in Kazhdan–Lusztig’s solution

[KL87] of the Deligne–Langlands conjecture on representations of affine Hecke algebras (see also
[CG97]): the Grothendieck group of Gm-equivariant coherent sheaves on Stu

G∨ is isomorphic to
the affine Hecke algebra of G. This enables one to classify irreducible representations of the affine
Hecke algebra in terms of q-commuting pairs.

Bezrukavnikov [Bez16] has categorified the Kazhdan–Lusztig realization of the affine Hecke
algebra: the standard categorification in terms of mixed sheaves on the affine flag variety of G is
equivalent to the categorification by Gm-equivariant coherent sheaves on Stu

G∨ . The affine Hecke
category appears naturally in the geometric Langlands program as the modifications acting on
sheaves on moduli stacks of G-bundles with parabolic structure. Bezrukavnikov’s theorem realizes
the geometric Langlands duality for these modifications or, in other words, the tamely ramified
generalization of the geometric Satake theorem. It is the centerpiece in the geometric approach
to a wide variety of problems in representation theory [Bez06].

With geometric Langlands and other natural problems in mind, it is meaningful to study the
representation theory of the affine Hecke category itself. By abstract nonsense, any dualizable
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module of a monoidal category has a character that is an object in the trace category. Thus,
by Theorem 1.4.6 and its variants, characters of dualizable modules of the affine Hecke category
give coherent sheaves with nilpotent singular support on the commuting stack LocG∨(T ) and
its unipotent and twisted variants. Note that this is consonant with the Deligne–Langlands
classification of representations of the affine Hecke algebra in terms of q-commuting pairs. (This
relation between the categorified and classical will be pursued in [BHN14].)

It is also natural to relate Theorem 1.4.6 to the character theory of the finite Hecke category
of Borel-biequivariant D-modules on G∨. The main result of [BN09] identifies the monoidal
center and trace of the finite Hecke category with the category of unipotent character sheaves
on G∨, that is, adjoint-equivariant D-modules on G∨ with nilpotent singular support and trivial
generalized central character. The relation between this and Theorem 1.4.6 is given by the
results of [BN12, BN13a]. Namely, coherent sheaves on a loop stack, such as the Steinberg stack
StG∨ = L(B∨\G∨/B∨) or commuting stack LocG∨(T 2) = L(G∨/G∨), recover D-modules on
the stack via the process of S1-localization and restriction to small loops. This supports the
perspective that DCohN (LocG(T )) is the spectral realization of the putative category of ‘affine
character sheaves’ for the p-adic group associated to G.

Finally, the trace category DCohN (LocG∨(T )) is also closely related to the genus one case of
the geometric Langlands conjecture. As formulated in [AG15], the spectral side of the geometric
Langlands conjecture on a smooth projective curve C is the category DCohN (ConnG∨(C)) of
coherent sheaves with nilpotent singular support on the derived stack of flat G∨-connections
on C. Note that the de Rham space ConnG∨(C) can be identified analytically, though not
algebraically, with the Betti space LocG∨(C). However, unlike the de Rham space, the Betti space
and, hence, the category DCohN (LocG∨(C)) is a topological invariant of C. Thus, the category
DCohN (LocG∨(T )) provides a topological version of the genus one geometric Langlands spectral
category, and Theorem 1.4.6 ties it to the representation theory of the affine Hecke category.

1.5 Standing assumptions
Unless otherwise noted, our standing assumptions are as follows. We work over a characteristic
zero base field k. By a category we mean a k-linear stable dg category or k-linear stable ∞
category. By a stack X , we mean a derived stack over k which is quasi-compact, almost of finite-
presentation, and with affine diagonal. This implies that QC!(X )' Ind DCoh(X ) by [DG13]. We
further assume that our stack is perfect in the sense of [BFN10], so that QC(X ) ' Ind Perf(X ).

2. Base change and descent with support

2.1 Preliminaries
We begin by collecting some basic notions about the singular support of coherent complexes
(see [AG15] for a comprehensive account).

2.1.1 Odd cotangent bundle. Let X be a quasi-smooth derived stack and LX its cotangent
complex.

Let Xcl denote the underlying classical stack of X. Introduce the shifted cotangent complex

T ∗−1
X = SpecXcl

SymXcl
H1(L∨X) ' (SpecX SymX L∨X [1])cl.

There is a natural affine projection T ∗−1
X → Xcl with fiberwise Gm-action and the fiber T ∗−1

X |x at
a point x ∈ Xcl is the degree −1 cohomology of LX |x. Informally, one can think of T ∗−1

X → Xcl

as a bundle of vector spaces of varying dimensions. We denote by {0}X ⊂ T ∗−1
X the zero-section.
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Example 2.1.1. If Z is a smooth scheme, and X = LZ = Map(S1, Z) is its loop space, then
T ∗−1
X → Xcl is the usual cotangent bundle T ∗Z → Z.

Example 2.1.2. If X = BG is a classifying stack, then T ∗−1
X ' g∗/G → BG is the coadjoint

quotient.

2.1.2 Microlocalization. Let X be a quasi-smooth derived stack. An important invariant of

any F ∈ QC!(X) is its singular support

supp F ⊂ T ∗−1
X .

When F ∈ DCoh(X), it is a conic Zariski-closed subset and, in general, it is a union of conic
Zariski-closed subsets.

Singular support is a smooth-local notion and given by the following construction for X
affine (see also the description of Remark 2.1.3). There is a natural map of graded commutative
O(X)-algebras

O(T ∗−1
X ) // HH ev(X)

to the even Hochschild cohomology restricting to maps

O(Xcl) // HH 0(X) H1(L∨X) // HH 2(X).

In turn, there is natural map from HH ev(X) to the graded center of the homotopy category of
QC!(X). Thus, for any objects F1,F2 ∈ QC!(X), the graded vector space H∗(Hom(F1,F2)) is
naturally a graded O(T ∗−1

X )-module.
The singular support supp F ⊂ T ∗−1

X of an object F ∈ DCoh(X) is the support of
H∗(End(F )) as an O(T ∗−1

X )-module. More generally, when QC!(X) is compactly generated (as
in our applications), the singular support supp F ⊂ T ∗−1

X of an object F ∈ QC!(X) is the union
of the supports of H∗(Hom(Fα,F )) as an O(T ∗−1

X )-module as Fα ∈ DCoh(X) ranges over a
collection of compact generators. More generally still, when QC!(X) is not necessarily compactly
generated, there is an umbrella notion of singular support via localization for which we refer the
reader to [AG15].

Let ConX denote the set of conic Zariski-closed subsets of T ∗−1
X . For any Λ ∈ ConX, one

defines the full subcategory

iΛ : QC!
Λ(X) �

� // QC!(X)

of ind-coherent complexes supported along Λ. The inclusion iΛ admits a right adjoint

RΓΛ : QC!(X) // QC!
Λ(X).

We will often regard QC!
Λ(X) as a subcategory of QC!(X) via the embedding iΛ, and also regard

RΓΛ as an endofunctor of QC!(X). We will often say an object of QC!(X) is RΓΛ-local to convey
it lies in QC!

Λ(X).
We set DCohΛ(X) = DCoh(X) ∩ QC!

Λ(X). By [AG15, Corollary 8.2.8], for global complete
intersection stacks (in the sense of [AG15, § 8.2]), we have QC!

Λ(X) = Ind DCohΛ(X).

Remark 2.1.3. For F ∈ DCohX, one has supp F ⊂ {0}X if and only if F ∈ Perf X. This
observation can be upgraded to a geometric description of supp F as follows.
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Suppose that η : Spec k → X is a geometric point, and that in a neighborhood of η, one has
a presentation of X as an iterated fiber

X �
� //

��

X ′ �
� //

��

M

f1,...,fn
��

{0 ∈ An} � � // A1 × {0 ∈ An−1} � � // An

where M is affine and smooth. Then one can interpret df1 as a section of T ∗−1X and one has

df1|η 6∈ supp F |η ⊂ T ∗−1X|η

if and only if F is contained in the smallest thick subcategory of DCohX generated by pullbacks
from DCohX ′. Informally speaking, this is the case when ‘F extends in the f1 direction near η’.

