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Abstract

We propose a systematic design approach for the precast concrete industry to promote sustainable construction
practices. By employing a holistic optimization procedure, we combine the concrete mixture design and structural
simulations in a joint, forward workflow that we ultimately seek to invert. In this manner, new mixtures beyond
standard ranges can be considered. Any design effort should account for the presence of uncertainties which can be
aleatoric or epistemic aswhen data are used to calibrate physicalmodels or identifymodels that fill missing links in the
workflow. Inverting the causal relations established poses several challenges especially when these involve physics-
based models which more often than not, do not provide derivatives/sensitivities or when design constraints are
present. To this end, we advocate Variational Optimization, with proposed extensions and appropriately chosen
heuristics to overcome the aforementioned challenges. The proposed approach to treat the design process as a
workflow, learn the missing links from data/models, and finally perform global optimization using the workflow is
transferable to several other materials, structural, and mechanical problems. In the present work, the efficacy of the
method is exemplarily illustrated using the design of a precast concrete beamwith the objective tominimize the global
warming potential while satisfying a number of constraints associated with its load-bearing capacity after 28 days
according to the Eurocode, the demolding time as computed by a complex nonlinear finite element model, and the
maximum temperature during the hydration.

Impact Statement

This article provides a framework to reduce the global warming potential of civil structures such as bridges,
dams, or buildingswhile satisfying constraints relating to structural efficiency. The framework combinesmixture
design and structural simulation in a joint workflow to enable optimization. Advanced optimization algorithm
with appropriate extensions and heuristics are employed to account for stochasticity of workflow, nonlinear
constraints, and lack of derivatives of the workflow. Some relations in the workflow are not known a priori in the
literature. These are learned by employing advanced probabilistic machine learning algorithms trained using the
fusion of noisy data and physical models. Various forms of uncertainty arising due to noise in the data or
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incompleteness of data are systematically incorporated into the framework. The big idea here is to create
structures with a smaller environmental footprint without compromising their strength while being cost-efficient
for the manufacturer. The proposed holistic approach is demonstrated on a specific design problem, but should
serve as a template that can be readily adapted to other design problems.

1. Introduction

Precast concrete elements play a critical role in achieving efficient, low-cost, and sustainable structures.
The controlled manufacturing environment allows for higher quality products and enables the mass
production of such elements. In the standard design approach, engineers or architects select the geometry
of a structure, estimate the loads, choosemechanical properties, and design the element accordingly. If the
results are unsatisfactory, the required mechanical properties are iteratively adjusted, aiming to improve
the design. This approach is adequate when the choice of mixtures is limited, and the expected concrete
properties are well known. There are various publishedmethods to automate this process and optimize the
beam design at this level. Computer-aided beam design optimization dates back at least 50 years (e.g.,
Haung and Kirmser, 1967).

Generally, the objective is to reduce costs, with the design variables being the beam geometry, the
amount and location of the reinforcement, and the compressive strength of the concrete (Chakrabarty,
1992; Coello et al., 1997; Pierott et al., 2021; Shobeiri et al., 2023). Most publications focus on analytical
functions based on well-known, empirical rules of thumb. In recent years, the use of alternative binders in
the concrete mix design has increased, mainly to reduce the environmental impact and cost of concrete but
also to improve and modify specific properties. This is a challenge as the concrete mix is no longer a
constant and is itself subject to an optimization. Known heuristics might no longer apply to the new
materials, and old design approachesmight fail to produce optimal results. In addition, it is not desirable to
choose from a predetermined set of possible mixes, as this would lead to either an overwhelming number
of required experiments or a limiting subset of the possible design space.

In the existing literature on the optimization of the concrete mix design (Lisienkova et al., 2021;
Kondapally et al., 2022; Forsdyke et al., 2023), the objective is either to improve mechanical properties
like durability within constraints or to minimize, for example, the amount of concrete while keeping other
properties above a threshold. A first step to address these limitations is incorporating the compressive
strength during optimization in the beam design phase. Higher compressive strength usually correlates
with a larger amount of cement and, therefore, higher cost as well as a higher global warming potential
(GWP). This approach has shown promising results in achieving improved structural efficiency while
considering environmental impact (dos Santos et al., 2023). To be able to find a part specific optimum,
individual data of the manufacturer and specific mix options must be integrated. Therefore, there is still a
need for a comprehensive optimization procedure that can seamlessly integrate concrete mix design and
structural simulations, ensuring structurally sound and buildable elements with minimized environmental
impact for part specific data.

When designing elements subjected to various requirements, both on thematerial and structural levels,
including workability of the fresh concrete, durability of the structure, maximum acceptable temperature,
minimal cost, and GWP, the optimal solution is not apparent and will change depending on each
individual project. In this article, we present a holistic optimization procedure that combines physics-
based models and experimental data in order to enable the optimization of the concrete mix design in the
presence of uncertainty, with an objective to minimize the GWP. In particular, we employ structural
simulations as constraints to ensure structural integrity, limit the maximum temperature, and ensure an
adequate time of demolding.

By integrating the concrete mixture optimization and structural design processes, engineers can tailor
the concrete properties tomeet the specific requirements of the customer andmanufacturer. This approach
opens up possibilities for performance prediction and optimization for new mixtures that fall outside the
standard range of existing ones. To the best of our knowledge, there are no published works that combine
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thematerial and structural levels in one flexible optimization framework. In addition to changing the order
of the design steps, the proposed framework allows to directly integrate experimental data and propagate
the identified uncertainties. This allows a straightforward integration of new data and quantification of
uncertainties regarding the predictions. The proposed framework consists of three main parts. The first
part introduces an automated and reproducible probabilistic machine learning-based parameter identifi-
cation method to calibrate the models by using experimental data. The second part focuses on a black-box
optimization method for non-differentiable functions, including constraints. The third part presents a
flexible workflow combining the models and functions required for the respective problem.