Lemma 2.1.4. For Λ,Λ′ ∈ ConX, there is a natural equivalence RΓΛ ◦ RΓΛ′ ' RΓΛ∩Λ′ .

Proof. See [AG15, Proposition 2.2.6]. 2

2.1.3 Functoriality. Associated to a map f : X → Y is a correspondence

T ∗−1
X T ∗−1

Y ×Y X
df∗oo f̃ // T ∗−1

Y . (1)

Definition 2.1.5. Let f : X → Y be a map of quasi-smooth stacks.

(i) Given a subset U ⊂ T ∗−1
X , we may form the subset

f∗U = f̃((df∗)−1(U)) ⊂ T ∗−1
Y .

If f : X → Y is proper, then f̃ is proper, and this defines a map

f∗ : ConX // ConY.

(ii) Given a subset V ⊂ T ∗−1
Y , we may form the subset

f !V = df∗(X ×Y V ) ⊂ T ∗−1
X .

If f : X → Y is quasi-smooth, then df∗ is a closed immersion, and this defines a map

f ! : ConY // ConX.

Lemma 2.1.6. Let f : X → Y be a map of quasi-smooth stacks.

(i) Suppose that F ∈ QC!(X) and that f is schematic and quasi-compact. Then, we have

supp f∗F ⊂ f∗ supp F .

Thus, if f̃∗ΛX ⊂ ΛY , then

f∗(QC!
ΛX

(X)) ⊂ QC!
ΛY

(Y ).
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(ii) Suppose that F ∈ QC!(Y ). Then, we have

supp f !F ⊂ f ! supp F .

Thus, if f !ΛY ⊂ ΛX , then
f !(QC!

ΛY
(Y )) ⊂ QC!

ΛX
(X).

Proof. See [AG15, Proposition 7.1.3]. 2

We have the following partial converse to Lemma 2.1.6.

Proposition 2.1.7. Let f : X → Y be a map of quasi-smooth stacks.

(i) Suppose that f is schematic and proper. Then QC!
f∗ΛX

(X) is the smallest full subcategory

of QC!(Y ) containing the essential image f∗(QC!
ΛX

(X)) and closed under colimits.

(ii) Suppose that f is quasi-smooth. Then QC!
f !ΛY

(X) is the smallest full subcategory of QC!(X)

containing the essential image f !(QC!
ΛY

(Y )) and closed under colimits and tensoring by
objects of QC(X).

Proof. See [AG15, Theorem 7.8.2] for assertion (i) and [AG15, Corollary 7.6.2] for assertion
(ii). 2

2.1.4 Relative tensor products.

Proposition 2.1.8. Let X1, X2 be quasi-smooth stacks over a smooth separated base Y . Then
the functor of exterior product over Y induces an equivalence

DCoh(X1)⊗Perf(Y ) DCoh(X2)

∼

**

�Y // DCoh(X1 ×Y X2)

DCohΛ(X1 ×Y X2)
' �

55

where Λ = i!(T ∗−1
X1×X2

) for i : X1 ×Y X2 → X1 ×X2.

Proof. Recall by [Pre11, Proposition B.1.1] that �Y is fully faithful. By [Pre11, Theorem B.2.4]
exterior products over k generate DCoh(X1 × X2). Observe that i is an affine quasi-smooth
morphism between quasi-smooth stacks, since it is a base change of the diagonal of Y . Thus, the
proof of [AG15, Proposition 7.6.4] implies that the essential image of i∗ generates DCohY (X1×Y
X2). 2

2.2 Maps of pairs
Definition 2.2.1. Let X,Y be quasi-smooth stacks, and ΛX ∈ ConX,ΛY ∈ ConY .

Define a map of pairs f : (X,ΛX) → (Y,ΛY ) to be a map f : X → Y such that f∗ΛX ⊂ ΛY .
In this case, we say ‘f takes ΛX to ΛY ’.

Remark 2.2.2. Returning to the correspondence (Equation (1)), let us spell out the above
definition.

For a map of pairs f : (X,ΛX) → (Y,ΛY ), we require

(df∗)−1(ΛX) ⊂ X ×Y ΛY .
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If f : X → Y is quasi-smooth, so that df∗ is a closed immersion, then we can equivalently require

df∗(X ×Y T ∗−1
Y ) ∩ ΛX ⊂ df∗(X ×Y ΛY ).

With our previous notation, this can be rephrased in the form

f !T ∗−1
Y ∩ ΛX ⊂ f !ΛY .

Lemma 2.2.3. If f : (X,ΛX) → (Y,ΛY ) is a map of pairs, then f∗ takes RΓΛX
-local objects to

RΓΛY
-local objects. If f is proper and quasi-smooth, then f provides a map of pairs f : (X,ΛX)

→ (Y,ΛY ) if and only if f∗DCohΛX
(X) ⊂ DCohΛY

(Y ).

Proof. Both assertions are immediate from Lemma 2.1.6. 2

Definition 2.2.4. Let X,Y be quasi-smooth stacks, and ΛX ∈ ConX,ΛY ∈ ConY .
Define a strict map of pairs f : (X,ΛX) → (Y,ΛY ) to be a map f : X → Y such that

(df∗)−1(ΛX) = X ×Y ΛY .

In this case, we say ‘the f -preimage of ΛY is precisely ΛX ’.

Remark 2.2.5. If f : X → Y is quasi-smooth, so that df∗ is a closed immersion, then f : (X,ΛX)
→ (Y,ΛY ) is a strict map of pairs if and only if

df∗(X ×Y T ∗−1
Y ) ∩ ΛX = df∗(X ×Y ΛY ).

With our previous notation, this can be rephrased in the form

f !T ∗−1
Y ∩ ΛX = f !ΛY .

In practice, the above definition is too restrictive.

Definition 2.2.6. Let X,Y be quasi-smooth stacks, and ΛX ,Λ
′
X ∈ ConX,ΛY ∈ ConY .

A map f : X → Y is said to be a strict map of pairs f : (X,ΛX) → (Y,ΛY ) along Λ′X if we
have

(df∗)−1(ΛX ∩ Λ′X) = (df∗)−1(Λ′X) ∩ (X ×Y ΛY ).

In this case, we say ‘along Λ′X , the f -preimage of ΛY is precisely ΛX ’.

Remark 2.2.7. If f : X → Y is quasi-smooth, so that df∗ is a closed immersion, then f : (X,ΛX)
→ (Y,ΛY ) is a strict map of pairs along Λ′X if and only if

df∗(X ×Y T ∗−1
Y ) ∩ ΛX ∩ Λ′X = df∗(X ×Y ΛY ) ∩ Λ′X .

With our previous notation, this can be rephrased in the form

f !T ∗−1
Y ∩ ΛX ∩ Λ′X = f !ΛY ∩ Λ′X .

If, in addition, f : X → Y is already known to be a map of pairs f : (X,ΛX) → (Y,ΛY ), so that

f !T ∗−1
Y ∩ ΛX = df∗(X ×Y T ∗−1

Y ) ∩ ΛX ⊂ df∗(X ×Y ΛY ) = f !ΛY ,

then it is strict along Λ′X if and only if

ΛX ⊃ df∗(X ×Y ΛY ) ∩ Λ′X = f !ΛY ∩ Λ′X .
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2.3 Base change with support
Lemma 2.3.1. Let X,Y be quasi-smooth stacks, and ΛX ,Λ

′
X ∈ ConX,ΛY ∈ ConY .

Suppose that f : (X,ΛX) → (Y,ΛY ) is a quasi-smooth map of pairs.
Then there is a natural morphism

f∗ ◦RΓΛX
// RΓΛY

◦ f∗

of functors QC!(X) → QC!
ΛY

(Y ).
Furthermore, if f : (X,ΛX) → (Y,ΛY ) is strict along Λ′X , then the above morphism is an

equivalence when restricted to the full subcategory

QC!
Λ′X

(X) ⊂ QC!(X).

Proof. First, from the counit iΛX
◦ RΓΛX

→ 1, we obtain a map f∗ ◦ RΓΛX
→ f∗. Since f is a

map of pairs, f∗ ◦RΓΛX
lands in the RΓΛY

-local objects. Thus, f∗ ◦RΓΛX
→ f∗ factors through

RΓΛY
◦ f∗.

Now assume f is strict along Λ′X . We must show that the map

f∗ ◦ RΓΛX
// RΓΛY

◦ f∗

is an equivalence on QC!
Λ′X

(X).

Suppose F ∈ QC!
Λ′X

(X). We must show that the natural map

f∗ ◦ RΓΛX
F // f∗F

is an RΓΛY
-equivalence. Equivalently, we must show that the induced map

RHomQC!(Y )(K , f∗RΓΛX
F ) // RHomQC!(Y )(K , f∗F )

is an equivalence for all K ∈ DCohΛY
(Y ).

Since f is quasi-smooth, f∗ exists and is left adjoint to f∗, so the above is equivalent to
showing that

RHomQC!(Y )(f
∗K , RΓΛX

F ) // RHomQC!(Y )(f
∗K ,F )

is an equivalence.
By Lemma 2.1.6 and the comparison between f∗ and f ! for quasi-smooth maps (thanks to

the fact that f is quasi-smooth, hence Gorenstein), we have f∗K ∈ QC!
f !ΛY

(X), and thus the
above map is equivalent to a map

RHomQC!(Y )(f
∗K , RΓf !ΛY

RΓΛX
F ) // RHomQC!(Y )(f

∗K , RΓf !ΛY
F ).

Finally, since F is already RΓΛ′X
-local, by Lemma 2.1.4 we have that

RΓf !ΛY
RΓΛX

F ' RΓf !ΛY
RΓΛX

RΓΛ′X
F ' RΓf !ΛY ∩ΛX∩Λ′X

F .

The strictness of f along Λ′X precisely guarantees that

f !ΛY ∩ ΛX ∩ Λ′X = f !ΛY ∩ Λ′X . 2
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Definition 2.3.2. Suppose f : X → Y is a map of quasi-smooth stacks.
Fix ΛX ∈ ConX, ΛY ∈ ConY , and define functors with support conditions

f∗ : QC!
ΛX

(X) // QC!
ΛY

(Y ) f! : QC!
ΛY

(Y ) // QC!
ΛX

(X)

f∗ = RΓΛY
◦ f∗ ◦ iΛX

f! = RΓΛX
◦ f ! ◦ iΛY

.

Remark 2.3.3. If f : (X,ΛX) → (Y,ΛY ) is a map of pairs, then f∗QC!
ΛX

(X) ⊂ QC!
ΛY

(Y ), so we
need not apply RΓΛY

in the definition of f∗. In other words, f∗ ' f∗ ◦ iΛX
and, hence, f∗ preserves

compact objects. Thus, if, in addition, f is proper, the right adjoint to f∗ ' f∗ ◦ iΛX
coincides

with f!. (Note that we still must apply RΓΛ in the definition of f! in general: if f is proper but a
support condition is not satisfied, then f ! need not be right adjoint to f∗.

1)
Similarly, suppose f : (X,ΛX) → (Y,ΛY ) and g : (Y,ΛY ) → (Z,ΛZ) are proper maps of pairs.

Then h = g ◦ f is also a proper map of pairs, and there is a natural equivalence h∗ ' g∗ ◦ f∗. By
the above discussion, this follows from functoriality of the usual pushforwards. Moreover, taking
right adjoints, we obtain a natural equivalence h! ' f! ◦ g!.

It will be crucial for us to study ‘base change’ for these functors with support conditions.
First, we recall the following general context for discussing base-change equivalences from [Lur,
Definition 6.2.3.13].

Definition 2.3.4. Suppose we are given a diagram of ∞-categories

C

G
��

U // D

G′

��
C′

V
// D′

which commutes up to a specified equivalence

α : V ◦G ∼ // G′ ◦ U.

(1) We say that the square is left adjointable if the functors G and G′ admit left adjoints F
and F ′, and base change holds: the composite transformation

F ′ ◦ V η // F ′ ◦ V ◦G ◦ F α // F ′ ◦G′ ◦ U ◦ F ε // U ◦ F

is an equivalence, where η and ε are the respective unit and counit of adjunctions.

(2) Dually, the square is right adjointable if the functors G and G′ admit right adjoints H
and H ′, and the composite transformation

U ◦H η // H ′ ◦G′ ◦ U ◦H α−1
// H ′ ◦ V ◦G ◦H ε // H ′ ◦ V

is an equivalence, where η and ε are the respective unit and counit of adjunctions.

1 Example: Let f : X = Spec k → Y = Ω0A1 = Spec k[B], with |B| = 1. Set ΛY = {0}Y . Then f∗ : k-mod →

k[B]-mod is the usual pushforward with right adjoint f ! = RHomk[B](k,−). However f! is the colimit-preserving
functor RHomk[B](k, k[B])⊗k[B] −.
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Definition 2.3.5. A strict Cartesian diagram of pairs is a Cartesian diagram of quasi-smooth
stacks which is also a commutative diagram of maps of pairs

(Z = X ×S X ′,ΛZ)
p2 //

p1
��

(X ′,ΛX′)

q

��
(X,ΛX) p

// (Y,ΛY )

satisfying the strictness condition

ΛZ ⊃ p!
1ΛX ∩ p!

2ΛX′ .

Remark 2.3.6. If p1 and p2 are in addition assumed quasi-smooth, then by Remark 2.2.7 the
strictness condition ΛZ ⊃ p!

1ΛX ∩ p!
2ΛX′ above is equivalent to any of the following:

• p1 is strict along p!
2ΛX′ ;

• p2 is strict along p!
1ΛX .

Proper base change can be worded as a right adjointability condition.

Proposition 2.3.7. Consider a strict Cartesian diagram of pairs

(Z = X ×S X ′,ΛZ)
p2 //

p1
��

(X ′,ΛX′)

q

��
(X,ΛX) p

// (Y,ΛY )

Assume:
• p is proper (and consequently so is p2);
• p1 is quasi-smooth.

Then:

(i) we have adjunctions

(p∗ = RΓΛY
◦ p∗, p! = RΓΛX

◦ p!) (p2∗ = RΓΛX′ ◦ p2∗, p
!
2 = RΓΛZ

◦ p!
2);

(ii) the diagram of pushforwards

QC!
ΛZ

(Z)
p2∗ //

p1∗
��

QC!
ΛX′

(X ′)

q∗
��

QC!
ΛX

(X)
p∗
// QC!

ΛY
(Y )

admits a natural equivalence
p∗ ◦ p1∗ ' p2∗ ◦ q∗

and is right adjointable, i.e. the resulting base-change morphism

p1∗ ◦ p!
2

// p! ◦ q∗

is an equivalence.
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Proof. Point (i) and the functoriality equivalence of point (ii) are immediate from Remark 2.3.3.
The adjointability morphism of point (ii) is the composite

p1∗ ◦ p!
2 ' p1∗ ◦ RΓΛZ

◦ p!
2

// RΓΛX
◦ p1∗ ◦ p!

2
// RΓΛX

◦ p! ◦ q∗ ' p! ◦ q∗.

Note that the second arrow is an equivalence by the usual base-change theorem for QC!. To see
that the first arrow is an equivalence we apply Lemma 2.3.1 as follows.

Note that the essential image of p!
2 on QC!

ΛX′
(X ′) lies in QC!

p!2ΛX′
(Z) by Lemma 2.1.6.

Since p2 is not assumed quasi-smooth, p!
2ΛX′ need not be closed and by QC!

p!2ΛX′
(Z) we mean

the subcategory of QC!(Z) generated under colimits by all coherent complexes on Z whose
microsupport is contained in a conical closed subset contained in p!