To carry out black-box optimization, we advocate the use of Variational Optimization (Staines and
Barber, 2013; Bird et al., 2018), which uses stochastic gradient estimators for black-box functions. We
utilize this with appropriate enhancements in order to account for the stochastic, nonlinear constraints.
Our choice ismotivated by three challenges present in theworkflow describing the physical process. First,
we are limited by the availability of only black-box evaluations of the physical workflow. In many real-
world cases involving physics-based solvers/simulators in the optimization process, one resorts to
gradient-free optimization (Moré and Wild, 2009; Snoek et al., 2012). However, the gradient-free
methods perform poorly on high-dimensional parametric spaces (Moré andWild, 2009). Also, it requires
more functional evaluations to reach the optimum as compared to gradient-based methods. Recently,
stochastic gradient estimators (Mohamed et al., 2020) have been used to estimate gradients of black-box
functions and, hence, perform gradient-based optimization (Ruiz et al., 2018; Louppe et al., 2019;
Shirobokov et al., 2020). However, they do not account for the constraints. Second, the presence of
nonlinear constraints makes the optimization challenging. Popular gradient-free methods like constrained
Bayesian optimization (cBO) (Gardner et al., 2014) and COBYLA (Powell, 1994) pose significant
challenges when (non)linear constraints are involved (Audet andKokkolaras, 2016;Menhorn et al., 2017;
Agrawal et al., 2023). The third challenge is the stochasticity of the workflow, discussed in the following
paragraph.

The physical workflow comprising physics-based models to link design variables with the objective
and constraints poses an information flow-related challenge. Some links leading to the objective/
constraints are not known a priori in the literature, thus hindering the optimization process. We propose
a method to learn these missing links, parameterized by an appropriate neural network, with the help of
(noisy) experimental data and physical models. The unavoidable noise in the data introduces aleatoric
uncertainty, or its incompleteness introduces epistemic uncertainty. To account for the presence of these
uncertainties, we advocate the links to be probabilistic. The learned probabilistic links tackle the
information bottleneck; however, it introduces random parameters in the physical workflow, thus
necessitating optimization under uncertainty (OUU) (Acar et al., 2021; Martins and Ning, 2021; Qiu
et al., 2021). Deterministic inputs can lead to a poor-performing design, which OUU tries to tackle by
producing a robust and reliable design that is less sensitive to inherent variability. This paradigm of fusing
data and physical models to train machine-learning models has been extensively used across engineering
and physics in recent years (Koutsourelakis et al., 2016; Fleming, 2018; Baker et al., 2019; Karniadakis
et al., 2021; Karpatne et al., 2022; Lucor et al., 2022; Agrawal and Koutsourelakis, 2023; Forsdyke et al.,
2023), colloquially referred to as scientific machine learning (SciML). In contrast to traditional machine
learning areas where big data are generally available, engineering and physical applications generally
suffer from a lack of data, further complicated by experimental noise. SciML has shown promise in
addressing this lack of data. We summarize our key contributions below:

• We present an inverse design approach for the precast concrete industry to promote sustainable
construction practices.

• To achieve the desired goals, we propose an algorithmic framework with two main components.
(a) an optimization algorithm that accounts for the presence of various uncertainties, nonlinear
constraints, and lack of derivatives and (b) a probabilistic machine learning algorithm that learns the
missing relations to enable the optimization, by combining noisy, experimental data with physical
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models. The algorithmic framework is transferable to several other material, structural, and
mechanical design problems.

• To assist the optimization procedure, we propose an automated workflow that combines concrete
mixture design and structural simulation.

• We demonstrate the effectiveness of the algorithmic framework and the workflow, on a precast
concrete beam element.We learn themissing probabilistic link between themixture design variables
and finite element (FE) model parameters describing the concrete hydration and homogenization
procedure. Subsequently, we optimize mixture design and beam geometry in the presence of
uncertainties, with the goal of reducing the GWP while employing structural simulations as
constraints to ensure safe and reliable design.

The structure of the rest of this article is as follows. Section 2.1 describes the proposed design
approach, and Section 2.2 describes the physicalmaterialmodels and the applied assumptions. Section 2.3
presents the details of the experimental data. Section 2.4 provides an overview of the aforementioned
probabilistic links and the optimization procedure. Section 2.5 talks about the methodology employed to
learn the probabilistic links based on the experimental data and the physical models. Then Section 2.6
describe the details of the proposed black-box optimization algorithm. In Section 3, we showcase and
discuss the results of the numerical experiments combining all the parts, the experimental data, the
physical models, the identification of the probabilistic links, and the optimization framework. Finally, in
Section 4, we summarize our findings and discuss possible extensions.

1.1. Demonstration problem

In this work, a well-known example of a simply supported, reinforced, rectangular beam has been
chosen. The design problem was originally published in Everard and Tanner (1966) and illustrated in
Figure 1.