2ΛX′ . Thus, it is enough to
show that the natural morphism

p1∗ ◦ RΓΛZ −→ RΓΛX
◦ p1∗

is an equivalence on QC!
Λ′Z

(Z) for each Λ′Z ∈ ConZ contained in p!
2ΛX′ .

Since the diagram is a strict Cartesian diagram of pairs and p1 is quasi-smooth, Remark 2.2.7
implies that p1 is strict along p!

2ΛX′ and thus along each such Λ′Z . Lemma 2.3.1 now completes
the proof.2 2

With slightly more stringent conditions, we can interpret the (dual) base-change equivalence
as an adjointability statement for the diagram of !-pullbacks (instead of pushforwards).

Proposition 2.3.8. Consider a strict Cartesian diagram of pairs

(Z = X ×S X ′,ΛZ)
p2 //

p1
��

(X ′,ΛX′)

q

��
(X,ΛX) p

// (Y,ΛY ).

Assume:
• p and q are proper (and consequently so are p1 and p2);
• p2 is quasi-smooth.

Then:

(i) we have adjunctions

(p∗ = RΓΛY
◦ p∗, p! = RΓX ◦ p!) (q∗ = RΓΛY

◦ q∗, q! = RΓΛ′X
◦ q!)

(p1∗ = RΓΛX
◦ p1∗, p

!
1 = RΓΛZ

◦ p!
1) (p2∗ = RΓΛX′ ◦ p2∗, p

!
2 = RΓΛZ

◦ p!
2);

(ii) the diagram of pushforwards

QC!
ΛZ

(Z)
p2∗ //

p1∗
��

QC!
ΛX′

(X ′)

q∗
��

QC!
ΛX

(X)
p∗
// QC!

ΛY
(Y )

2 The reader can note that we needed slightly less than a strict Cartesian diagram. The strictness is equivalent to
p1 being strict along p!2ΛX′ , while we needed it only along the union of all conical closed subsets of p!2ΛX′ . If, as
in our examples, p2 is also quasi-smooth, then this distinction disappears.
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admits a natural equivalence

p∗ ◦ p1∗ ' p2∗ ◦ q∗;

(iii) the diagram of pullbacks

QC!
ΛY

(Y )

q!

��

p! // QC!
ΛX

(X)

p!1
��

QC!
ΛX′

(X ′)
p!2

// QC!
ΛZ

(Z)

admits a natural equivalence

p!
1 ◦ p! ' q! ◦ p!

2

and is left adjointable, i.e. the resulting base-change morphism

p2∗ ◦ p!
1
∼ // q! ◦ p∗

is an equivalence.

Proof. Points (i) and (ii) are immediate from Remark 2.3.3. The functoriality equivalence of
point (iii) then results from taking right adjoints.

The adjointability equivalence of point (iii) is the composite

p2∗ ◦ p!
1 ' p2∗ ◦ RΓΛZ

◦ p!
1
∼ // RΓΛX′ ◦ p2∗ ◦ p!

1
∼ // RΓΛX′ ◦ q! ◦ p∗ ' q! ◦ p∗.

The second arrow is an equivalence by base change for QC!; the first arrow is an equivalence by
applying Lemma 2.3.1 to p2, which is quasi-smooth and strict along each conical closed subset
contained in p!

1ΛX , analogous to the argument in Proposition 2.3.7. 2

2.4 Descent with support
Let ∆ denote the simplex category of non-empty totally ordered finite sets [n] = {0 → 1 →

· · · → n}, and ∆+ the augmented simplex category of (possibly empty) totally ordered finite
sets, so in other words ∆ adjoined the initial object given by the empty set [−1] = ∅.

Recall that a simplicial object or diagram of a category C is a functor ∆op
→ C, traditionally

denoted by X•, where we understand Xn ∈ C to be the value of the functor on [n]. An augmented
simplicial object is a functor ∆op

+ → C, traditionally denoted by X• →X−1, where we understand
X−1 ∈ C to be the value of the functor on [−1].

Recall that in ∆+ the injections [n] → [n + 1] (respectively, surjections [n + 1] → [n]), and
the induced maps Xn+1 → Xn (respectively, Xn → Xn+1) of an augmented simplicial object,
are called the face (respectively, degeneracy) maps. In particular, we have the distinguished face
map d0 : Xn+1 → Xn induced by the injection [n] → [n + 1] whose image does not contain
0 ∈ [n+ 1].

Theorem 2.4.1. Suppose f : (X•,Λ•) → (X−1,Λ−1) is an augmented simplicial diagram of
maps of pairs with all stacks quasi-smooth and maps proper. Suppose further that the following
points apply.

(i) The face maps are quasi-smooth.
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(ii) For any map g : [m] → [n] in ∆+, the induced commutative square

(Xn+1,Λn+1)

g̃

��

d0 // (Xn,Λn)

g

��
(Xm+1,Λm+1)

d0 // (Xm,Λm)

is a strict Cartesian diagram of pairs.

(iii) Pullback along the augmentation

f! : QC!
Λ−1

(X−1) // QC!
Λ0

(X0)

is conservative.

Then the augmentation provides an equivalence with the totalization of the cosimplicial
category furnished by !-pullbacks with support conditions

QC!
Λ−1

(X−1)
∼ // Tot{QC!

Λ•(X•), f
!
•}.

Proof. The first equivalence for the totalization is an application of the Beck–Chevalley
condition [Lur, Corollary 6.2.4.3] applied to the augmented cosimplicial category

{QC!
Λ•(X•), f

!
•}.

The left adjointability required therein is precisely obtained by applying Proposition 2.3.8 to
the diagram appearing in condition (ii) of the theorem. By hypothesis, the maps of the diagram
are all proper maps of pairs, d0 is quasi-smooth since it is a face map, and the required strictness
condition holds. Thus, by Proposition 2.3.8, we have the left adjointability of the diagram

QC!
Λm

(Xm)

g!

��

d!0 // QC!
Λm+1

(Xm+1)

g̃!

��
QC!

Λn
(Xn)

d!0

// QC!
Λn+1

(Xn+1). 2

Corollary 2.4.2. With the assumptions of Theorem 2.4.1, suppose furthermore that each
QC!

Λk
(Xk) is compactly generated for each k > 0. (This holds, for instance, if each Xk is a

global complete intersection in the sense of [AG15, § 9].) Then, the same holds for k = −1 and
pushforward along the augmentation provides an equivalence

DCohΛ−1(X−1) |DCohΛ•(X•), f•∗|.∼oo

Proof. By the previous theorem and the anti-equivalence of PrL and PrR (the ∞-categories
of presentable ∞-categories with morphisms left adjoints or respectively right adjoints), the
augmented simplicial diagram

QC!
Λ−1

(X−1)
{

QC!
Λ•(X•), f•∗

}
oo

is a geometric realization diagram in PrL. The argument of [AG15, Corollary 9.2.8] identifies
DCohΛk

(Xk) with the compact objects of QC!
Λk

(Xk). Hence, since the structure maps are proper
and maps of pairs, the corresponding pushforwards preserve compact objects. The result now
follows from the fact the colimit of small categories exists, and the formation of Ind preserves
colimits and is conservative. 2
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In our further developments and applications in subsequent sections, we will appeal to
Theorem 2.4.1 and verify its hypotheses directly. Before continuing on, let us record the following
simple consequence.

Corollary 2.4.3. Suppose S is quasi-smooth, and π : X → S is proper and quasi-smooth.
Then there is a natural equivalence

QC(S) ' Tot{QC(X×S•+1), f∗• }.

Proof. For each • > −1, we have the identification

i{0}
X×S•+1

: QC(X×S•+1)
∼ // QC!

{0}
X×S•+1

(X×S•+1).

The left-hand side furnishes the terms of a natural cosimplicial diagram with functors f∗• ;
the right-hand side furnishes the terms of a natural cosimplicial diagram with functors f!•. One
readily checks that the latter satisfies the requirements of the preceding theorem. Thus, it only
remains to note that the two diagrams are intertwined by the alternative equivalences

ωX×S•+1 ⊗− : QC(X×S•+1)
∼ // QC!

{0}
X×S•+1

(X×S•+1). 2

3. Centers and traces of convolution categories

We will calculate the center and trace categories of functor categories with the composition
monoidal structure or equivalently integral kernel categories with the convolution monoidal
structure.

3.1 Preliminaries
Definition 3.1.1. Let A be an algebra object in a symmetric monoidal ∞ category C.

(1) The center (or Hochschild cohomology) is the morphism of bimodules object

Z (A) = HomAop⊗A(A,A) ∈ C.

It comes with a natural E2-monoidal structure and universal central map Z (A) → A.

(2) The trace (or Hochschild homology) is the tensor of bimodules object

Tr(A) = A⊗Aop⊗A A ∈ C.

It comes with a natural S1-action and universal trace map A → Tr(A).

Remark 3.1.2. We refer the reader to [Lur, §§ 5.3 and 6.1] for the E2-structure on the center
(Deligne conjecture) and S1-action on the trace (cyclic structure).

3.2 Convolution categories
Let p : X → Y be a map of derived stacks, with Y perfect and p a relative quasi-compact
separated algebraic space, so that [BNP, Theorem 3.0.4] provides an equivalence

Φ : DCohp2−prop(X ×Y X)
∼ // Funex

Perf Y (Perf X,DCohX).

Here we write p2 − prop instead of prop/X to distinguish the second factor so there is no
ambiguity.
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Assume, in addition, X is smooth. Then, on the one hand, DCohX ' Perf X, so that the
functor category of the right-hand side

Funex
Perf Y (Perf X,DCohX) ' Funex

Perf Y (Perf X,Perf X),

has a natural monoidal structure given by composition of linear functors, along with a natural
module Perf X. On the other hand, the diagonal ∆ : X →X×X has finite tor-dimension, so that
convolution equips the left-hand side DCohp2−prop(X ×Y X) with a natural monoidal structure

(X ×Y X)× (X ×Y X) X ×Y X ×Y X
δ23oo π13 // X ×Y X F1 ∗F2 = π13∗δ

∗
23(F1 �F2).

Moreover, convolution equips Perf X with a natural DCohp2−prop(X ×Y X)-module structure

X × (X ×Y X) X ×Y X
δ12oo π3 // X M ∗F = π3∗δ

∗
12(M�F ).

(Note that p2-properness ensures that the convolution of coherent complexes and action on
coherent complexes are well defined.)

Proposition 3.2.1. Assume X is smooth.
Then the above equivalence is naturally a monoidal equivalence

Φ : DCohp2−prop(X ×Y X)
∼ // Funex

Perf Y (Perf X,Perf X)

compatibly with actions on the module Perf X.

Proof. Standard base-change identities enhance the equivalence

Φ : QC(X ×Y X)
∼ // FunLQC(Y )(QC(X),QC(X))

to a monoidal equivalence compatible with the actions on the module QC(X). The asserted
monoidal equivalence is simply the restriction to full subcategories. 2

Corollary 3.2.2. Assume p : X → Y is proper and X is smooth.
Then the above equivalence is naturally a monoidal equivalence

Φ : DCoh(X ×Y X)
∼ // Funex

Perf Y (Perf X,Perf X)

compatibly with actions on the module Perf X.

3.3 Traces of convolution categories
Let us return to the setting of § 2.

Assume now that X,Y are smooth and p : X → Y is proper (and automatically quasi-
smooth).

Let LY = Map(S1, Y ) denote the loop space of Y . Recall the fundamental correspondence

X ×Y X (X ×Y X)×X×X X ' LY ×Y Xδoo p // LY.

Define the support condition ΛX/Y ∈ ConLY to be the pull–push of support conditions

ΛX/Y = p∗δ
!T ∗−1
X×YX

.
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Figure 1. Schematic illustration of Zn and Wn.

Theorem 3.3.1. Let X,Y be smooth and p : X → Y proper, quasi-smooth, and surjective.
There is a natural cyclic identification of the trace

Tr(DCoh(X ×Y X))
∼ // DCohΛX/Y

(LY ).

Proof. For notational convenience, set A = DCoh(X ×Y X) and B = Perf X. Observe that
pushforward along the relative diagonal ∆∗ : B → A is monoidal, and thus we may regard A as
an algebra in B-bimodules.

Given an algebra A in B-bimodules, we have its relative bar resolution

A '
∣∣A⊗B(•+2)

∣∣,
which can be used to calculate its trace

A⊗A⊗A A =
∣∣A⊗B(•+2)

∣∣⊗A⊗A A =
∣∣A⊗B(•+1) ⊗B⊗B B

∣∣.
We will access the trace as the geometric realization of the simplicial object

C• = A⊗B(•+1) ⊗B⊗B B.

Unwinding the notation and using the canonical identity Perf(X)⊗k ' Perf(Xk), we find the
simplicial category

C• = DCoh(X ×Y X)⊗Perf(X)(•+1) ⊗Perf(X2) Perf X. (2)

Next we introduce the augmented simplicial diagram of derived stacks

Z• = X×Y •+2 ×X2 X ' X×Y •+1 ×Y LY // LY.

To spell this out, identifying [n] = {0, . . . , n} with the (n+ 1)th roots of unity in S1, we take the
relative mapping space

Zn = Map([n] ↪→ S1, X → Y ) = Map([n], X)×Map([n],Y ) Map(S1, Y ).

The simplicial structure maps come from the cosimplicial structure of the sources [n] ↪→ S1.
Colloquially speaking, a point of Zn is a necklace of n + 1 points of X whose images in Y are
connected by a cycle of paths; the simplicial structure maps come from forgetting or repeating
points.

There is an evident fully faithful map of simplicial diagrams

C• // DCoh(Z•),
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where the simplicial structure maps of the latter are pushforwards. To identify the essential

image, introduce the natural level-wise maps

qn : Zn = X×Y (n+2) ×X2 X ' (X ×Y X)×X(n+1) ×X2 X //Wn = (X ×Y X)×(n+1)

obtained by taking relative diagonals, or colloquially speaking, breaking apart necklaces. Then

by repeated application of Proposition 2.1.8, we have an identification of the essential image

Cn ' DCohΛn(Zn) Λn = q!
n(T ∗−1Wn).

Thus, we obtain an identification of simplicial diagrams

C•
∼ // DCohΛ•(Z•).

Now it remains to verify that the hypotheses of Theorem 2.4.1 and Corollary 2.4.2 are satisfied

for the augmented simplicial diagram

(Z•,Λ•) // (LY,ΛX/Y ).

(1) Proper simplicial maps, quasi-smooth face maps, and requisite Cartesian squares. Leaving

aside support conditions for the moment, the augmented simplicial diagram Z• → LY is nothing

more than the Cech nerve of the map Z0 = X ×Y LY → LY , which, in turn, is a base change

of the map p : X → Y . Thus, the face maps are proper and quasi-smooth (since p is proper and

quasi-smooth), the degeneracy maps are also proper (since p is representable and separated),

and the requisite squares are Cartesian (since Z• → LY is a Cech nerve).

(2) Strictness condition. Proposition 3.3.8 below verifies that the strictness condition is satisfied.

(3) Conservativity. Let p : Z0 = X ×Y LY → LY be the augmentation. Note that p is a

representable proper map, so that applying [AG15, Theorem 7.2.8], we are reduced to verifying

that

ΛX/Y = p∗Λ0 = p∗(q0)!T ∗−1W0.

However, this is precisely the definition of ΛX/Y .

(4) Compact generation. We must also verify that QC!
Λn

(Zn) is compactly generated for each

n > 0. Imitating the above argument, we see that the essential image of

QC!(X ×Y X)⊗QC(X)(n+1) ⊗QC(X)⊗2 QC(X) −→ QC!(Zn)

is precisely QC!
Λn

(Zn). Thus, it is enough to observe that each of QC(X) ' QC!(X) and

QC!(X ×Y X) are compactly generated (recall our standing assumptions), and that all the

monoidal/module structure maps preserve compact objects so that the various tensor products

are also compactly generated. This latter assertion follows from the smoothness and properness

assumptions that we have, as was already implicit in the formula (2).