It has been used to showcase different optimization schemes (e.g., Chakrabarty, 1992; Coello et al.,
1997; Pierott et al., 2021). As opposed to the literature where the optimization is often related to costs, we
aim to reduce the overall GWP of the part. This objective is particularly meaningful as the cement industry
accounts for approximately 8% of the total anthropogenic GWP (Miller et al., 2016). Reducing the
environmental impact of concrete production becomes crucial in the pursuit of sustainable construction
practices. In addition, the reduction of the amount of cement in concrete is also correlated to the reduction
of cost, as cement is generally the most expensive component of the concrete mix (Paya-Zaforteza et al.,
2009). There are three direct ways to reduce the GWP of a given concrete part. First, replace the cement
with a substitute with a lower carbon footprint. This usually changes mechanical properties and, in
particular, their temporal evolution. Second, increase the amount of aggregates, therefore reducing the
cement per volume. This also changes effective properties and needs to be balanced with the workability
and the limits due to the applications. Third, decrease the overall volume of concrete by improving the

Figure 1.Geometry of the design problem of a bending beam with a constant distributed load (dead load
and live load with safety factors of 1.35 and 1.5) and a rectangular cross section. The design variable,

beam height is denoted by h.

e20-4 Atul Agrawal et al.

https://doi.org/10.1017/dce.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.18


topology of the part. In addition, when analyzing the whole life cycle of a structure, both cost and GWP
can be reduced by increasing the durability and, therefore, extending its lifetime. To showcase the
proposedmethod’s capability, two design variables have been chosen; the height of the beam and the ratio
of ordinary Portland cement (OPC) to its replacement binder ground granulated blast furnace slag (BFS), a
by-product of the iron industry. In addition to the static design according to the standard, the problem is
extended to include a key performance indicator (KPI) related to the production process in a prefabrication
factory that defines the time after which the removal of the formwork can be performed. To approximate
this, the point in time when the beam can bear its own weight has been chosen a criterion. Reducing this
time equates to being able to produce more parts with the same formwork.

2. Methods

2.1. Design approaches

The conventional method of designing reinforced concrete structures is depicted in Figure 2. The
structural engineer starts by choosing a suitable material (e.g., strength class C40/50) and designs the
structure, including the geometry (e.g., the height of a beam) and the reinforcement. In the second step,
this design is handed over to the material engineer with the constraint that the material properties assumed
by the structural engineer have to be met. This lack of coordination strongly restricts the set of potential
solutions since structural design and concrete mix design are strongly coupled; for example, a lower
strength can be compensated with a larger beam height.

An alternative design workflow is illustrated in Figure 3, which entails inverting the classical
design pipeline. The material composition is the input to the material engineer who predicts the
corresponding mechanical properties of the material. This includes KPIs related to the material, for
example, viscosity/slump test, or simply the water/cement ratio. In a second step, a structural analysis
is performed with the material properties as input. This step outputs the structural KPIs such as the
load-bearing capacity, the expected lifetime (for a structure susceptible to fatigue), or the GWP of the
complete structure. These two (coupled) modules are used within an optimization procedure to
estimate the optimal set of input parameters (both on the material level and on the structural level).
One of the KPIs is chosen as the objective function (e.g., GWP) and others as constraints (e.g., load-
bearing capacity larger than the load, cement content larger than a threshold, viscosity according to the
slump test within a certain interval). Note that in order to use such an inverse-design procedure, the
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Figure 2.Classical design approach, where the required minimummaterial properties are defined by the
structural engineer which is then passed to the material engineer.
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forward modeling workflow needs to be automated and subsequently the information needs to be
efficiently back-propagated.

This article aims to present the proposedmethodological framework as well as illustrate its capabilities
in the design of a precast concrete element with the objective of reducing the GWP. The constraints
employed are related to the structural performance after 28 days as well as the maximum time of
demolding after 10 hours. The design/optimization variables are, on the structural level, the height of
the beam, and on the material level, the composition of the binder as a mixture of Portland cement and
slag. The complete workflow is illustrated in Figure 4.

2.2. Workflow for predicting key performance indicators

The workflow consists of four major steps. In the first step, the cement composition (blended cement and
slag) defined in the mix composition is used to predict the mechanical properties of the cement paste. This
is done using a data-driven approach as discussed in Section 2.4. In the second step, homogenization is
used in order to compute the effective, concrete properties based on cement paste and aggregate data. An
analytical function is applied for the homogenization based on the Mori–Tanaka scheme (Mori and
Tanaka, 1973). The third step involves a multi-physics, FE model with two complex constitutive models
—a hydration model, which computes the evolution of the degree of hydration (DOH), considering the
local temperature and the heat released during the reaction, and a mechanical model, which simulates the
temporal evolution of the mechanical properties assuming that those depend on the DOH. The fourth and
last model is based on a design code to estimate the amount of reinforcement and predict the load-bearing
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capacity after 28 days. Subsequent sections will provide insights into how these models function within
the optimization framework.

2.2.1. Homogenized concrete parameters
Experimental data for estimating the compressive strength are obtained from concrete specimens
measuring the homogenized response of cement paste and aggregates. The mechanical properties of
aggregates are known, whereas the cement paste properties have to be inversely estimated. The
calorimetry is directly performed for cement paste.

In order to relate macroscopic mechanical properties to the individual constituents (cement paste and
aggregates), an analytical homogenization procedure is used. The homogenized effective concrete
properties are the Young modulus E, the Poisson ratio ν, the compressive strength fc, the density ρ, the
thermal conductivity χ, the heat capacity C, and the total heat release Q∞. Depending on the physical
meaning, these properties need slightly different methods to estimate the effective concrete properties.
The elastic, isotropic properties E and ν of the concrete are approximated using the Mori–Tanaka
homogenization scheme (Mori and Tanaka, 1973). Themethod assumes spherical inclusions in an infinite
matrix and considers the interactions of multiple inclusions. Details are given in Appendix A.1.

The estimation of the concrete compressive strength fc,eff follows the ideas of Nežerka et al. (2018).
The premise is that a failure in the cement paste will cause the concrete to crack. The approach is based on
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two main assumptions. First, the Mori–Tanaka method is used to estimate the average stress within the
matrixmaterial σ mð Þ. Second, the vonMises failure criterion of the averagematrix stress is used to estimate
the uniaxial compressive strength (see Appendix A.1.1).