This concludes the proof of Theorem 3.3.1 with the proof of Proposition 3.3.8 to appear

below. 2

1933

https://doi.org/10.1112/S0010437X17007278 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007278


D. Ben-Zvi, D. Nadler and A. Preygel

3.3.1 Analysis of support conditions. The goal of this and the next subsection is to establish
Proposition 3.3.8. We continue with the notation introduced in the proof of Theorem 3.3.1. In this
subsection, we record useful identifications of the support conditions Λn ⊂ T ∗−1Zn, in particular,
their geometric fibers over Zn.

First, we record the following evident descriptions of the geometric points of Zn and Wn.
Note that while Y (k) is a space, the fiber product (X ×Y y)(k) for y ∈ Y (k) is, in fact, a set.

Lemma 3.3.2. Each geometric point η : Spec k → Zn may be represented (not necessarily
uniquely) as a tuple (y;x0, . . . , xn; `) where

y ∈ Y (k) x0, . . . , xn ∈ (X ×Y {y})(k) ` ∈ AutY (k)(y).

Lemma 3.3.3. Each geometric point η : Spec k → Wn may be represented (not necessarily
uniquely) as a tuple (y0, . . . , yn;x0, x

′
0; . . . ;xn, x

′
n), where

yi ∈ Y (k), xi, x
′
i ∈ (X ×Y {yi})(k).

In terms of such representatives, the map qn : Zn → Wn is given by

qn(y;x0, . . . , xn; `) = (y, . . . , y;x0, x1;x1, x2; . . . ;xn, ` ◦ x0),

where ` ◦ x0 ∈ (X ×Y {y})(k) denotes the pair (x0, y) ∈ (X × {y})(k) but where the given
identification p(x0) ∼ y ∈ Y (k) is twisted by the automorphism ` ∈ AutY (k)(y).

Next, we have the following description of the geometric fibers of T ∗−1Zn → Zn.

Lemma 3.3.4. Fix a geometric point η : Spec k → Zn and a representative (y;x0, . . . , xn; `) of it.
Then we have an identification of the fiber

(T ∗−1Zn)|η =

(v0, . . . , vn) ∈ (ΩY |y)⊕(n+1) :

(dp∗)x0(d`∗(vn)) = (dp∗)x0(v0)

(dp∗)x1(v0) = (dp∗)x1(v1)

· · ·
(dp∗)xn(vn−1) = (dp∗)xn(vn)

 .

Proof. Let us return to the necklace description of Zn where we place X at each vertex and Y
along each edge so that Zn is the limit of the resulting finite diagram. Formation of cotangent
complexes takes finite limits to finite colimits. Thus, the fiber LZn at a point is the colimit of
the diagram where we place the appropriate fiber of LX at each vertex and that of LY along
each edge. Since X and Y are assumed to be smooth, we find that the fiber is the colimit of the
diagram

ΩY |y
−dp∗
{{

dp∗

##

ΩY |y
−dp∗
{{

dp∗

##

· · ·
dp∗

""
−dp∗
||

ΩX |x0 ΩX |x1 ΩX |x1 ΩX |xn

ΩY |y

dp∗◦d`∗

kk

−dp∗

33

Taking homology gives the asserted description. 2
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Next, we record a similar though elementary description for the geometric fibers of
T ∗−1Wn → Wn.

Lemma 3.3.5. Fix a geometric point η : Spec k → Wn and a representative (y0, . . . , yn;x0,
x′0; . . . ;xn, x

′
n) of it. Then we have an identification of the fiber

(T ∗−1Wn)|η =

(v0, . . . , vn) ∈ (ΩY |y)⊕(n+1) :

(dp∗)x0(v0) = (dp∗)x′0(v0) = 0

· · ·
(dp∗)xn(vn) = (dp∗)x′n(vn) = 0

 .

Finally, we arrive at the following description of the geometric fibers of Λn → Zn.

Lemma 3.3.6. Fix a geometric point η : Spec k → Zn and a representative (y;x0, . . . , xn; `) of it.
In terms of our previous identification of (T ∗−1Zn)η, we have an identification of the fiber

(Λn)|η =

(v0, . . . , vn) ∈ ΩY |⊕(n+1)
y :

(dp∗)x0(d`∗(vn)) = (dp∗)x0(v0) = 0

(dp∗)x1(v0) = (dp∗)x1(v1) = 0

· · ·
(dp∗)xn(vn−1) = (dp∗)xn(vn) = 0

 ⊂ (T ∗−1Zn)|η.

Proof. Let η′ = qn(η). Under our previous identifications, the pullback map

dq∗n : Zn ×Wn ×T ∗−1Wn
// T ∗−1Zn

restricted to the fibers
dq∗n : (T ∗−1Wn)|η′ // (T ∗−1Zn)|η

is given by the identity
dq∗n(v0, . . . , vn) = (v0, . . . , vn).

Thus, the assertion follows from our previous identifications. 2

Remark 3.3.7. The previous lemmas state that

(Λn)|η ⊂ (T ∗−1Zn)|η
is cut out by the additional equations

(dp∗)xi(vi) = 0 for all i = 0, . . . , n.

3.3.2 Verification of strictness condition. We continue with the notation introduced in the
proof of Theorem 3.3.1. Our goal is to complete the proof of the theorem by establishing the
following.

Proposition 3.3.8. The diagram

(Zn+1,Λn+1)

g̃

��

d0 // (Zn,Λn)

g

��
(Zm+1,Λm+1)

d0 // (Zm,Λm)

is a strict Cartesian diagram of pairs.
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We will prove the proposition in two steps: first for face maps in Lemma 3.3.9 and then in
general.

Lemma 3.3.9. Proposition 3.3.8 holds when g corresponds to a face map (order-preserving
inclusion).

Proof. We will prove that the inclusion holds over each geometric point η ∈ Zn+1(k) via explicit
formulas for the relevant subspaces of (T ∗−1Zn+1)|η. To do this, given any injection ψ : [m] → [n],
we will give a fiberwise description of the induced map

Zn ×Zm T ∗−1Zm // T ∗−1Zn.

We will provide explicit formulas below, but first let us give a more informal description.

Informal description. Suppose η ∈ Zn(k) is represented by a tuple (s;x0, . . . , xn; `) as in
Lemma 3.3.2. Then its image η̄ ∈ Zm(k) is given by forgetting some xi as prescribed by ψ.
The map of fibers

(T ∗−1Zm)|η̄ // (T ∗−1Zn)|η
is given in terms of a tuple (v0, . . . , vm) as in Lemma 3.3.4 by repeating entries (as in the formula
for (g̃)! below) with d`∗ inserted when looping around (as in the formula for (d0)! below). The
resulting element may be depicted graphically as follows:

x0
��
d`∗(vm)

��· · · xψ(0)−1
��
d`∗(vm)

}
��

=···=

xψ(0)
��

{
v0

��· · ·��
v0

��
=···=

xψ(1)−1
��

v0
}

��

=

xψ(1)
��

{
v1 ···

}
��· · · xψ(k)

��

{
vm

��· · ·��
vm

��
xm

=···=

Here the arrows represent summands of the linear condition cutting out (T ∗−1Zm)|η.
Formulas. Using the above description, at a geometric point η ∈ Zn+1(k), we find that

((d0)!Λn)|η
=

{
(v0, . . . , vn+1) ∈ (ΩY |y)⊕(n+1) :

v0 = d`∗(vn+1)

(dπ∗)xi(vi−1) = (dp∗)xi(vi) = 0 for 1 6 i 6 n+ 1

}
.