Table 1 gives an overview of the material properties of the constituents used in the subsequent
sensitivity studies. The effective properties as a function of the aggregate content are plotted in
Figure 5. Note that both extremes (0 [pure cement] and 1 [only aggregates]) are purely theoretical.

For the considered example, the relations are close to linear. This can change when the difference
between the matrix and the inclusion properties is more pronounced or more complex micromechanical
mechanisms are incorporated, such as air pores or the interfacial transition zone. Though not done in this
article, these could be considered within the chosen homogenization scheme by adding additional phases
(cf. Nežerka and Zeman, 2012). Homogenization of the thermal conductivity is also based on the Mori–
Tanaka method, following the ideas of Stránský et al. (2011) with details given in Appendix A.1.2.
The density ρ, the heat capacity C, and the total heat release Q∞ can be directly computed based on their
volume average. As an example for the volume-averaged quantities, the heat release is shown in Figure 5
as it exemplifies the expected linear relation of the volume average as well as the zero heat output of a
theoretical pure aggregate.

2.2.2. Hydration and evolution of mechanical properties
Due to a chemical reaction (hydration) of the binder with water, calcium-silicate hydrates form that lead to
a temporal evolution of concrete strength and stiffness. The reaction is exothermal and the kinetics are
sensitive to the temperature. The primary model simulates the hydration process and computes the
temperature field T and the DOH α (see Eqs. (B1) and (B2) in Appendix B). The latter characterizes the
DOH that condenses the complex chemical reactions into a single scalar variable. The thermal model
depends on threematerial properties: the effective thermal conductivity λ, the specific heat capacityC, and
the heat release ∂Q

∂t . The latter is governed by the hydration model, characterized by six parameters:
B1,B2,η,T ref ,Ea, and αmax. The first three B1,B2, and η are parameters characterizing the shape of the
evolution of the heat release. T ref is the reference temperature for which the first three parameters are
calibrated. (Based on the difference between the actual and the reference temperature, the heat released is
scaled.) The sensitivity to the temperature is characterized by the activation energy Ea. αmax is the
maximum DOH that can be reached. Following Mills (1966), the maximum DOH is estimated based on
the water to binder ratio rwc, as αmax¼ 1:031rwc

0:194+ rwc
.

By assuming the DOH to be the fraction of the currently released heat with respect to its theoretical

potentialQ∞, the current DOH is estimated as α tð Þ¼ Q tð Þ
Q∞

. As the potential heat release is also difficult to

Table 1. Properties of the cement paste and aggregates used in subsequent sensitivity studies

Phase E Pa½ � ν �½ � fc Pa½ � ρ kg=m3½ � χ J=kgK½ � C W=mK½ � Q∞ J=kg½ �
Paste 30e9 0.2 30e6 2,400 870 1.8 250,000
Aggr. 25e9 0.3 — 2,600 840 0.8 0

Figure 5. Influence of aggregate ratio on effective concrete properties.
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measure as it takes a long time to fully hydrate and will only do so under perfect conditions, we identify
it as an additional parameter in the model parameter estimation. For a detailed model description, see
Appendix B. In addition to influencing the reaction speed, the computed temperature is used to verify
that the maximum temperature during hydration does not exceed a limit of T limit¼ 60 ° C. Above a
certain temperature, the hydration reaction changes (e.g., secondary ettringite formation) and, add-
itionally, volumetric changes in the cooling phase correlate with cracking and reduced mechanical
properties. The maximum temperature is implemented as a constraint for the optimization problem (see
Eq. (B19)).

The evolution of the Young modulus E of a linear-elastic material model is modeled as a function of
the DOH (details in Eq. (B17)). In a similar way, the compressive strength evolution is computed (see
Eq. (B15)), which is utilized to determine a failure criterion based on the computed local stresses
(Eq. (B20)) related to the time when the formwork can be removed. For a detailed description of the
parameter evolution as a function of the DOH, see Appendix B.2. Figure 6 shows the influence of the
different parameters. In addition to the formulations given in Carette and Staquet (2016) which depend
on a theoretical value of parameters for fully hydrated concrete at α¼ 1, this work reformulates the
equations, to depend on the 28 day values E28 and fc28 as well as the corresponding α28 which is
obtained via a simulation. This allows us to directly use the experimental values as input. In Figure 6,
α28 is set to 0:8.

2.2.3. Beam design according to EC2
The design of the reinforcement and the computation of the load-bearing capacity is performed based on
DIN EN 1992-1-1 (2011) according to Eq. (C7) with a detailed explanation in the Appendix C. To ensure
that the design is realistic, the continuous cross section is transformed into a discrete number of bars with a
diameter chosen from a list. This is visible in Figure 7 by the stepwise increase in cross sections. The
admissible results are restricted by two constraints. One is coming from a minimal required compressive
strength (Eq. (C8)), visualized as a dashed line. The other, based on the available space to place bars with
admissible spacing (Eq. (C13)), visualized as the dotted line. Further details on the computation are given
in Appendix C. A sensitivity study for the mutual interaction and the constraints is visualized in Figure 7.
The parameters for the sensitivity study are given in Table D1 in Appendix D.

2.2.4. Computation of GWP
The computation of theGWP is performed bymultiplying the volume content of each individualmaterial by
its specific GWP. The values used in this study are extracted from Braga et al. (2017) and listed in Table 2.

We note that the question of what exactly to include in the GWP computation is largely open. For
example, the transport of materials, while non-negligible, is difficult in general to include. Furthermore,
there are always local conditions (e.g., the GWP of the energy sources used in the cement production

Figure 6. Influence of parameters αt,aE, and a fc on the evolution the Young modulus and the compressive
strength with respect to the degree of hydration α. Parameters: E28¼ 50GPa, aE ¼ 0:5, αt ¼ 0:2,

a fc ¼ 0:5, fc28¼ 30N=mm2, α28¼ 0:8.
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depends on the amount of green energy in that country). In addition, the time span (complete life cycle
analysis vs. production) is a point of debate and finally the usage of by-products (slag is currently a
by-product of steel manufacturing and thus its GWP is considered to be small). There are currently efforts,
both at the national and international levels, to standardize the computation of the GWP or similar
quantities. Once these are available, they can be readily integrated into the proposed approach. Such a
standardized computation of the GWP can lead either to taxing GWP or to introducing a sustainability
limit state, though this is an ongoing discussion in standardization committees.

2.3. Experimental data

This section describes the data used for learning the missing (probabilistic) links (detailed in Section 2.5)
between the slag–binder mass ratio rsb and physical model parameters. The slag–binder mass ratio rsb is
the mass ratio between the amount of BFS and the binder (sum of BFS and OPC). The data are sourced
from Gruyaert (2011). In particular, we are concerned about the parameter estimation for the concrete
homogenization discussed in Section 2.2.1 and the hydration model in Section 2.2.2.

For concrete homogenization, six different tests for varying ratios rsb¼ 0:0,0:15,0:3,0:5,0:7,0:85f g are
available for the concrete compressive strength fc after 28 days. For the concrete hydration, we utilize
isothermal calorimetry data at 20 ° C.We have temporal evolution data of cumulative heat of hydration Q̂ for
four different values of rsb¼ 0:0,0:30,0:50,0:85f g. For details on other material parameters and phenom-
enological values used to obtain the data, the reader is directed to Gruyaert (2011).

2.3.1. Young’s modulus E based on fc
The dataset does not encompass information about the Young modulus. Given its significance for the
FEM simulation, we resort to a phenomenological approximation derived from ACI Committee

Table 2. Specific global warming potential of the raw materials used in the design

Material GWP
kgCO2eq
m3

h i
Portland cement 0.95
Slag 0.18
Aggregates 0.025
Water 0.000133
Steel 1.42

Figure 7. Influence of beam height, concrete compressive strength, and load in the center of the beam on
the required steel. The dashed lines represent the minimum compressive strength constraint (Eq. (C8)),
and the dotted lines represent the geometrical constraint from the spacing of the bars (Eq. (C13)).
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363 (2010). This approximation relies on the compressive strength fc and the density ρ to estimate the
Young modulus

E¼ 3,320
ffiffiffiffi
fc

p
+ 6,895

ρ
2,320

� �1:5

, (1)

with ρ in kilogram per cubic meter and fc and E in megapascals.

2.4. Model learning and optimization

Theworkflow illustrated in Figure 4, which builds the link between the parameters relevant to the concrete
mix design and the KPIs involving the environmental impact and the structural performance, can be
represented in terms of the probabilistic graph (Koller and Friedman, 2009) shown in Figure 8. As
discussed in the Introduction (Section 1), the goal of the present study is to find the value of the design
variables x (concrete mix design and beam geometry) which minimizes the objective O (environmental
impact), while satisfying a given set of constraints Ci (beam design criterion, structural performance, etc.).
This necessitates forward and backward information flow in the presented graph. The forward informa-
tion flow is necessary to compute the KPIs for given values of the design variables and the backward
information is essentially the sensitivities of the objective and the constraints with respect to the design
variables that enable gradient-based optimization. Establishing the information flow poses challenges,
which we attempt to tackle with the methods proposed as follows:

• Data-based model learning: The physics-based models discussed in Sections 2.2.1 and 2.2.2 are
used to compute various KPIs (discussed in Figure 8). These depend on some model parameters
denoted by b which are unobserved (latent) in the experiments performed. The model parameters
need not only be inferred on the basis of experimental data but also their dependence on the design
variables x is required in order to be integrated into the optimization framework. In addition, the
noise in the data (aleatoric) or the incompleteness of data (epistemic) introduces uncertainty. To this
end, we propose learning probabilistic links by employing experimental data as discussed in detail in
Section 2.5.

Figure 8. Stochastic computational graph for the constrained optimization problem for performance-
based concrete design: The circles represent stochastic nodes and rectangles deterministic nodes. The
design variables are denoted by x¼ x1,x2ð Þ. The vector b represents the unobserved model parameters

which are needed in order to link the key performance indicators (KPIs) y¼ yo, yci
� �I

i¼1
� �

with the

design variables x. Here, yo represents the model output appearing in the optimization objective and yci
represents the model output appearing in the ith constraint. The objective function is given byO and the
ith constraint by Ci. They are not differentiable with respect to x1,x2. (Hence, x1 and x2 are dotted.) The

variables θ are auxiliary and are used in the context of Variational Optimization discussed in
Section 2.6.2. Several other deterministic nodes are present between the random variables b and the KPIs
y, but they are omitted for brevity. The physical meaning of the variables used is detailed in Table 3.
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• Optimization under uncertainty:The aforementioned uncertainties aswell as additional randomness that
might be present in the associated links necessitate reformulating the optimization problem
(i.e., objectives/constraints) as one of OUU. In turn, this gives rise to new challenges in order to compute
the needed derivatives of theKPIswith respect to the design variableswhich are discussed in Section 2.6.