For ψ : [m] → [n] the face map inducing g, the simplicial map ψ̃ : [m+ 1] → [n+ 1] inducing
g̃ is given by ψ̃(0) = 0 and ψ̃(i) = 1 + φ(i− 1), for i > 1. Let im ψ̃ ⊂ [n+ 1] denote the image of
ψ̃, and define a : [n+ 1] → im ψ̃ by setting a(i) = sup{ψ̃(j) : ψ̃(j) 6 i}. Then we find that

((g̃)!Λm+1)|η

=

{
(v0, . . . , vn+1) ∈ (ΩY |y)⊕(n+1) :

vi = va(i), for i ∈ [n+ 1]\ im ψ̃

(dp∗)xi(vi−1) = (dπ∗)xi(vi) = 0, for i ∈ im ψ̃

}
.

Since 0 ∈ im ψ̃, we conclude that

((d0)!Λn)η ∩ ((p′)!Λm+1)η

⊂ {(v0, . . . , vn+1) ∈ (T ∗−1Zn+1)|η : (dp∗)xi(vi) = 0 for 0 6 i 6 n+ 1} = (Λn+1)|η. 2

We are now ready to complete the proof of Proposition 3.3.8 for an arbitrary simplicial
structure map.
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Proof of Proposition 3.3.8. Let ψ : [m] → [n] be the simplicial map inducing g. It uniquely
factors

ψ : [m]
π // // [k] ' imψ �

� ι // [n]

as a surjection followed by an injection. This gives rise to an extended diagram

(Zn+1,Λn+1)

p̃

��

d0 // (Zn,Λn)

p

��
(Zk+1,Λk+1)

q̃

��

d0 // (Zk,Λk)

q

��
(Zm+1,Λm+1)

d0 // (Zm,Λm)

where p corresponds to the injection ι, and q corresponds to the surjection π.
We need to show that the large square satisfies the required strictness. By the previous

lemma, we know that the top square satisfies the required strictness. Thus, it suffices to show
that (q̃)!Λm+1 = Λk+1 since then

(q̃ ◦ p̃)!Λm+1 = (p̃)!(q̃)!Λm+1 = (p̃)!Λk+1

and we are reduced to applying the previous lemma to the top square.
To do this, as in the proof of the previous lemma, over each geometric point η ∈ Zk+1(k), we

will give a description of the induced map of fibers(
T ∗−1Zm+1

)
|η // (T ∗−1Zk+1)|η.

Define π′ : [k] → [m] to be the section of π given by its break points

π′(i) = supπ−1(i).

Then, in terms of the identifications of Lemma 3.3.4, the pullback map admits the description

(v0, . . . , vm+1) � // (v0, v1+π′(0), . . . , v1+π′(k)).

Note that this is no longer a closed immersion, and instead admits a section by repeating terms.
It is now elementary to see that (q̃)!Λm+1 = Λk+1. On the one hand, the inclusion (q̃)!Λm+1 ⊂

Λk+1 is evident. On the other hand, the inclusion (q̃)!Λm+1 ⊃ Λk+1 follows from the fact that
the noted section takes Λk+1 into Λm+1.

This completes the proof of Proposition 3.3.8 and, in turn, that of Theorem 3.3.1. 2

3.4 Centers of convolution categories
Corollary 3.2.2 states that DCoh(X×Y X) is like a ‘matrix’ or endomorphism algebra for Perf(X)
over Perf(Y ). In linear algebra, it is not hard to show that the center/Hochschild cohomology
of EndR(M) will be the same as that of R so long as M ‘sees’ all of R (e.g. if R is a retract of
M). The main result of this section will be a categorified version of this in the special case of
convolution categories. The proof will not so abstract, but rather will use the ‘functional analysis’
for categories such as DCoh developed in [BNP].

To explain the situation, let us start with p : X → Y a surjective map of perfect stacks.
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Observe that the loop space LY = Map(S1, Y ) comes equipped with a natural basepoint
map e : LY → Y as well as rotational S1-action. We fix once and for all the identification

LY ' Y ×Y×Y Y
so that e corresponds to the first projection (which is equivalent to the second projection, though
in two different ways).

The category QC(LY ) has a natural E2-monoidal structure and the pushforward functor

e∗ : QC(LY ) // QC(Y )

realizes QC(LY ) as the center of QC(Y ). More generally, recall the fundamental correspondence

LY LY ×Y X ' (X ×Y X)×X×X X
poo δ // X ×Y X.

The pullback–pushforward functor

δ∗p
∗ : QC(LY ) // QC(X ×Y X)

also realizes QC(LY ) as the center of QC(X ×Y X).
For the above assertions, see [BFN10]. In the following, we give an outline of a proof.
Let us recall some generalities seen in the proof of Theorem 3.3.1. For notational convenience,

set A = QC(X ×Y X) and B = QC(X). Observe that pushforward along the relative diagonal
∆∗ : B → A is monoidal, and thus we may regard A as an algebra in B-bimodules.

Given an algebra A in B-bimodules, we have its relative bar resolution

A '
∣∣A⊗B(•+2)

∣∣,
which can be used to calculate its center

Z (A) = HomA⊗Aop(A,A) = HomA⊗Aop(
∣∣A⊗B(•+2)

∣∣,A) = Tot {HomB⊗Bop(A⊗B•,A)}.
We will access the center as the totalization of the cosimplicial object

C• = HomB⊗Bop(A⊗B•,A).

Unwinding the notation and using the canonical identity QC(X)⊗k ' QC(Xk), we find the
cosimplicial category

C• ' FunLQC(X2)(QC(X ×Y X)⊗QC(X)•,QC(X ×Y X)).

Using the canonical identity of functors with integral transforms, we find further

C• ' QC(X×Y (•+1) ×Y LY ),

where the cosimplicial structure maps are given by ∗-pullback functors. Thus, with any
assumptions for which descent holds (see, for example, Corollary 2.4.3), one has the identification

Z (A) = TotC• ' QC(LY ).

Now let us return to small categories of coherent sheaves. Suppose now that X and Y are
smooth and p : X → Y is proper and surjective. Observe that the E2-monoidal structure on
QC(LY ) preserves the full subcategory

DCohprop/Y (LY ) ⊂ QC(LY )

of coherent complexes with support proper over Y (or, equivalently, proper over Y with respect to
the second projection). It consists precisely of those complexes taken via e∗ to the full subcategory
Perf Y ⊂ QC(Y ).
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Theorem 3.4.1. Let X,Y be smooth and p : X → Y be proper and surjective.
There is a natural E2-identification

DCohprop/Y (LY )
∼ // Z (DCoh(X ×Y X)).

Proof. As explained above, via the relative bar resolution for the monoidal map ∆∗ : QC(X) →

QC(X ×Y X), we may calculate Z (QC(X ×Y X)) as the totalization of the cosimplicial diagram

C• ' FunLQC(X2)(QC(X ×Y X)⊗QC(X)•,QC(X ×Y X)) ' QC(X×Y (•+1) ×Y LY ).

Likewise, via the relative bar resolution for the monoidal map ∆∗ : Perf X → DCoh(X×Y X),
we may calculate Z (DCoh(X ×Y X)) as the totalization of the cosimplicial diagram

c• ' Funex
Perf(X2)(DCoh(X ×Y X)⊗Perf(X)•,DCoh(X ×Y X)).

By [BNP, § 5.3], the natural map of cosimplicial diagrams

c• // C•

is fully faithful at each term and, thus, we have a fully faithful inclusion

Tot c• �
� // TotC• ' QC(LY ).

The essential image consists of objects that land in c0 ⊂ C0 under the coaugmentation map
TotC• → C0. In other words, it consists of F ∈ QC(LY ) such that δ∗p

∗F ∈ QC(X ×Y X), in
fact, lies in DCoh(X ×Y X). We must check that this is equivalent to F ∈ DCohprop/Y (LY ).

First, note that F ∈ DCoh(LY ) if and only if p∗F ∈ DCoh(X ×Y LY ).
Let us write W ⊂ LY for the support of F so that p−1W = X ×Y W ⊂ X ×Y LY is the

support of p∗F . Note that W → Y is proper if and only if p−1W → Y is proper since X → Y
is proper.

Since δ is affine, we have that δ∗p
∗F ∈ DCoh(X×Y X) if and only if p∗F ∈ DCoh(X×Y LY )

and p−1W → X ×Y X is proper.
Finally, consider the diagram

p−1W // X ×Y X // Y

where the second map is proper since X → Y is proper. Thus, p−1W → X ×Y X is proper if
and only if p−1W → Y and, hence, W → Y is proper.

We conclude that δ∗p
∗F ∈ DCoh(X×Y X) if and only if F ∈ DCoh(LY ) with proper support

over Y . 2

Remark 3.4.2. Since the theorem is the restriction of the parallel result for quasi-coherent
sheaves, the central functor

DCohprop/Y (LY )
∼ // DCoh(X ×Y X)

is given by the pullback–pushforward functor p∗δ
∗ along the fundamental correspondence

LY LY ×Y X ' (X ×Y X)×X×X X
poo δ // X ×Y X.
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4. Application: affine Hecke category

We turn now to our motivating application for the development of the preceding theory.

4.1 Global affine Hecke category
Let G be a complex reductive group and B ⊂ G a Borel subgroup. Let q : BB → BG denote the
natural induction map of classifying stacks. Passing to loop spaces, we obtain the Grothendieck–
Springer map of adjoint quotients

Lq : L(BB) ' B/B ' G̃/G // G/G ' L(BG),

where G̃ classifies pairs of a Borel subgroup B′ ⊂ G and a group element g ∈ B′, and Lq projects
to the group element and forgets the Borel subgroup.

Now we apply the preceding theory with X = B/B, Y = G/G, and p = Lq. Note that
X = B/B and Y = G/G are smooth, and p : B/B → G/G is proper. Note as well that our
starting point already involves loop spaces, though that structure plays no role with respect to
our general results.

Definition 4.1.1. Let G be a complex reductive group and B ⊂ G a Borel subgroup.

(i) The global Steinberg stack is the fiber product

StG = B/B ×G/G B/B.

(ii) The global affine Hecke category is the small stable monoidal category

Haff
G = DCoh(StG).

Applying Corollary 3.2.2, we immediately obtain the following theorem.

Theorem 4.1.2. There is a natural monoidal equivalence

Φ : Haff
G = DCoh(B/B ×G/G B/B)

∼ // Funex
Perf(G/G)(Perf(B/B),Perf(B/B))

compatible with actions on the module Perf(B/B).

4.2 Local systems
One can interpret the loop space L(BG) ' G/G as the moduli stack of G-local systems on the
circle S1. Similarly, one can interpret the global Steinberg stack StG as the moduli of G-local
systems on the cylinder S1 × I with B-reductions at the boundary circles S1 × ∂I.

Definition 4.2.1. The commuting stack LocG(T ) is the moduli of G-local systems on the two-
torus T = S1 × S1 or, equivalently, the twice-iterated loop space

LocG(T ) ' L(L(BG)).

Remark 4.2.2. The name commuting stack comes from the presentation

LocG(T ) ' {(g1, g2) ∈ G×G | g1g2g
−1
1 g−1

2 = 1}/G.

One should be careful to understand that the commutator equation needs to be imposed in a
derived sense.
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Let g denote the Lie algebra of G. The fiber of the cotangent complex of LocG(T ) at a

local system P can be calculated by the de Rham cochains C∗(T, g∗P)[1], where g∗P denotes the

coadjoint bundle of P. Focusing on the degree −1 term coming from the commutator equation,

we see that there is a natural map

µ|P : T ∗−1
LocG(T )|P ' H0(T, g∗P) // g∗/G.

Let h denote the Lie algebra of the universal Cartan of G, and W the Weyl group. Recall

the dual characteristic polynomial map or, equivalently, the projection to the coadjoint quotient

χ : g∗/G // g∗//G ' h∗/W.

Definition 4.2.3. The global nilpotent cone N ⊂ T ∗−1
LocG(T ) is the conic closed subset given by

the inverse-image of zero under the composition

T ∗−1
LocG(T )

µ // g∗/G
χ // h∗/W.

4.3 Center of affine Hecke category

Starting from the loop space LocG(S1) ' L(BG) ' G/G, we have arrived at the commuting

stack LocG(T ) ' L(L(BG)) by taking loops again. Thus there is a natural asymmetry to the

construction: we will distinguish the projection to the first loop or, in other words, the basepoint

of the second loop

LocG(T ) // LocG(S1).

Following our general results, we introduce the full subcategory

DCohprop/LocG(S1)(LocG(T )) ⊂ DCoh(LocG(T ))

of coherent complexes with proper support along the projection to the first loop.

Applying Corollary 3.4.1, we immediately obtain the following theorem.

Theorem 4.3.1. There is a natural E2-monoidal identification of the center

Z (DCoh(B/B ×G/G B/B)) ' DCohprop/LocG(S1)(LocG(T )).

Remark 4.3.2. The description of the center is manifestly not SL2(Z)-equivariant in contrast to

that of the trace calculated below.

4.4 Trace of affine Hecke category

Recall that we have introduced the global nilpotent cone N ⊂ T ∗−1
LocG(T ), and can consider the

corresponding full subcategory

DCohN (LocG(T )) ⊂ DCoh(LocG(T ))

of coherent complexes supported along it. All of these constructions are manifestly SL2(Z)-

equivariant.
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Theorem 4.4.1. There is a canonical S1-equivariant identification of the trace

Tr(DCoh(B/B ×G/G B/B)) ' DCohN (LocG(T )).

Proof. Set X = L(BB) ' B/B, Y = L(BG) ' G/G, and p = Lq for q : BB → BG.

Applying Theorem 3.3.1, it remains to identify the support condition ΛX/Y ⊂ T ∗−1
LY as

described therein with the global nilpotent locus N ⊂ T ∗−1
LocG(T ).

Recall g denotes the Lie algebra of G. Let b denote the Lie algebra of B. Let N ⊂ B denote

the maximal unipotent subgroup, and n its Lie algebra. Fix an invariant inner product on g, so

that we have an identification g ' g∗ and, in particular, an identification n = ker(g∗ → b∗).
Fix a geometric point η : Spec k → LocG(T ) ' L(L(BG)) given by a pair of commuting

elements (α, β) ∈ G×G. Note that the intermediate stack LY ×Y X is the moduli of G-bundles
on S1 × S1 with a B-reduction along the first loop. Thus, we have the identifications:

T ∗−1
LocG(T )|η = {v ∈ g∗ ' g : adα v = adβ v = v}

ΛX/Y |η = {v ∈ T ∗−1
LocG(T )|η : ∃g ∈ G such that adg α ∈ B, adg v ∈ n}.

Recall that v ∈ g∗ ' g is nilpotent if and only if there exists g ∈ G such that adg v ∈ n. Thus

we clearly have the containment:

ΛX/Y |η ⊂ N |η = {v ∈ T ∗−1
LocG(T )|η : ∃g ∈ G such that adg v ∈ n}.

Thus, it is sufficient to show that two commuting elements v ∈ g, α ∈ G with v nilpotent are

contained in a Borel subgroup B ⊂ G. Equivalently, it is sufficient to show two such elements

simultaneously fix a point of the flag variety G/B. Note that a nilpotent element v ∈ g generates

an A1-action on G/B, and the action preserves the fixed points of the element α ∈ G. Since the

fixed points of α are a non-empty projective variety, the A1-action must have a fixed point. This

concludes the proof. 2

Remark 4.4.2. Note that the map LocB(T ) → LocG(T ) is not necessarily surjective, even though

B/B → G/G always is. For example, consider G = PGL2 and two commuting elements α,

β ∈ PGL2 that are not contained in any Borel subgroup B ⊂ G. However, if the derived group of

G is simply connected, then the map is in fact surjective. In this case, one can derive the global

nilpotent cone N ⊂ T ∗−1
LocG(T ) directly from the map LocB(T ) → LocG(T ).
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