2.5. Probabilistic links based on data and physical models

This section deals with learning a (probabilistic) model linking the design variables x and the input parameters
of the physics-based models, that is, concrete hydration and concrete homogenization. A graphical represen-

tation is contained in Figure 9. Therein, x̂ ið Þ, ẑ ið Þ
n oN

i¼1
denote the observed data pairs and b denotes a vector of

unknownandunobserved parameters of the physics-basedmodels and z bð Þ themodel outputs. The latter relate

to an experimental observation ẑ ið Þ as ẑ ið Þ ¼ z b ið Þ	 

+ noise, which gives rise to a likelihood p ẑ ið Þjz b ið Þ	 
� �

.

We further postulate a probabilistic relation between x̂ and b that is expressed by the conditional p bjx;φð Þ,
which depends on unknown parameters φ. The physical meaning of the aforementioned variables and model
links, aswell as of the relevant data, is presented in Table 4. The elements introduced above suggest aBayesian
formulation that can quantify inferential uncertainties in the unknownparameters and propagate it in themodel
predictions (Koutsourelakis et al., 2016), as detailed in the next section.

2.5.1. Expectation–maximization

GivenN data pairsDN ¼ x̂ ið Þ, ẑ ið Þ
n oN

i¼1
consisting of different concrete mixes and corresponding outputs,

we would like to infer the corresponding b ið Þ, but more importantly the relation between x and b which
would be of relevance for downstream, optimization tasks discussed in Section 2.6.

Figure 9. Probabilistic graph for the data and physical model-based model learning. The shaded nodes
are the observed and unshaded are the unobserved (latent) nodes.

Table 3. Physical meaning of the variables used in Figure 8

Variables Physical meaning

x1 Mass ratio of blast furnace slag and ordinary Portland cement rsb
x2 Beam height h
b Vector of the input, model parameters to the homogenization and hydration model (Sections

2.2.1 and 2.2.2, respectively)
yc1 Required steel reinforcement area (Eq. (C7))
C1 yc1 �ð Þ
	 


Beam design constraint (Eq. (C14))
yc2 Max. temperature reached (Appendix B.3)
C2 yc2 �ð Þ
	 


Temperature constraint (Eq. (B19))
yc3 Time of demolding (Appendix B.3)
C3 yc3 �ð Þ
	 


Time constraint based on yield strength (Eq. (B20))
yo The GWP of the beam (Section 2.2.4)
Oo yo �ð Þð Þ Objective corresponding to the beam GWP
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We postulate a probabilistic relation between x and b in the form of a conditional density p bjx;φð Þ
parametrized by φ. For example,

p bjx;φð Þ¼N bj fφ xð Þ, Sφ xð Þ
� �

, (2)

where fφ xð Þ represents a fully connected, feed-forward neural network parametrized by w (further details

discussed in Section 3) and Sφ xð Þ¼LLT denotes the covariance matrix where L is lower-triangular.

Hence, the parameters φ to be learned correspond to φ¼ w,Lf g. We assume that the observations ẑ ið Þ are
contaminated with Gaussian noise, which gives rise to the likelihood:

p ẑ ið Þjz b ið Þ
� �� �

¼N ẑ ið Þjz b ið Þ
� �

, Σℓ

� �
: (3)

The covariance Σℓ depends on the data used and is discussed in Section 3.
Given Eqs. (2) and (3), one can observe that b ið Þ (i.e., the unobserved model inputs for each concrete

mix i) and φwould need to be inferred simultaneously. In the following, we obtain point estimates φ∗ for
φ, by maximizing the marginal log-likelihood p DN jφð Þ (also known as log-evidence), that is, the
probability that the observed data arose from the model postulated. Hence, we get

φ∗¼ argmax
φ

log p DN jφð Þ: (4)

As this is analytically intractable, we propose employing variational Bayesian expectation–maximization
(VB-EM) (Beal and Ghahramani, 2003) according to which a lower boundℱ to the log-evidence (called
evidence lower bound [ELBO]) is constructed with the help of auxiliary densities hi b ið Þ	 


on the
unobserved variables b ið Þ:

log p DN jφð Þ≥
XN
i¼1

Ehi b ið Þð Þ log
p ẑ ið Þjz b ið Þ	 
� �

p b ið Þjx ið Þ;φ
	 


hi b ið Þ	 

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ℱ h1:N ,φð Þ

, (5)

where Ehi b ið Þð Þ �½ � denote the expectation with respect to the auxiliary densities hi b ið Þ	 

on the unobserved

variables b ið Þ. Eq. (5) suggests the following iterative scheme where one alternates between the steps:

• E-step: Fix φ and maximize ℱ with respect to hi b ið Þ	 

. It can be readily shown (Bishop and

Nasrabadi, 2006) that optimality is achieved by the conditional posterior, that is,

hopti b ið Þ
� �

¼ p b ið ÞjDN ,φ
� �

∝ p ẑ ið Þjb ið Þ
� �

p b ið Þjx ið Þ,φ
� �

, (6)

which makes the inequality in Eq. (5) tight. Since the likelihood is not tractable as it involves a physics-
based solver, we have usedMarkov chainMonte Carlo (MCMC) to sample from the conditional posterior
(see Section 3).

Table 4. Physical meaning of the variables/links used in Figure 9

b (model input) ẑ (observed data) z bð Þ (physics-based model)

Hydration model input parameters

(Section 2.2.2) b¼ B1,B2,η,Qpot

h i Heat of hydration Q Concrete hydration model

Cement paste compressive strength
( fc,paste), cement paste Young’s
Modulus (Epaste) (Section 2.2.1)

Concrete compressive
strength ( fc), concrete
Young’s Modulus (Ec)

Concrete homogenization model

Note. x̂ is the slag–binder mass ratio rsb for the all the cases presented above.
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• M-step: Given hi b ið Þ	 
� �N
i¼1, maximize ℱ with respect to φ.

φn+ 1¼ argmax
φ

ℱ h1:N ,φnð Þ: (7)

This requires derivatives of ℱ, that is,

∂ℱ
∂φ
¼
XN
i¼1

Ehi

∂ logp b ið Þjx ið Þ;φ
	 

∂φ

" #
: (8)

Given the MCMC samples b ið Þ
m

� �M
m¼1 from the E-step, these can be approximated as

∂ℱ
∂φ

≈
XN
i¼1

1
M

XM
m¼1

∂ log p b ið Þ
m jx ið Þ;φ

	 

∂φ

: (9)

Due to the Monte Carlo noise in these estimates, a stochastic gradient ascent algorithm is utilized. In
particular, the ADAM optimizer (Kingma and Ba, 2014) was used from the PyTorch (Paszke et al.,
2019) library to capitalize on its auto-differentiation capabilities.

The major elements of the method are summarized in Algorithm 1. We note here that training
complexity grows linearly with the number of training samples N due to the densities hi associated with
each data point (for-loop of Algorithm 1), but this can be embarrassingly parallelizable.1

Algorithm 1 Data-based model learning.

1: Input: Data DN ¼ x̂ ið Þ, ẑ ið Þ
n oN

i¼1
, model form p bjx;φð Þ, likelihood noise Σl, n¼ 0

2: Output: Learned parameter φ∗

3: Initialize the parameters φ
4: while ELBO not converged do

Expectation Step (E-step):
5: for i¼ 1 to N do
6: MCMC to get the posterior probability p b ið ÞjDN ,φn

	 

using current φn ⊳ Eq. (6)

7: end for
Maximization Step (M-step):

8: Monte Carlo gradient estimate ⊳ Eq. (9)
9: φn+ 1¼ argmaxφℱ h1:N ,φnð Þ
10: n n+ 1
11: end while

Model Predictions: The VB-EM based model learning scheme discussed above can be carried out in
an offline phase. Once the model is learned, we are interested in the proposed model’s ability to produce
probabilistic predictions (online stage) that reflect the various sources of uncertainty discussed previ-
ously. For learnt parameters φ∗, the predictive posterior density ppred zjD,φ∗ð Þ on the solution vector z of a
physical model is as follows:

ppred zjD,φ∗ð Þ¼
Z

p z,bjD,φ∗ð Þdb

¼
Z

p zjbð Þp bjD,φ∗ð Þdb
(10)

1 Embarrassingly parallelizable problems are problems that can be separated into parallel tasks without the need of any interaction
between the simulations performed at different processing units (Herlihy et al., 2020).
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≈
1
K

XK
k¼1

z b kð Þ
� �

: (11)

The second of the densities is the conditional (Eq. (2)) substituted with the learned φ∗ and the first of
the densities is simply a Dirac-delta that corresponds to the solution of the physical model, that is,
z bð Þ. The intractable integral can be approximated by Monte Carlo using K samples of b drawn from
p bjD,φ∗ð Þ.

2.6. Optimization under uncertainty

With the relevantmissing links identified as detailed in the previous section, the optimization can be performed
on the basis of Figure 8. We seek to optimize the objective functionO subject to constraints C¼ C1,…,CIð Þ
that are dependent on uncertain parameters b, which in turn are dependent on the design variables x. In this
setting, the general parameter-dependent nonlinear constrained optimization problem can be stated as

min
x

O yo x,bð Þð Þ,
s:t: Ci yci x,bð Þ	 


≤ 0, ∀i∈ 1,…, If g,
(12)

where x is a d-dimensional vector of design variables and b are the model parameter discussed in the
previous section. It can be observed that the optimization problem is nontrivial because of three main
reasons: (a) the presence of the constraints (Section 2.6.1), (b) the presence of random variables b in the
objective and the constraint(s) (Section 2.6.1), and (c) non-differentiability of yo,yci and therefore of O
and Ci.

2.6.1. Handling stochasticity and constraints
Since the solution of Eq. (12) depends on the random variables b, the objective and constraints are random
variables as well and we have to take their random variability into account. We do this by reverting to a
robust optimization problem (Ben-Tal and Nemirovski, 1999; Bertsimas et al., 2011), with expected
values denoted by E �½ � being the robustness measure to integrate out the uncertainties. In this manner, the
optimization problem in Eq. (12) is reformulated as

min
x

Eb O yo x,bð Þð Þ½ �,
s:t: Eb Ci yci x,bð Þ	 
� 

≤ 0, ∀i∈ 1,…, If g:
(13)

The expected objective value will yield a design that performs best on average, while the reformulated
constraints imply feasibility on average.

One can cast this constrained problem to an unconstrained one using penalty-based methods (Nocedal
andWright, 1999; Wang and Spall, 2003). In particular, we define an augmented objective functionL as
follows:

L x,b,λð Þ¼O yo x,bð Þð Þ+
X
i

λimax Ci yci x,bð Þ	 

,0

	 

, (14)

where λi > 0 is the penalty parameter for the ith constraint. The larger the λi’s are, the more strictly the
constraints are enforced. Incorporating the augmented objective (Eq. (14)) in the reformulated optimiza-
tion problem (Eq. (13)), one can arrive at the following penalized objective:

Eb L x,b,λð Þ½ � ¼
Z

L x,b,λð Þp bjx,φð Þdb, (15)

leading to the following equivalent, unconstrained optimization problem:

min
x

Eb L x,b,λð Þ½ �: (16)
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The expectation above is approximated by Monte Carlo which induces noise and necessitates the use of
stochastic optimization methods (discussed in detail in the sequel). Furthermore, we propose to alleviate
the dependence on the penalty parameters λ by using the sequential unconstrainedminimization technique
algorithm (Fiacco and McCormick, 1990), which has been shown to work with nonlinear constraints
(Liuzzi et al., 2010). The algorithm considers a strictly increasing sequence λnf gwith λn!∞. Fiacco and
McCormick (1990) proved that when λn!∞, then the sequence of corresponding minima, say x∗n

� �
,

converges to a global minimizer x∗ of the original constrained problem. This adaptation of the penalty
parameters helps to balance the need to satisfy the constraints with the need to make progress toward the
optimal solution.

2.6.2. Non-differentiable objective and constraints
We note that the approximation of the objective in Eq. (16) with Monte Carlo requires multiple runs of
the expensive, forward, physics-based models involved, at each iteration of the optimization algorithm.
In order to reduce the number of iterations required, especially when the dimension of the design space
is higher, derivatives of the objective would be needed. In cases where the dimension of the design
vector x is high, gradient-based methods are necessary. In turn, the computation of derivatives of L
would necessitate derivatives of the outputs of the forward models with respect to the optimization
variables x. The latter are, however, unavailable due to the non-differentiability of the forward models.
This is a common, restrictive feature of several physics-based simulators which in most cases of
engineering practice are implemented in legacy codes that are run as black boxes. This lack of
differentiability has been recognized as a significant roadblock by several researchers in recent years
(Beaumont et al., 2002; Marjoram et al., 2003; Louppe et al., 2019; Cranmer et al., 2020; Shirobokov
et al., 2020; Lucor et al., 2022; Oliveira et al., 2022; Agrawal and Koutsourelakis, 2023). In this work,
we advocate Variational Optimization (Staines and Barber, 2013; Bird et al., 2018), which employs a
differentiable bound on the non-differentiable objective. In the context of the current problem, we can
write

min
x

Z
L x,b,λð Þð Þ p bjx,φð Þdb≤

Z
L x,b,λð Þð Þp bjx,φð Þq xjθð Þ db dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

U θð Þ

, (17)

where q xjθð Þ is a density over the design variables x with parameters θ. If x∗ yields the minimum of the
objective Eb L½ �, then this can be achieved with a degenerate q that collapses to a Dirac-delta, that is, if
q xjθð Þ¼ δ x�x∗ð Þ. For all other densities q or parameters θ, the inequality above would in general be
strict. Hence, instead of minimizing Eb L½ � with respect to x, we can minimize the upper bound U with
respect to θ. Under mild restrictions outlined by Staines and Barber (2012), the boundU θð Þ is differential
with respect to θ, and using the log-likelihood trick, its gradient can be rewritten as (Williams, 1992)

∇θU θð Þ¼Ex,b ∇θ logq xjθð ÞL xð ,b,λÞ½ �

≈
1
S

XS
i¼1

L xi,bi,λð Þ ∂
∂θ

logq xijθð Þ: (18)

Both terms in the integrand can be readily evaluated which opens the door for a Monte Carlo approxi-
mation of the aforementioned expression by drawing samples xi from q xjθð Þ and subsequently bi from
p bjxi,φ∗ð Þ.

2.6.3. Implementation considerations and challenges
While the Monte Carlo estimation of the gradient of the new objective U θð Þ also requires running the
expensive, forward models multiple times, it can be embarrassingly parallelized.
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Obviously, convergence is impeded by the unavoidable Monte Carlo errors in the aforementioned
estimates. In order to reduce them, we advocate the use of the baseline estimator proposed in Kool et al.
(2019), which is based on the following expression:

∂U
∂θ

≈
1

S�1

XS
i¼1

∂

∂θ
logq xijθð Þ L xi,bi,λð Þ�1

S

XS
j¼1

L xj
	

,bj,λÞ
 !

: (19)

The estimator above is also unbiased as the one in Eq. (18); it does not imply any additional cost beyond
the S samples and in addition exhibits lower variance as shown in Kool et al. (2019).

To efficiently compute the gradient estimators, wemake use of the auto-differentiation capabilities
of modern machine learning libraries. In the present study, PyTorch (Paszke et al., 2019) was
utilized. For the stochastic gradient descent, the ADAM optimizer was used (Kingma and Ba, 2014).
In the present study, q xjθð Þwas a Gaussian distribution with parameters θ¼ μ,Σf g representing mean
and diagonal covariance, respectively. We say we have arrived at an optimal x∗ when the q almost
degenerates to a Dirac-delta, or colloquially, when the variance of q has converged and is consid-
erably small. For completeness, the algorithm for the proposed optimization scheme is given in
Algorithm 2. A schematic overview of the methods discussed in Sections 2.5 and 2.6 is presented in
Figure 10.

Possible alternatives to the presented optimization scheme could be the popular gradient-free
methods (Audet and Kokkolaras, 2016) like cBO and the extensions (Gardner et al., 2014) with
appropriate adjustments to handle stochasticity, genetic algorithms (Banzhaf et al., 1998), COBYLA
(Powell, 1994), and evolution strategies (Wierstra et al., 2014), to name a few. The gradient-free
methods are known to perform poorly in high-dimensions (Moré and Wild, 2009). Since we use the
approximate gradient information to move in the parametric space in the presented method, higher-
dimensional optimization is feasible, as reported in Staines and Barber (2012) and Bird et al. (2018).
The computational cost naturally scales exponentially with the number of design variables d, as the
number of samples S per iteration is usually of the orderO dð Þ (Salimans et al., 2017). Additionally, if

Figure 10. A schematic of the probabilistic model learning (left block) and the optimization under
uncertainty (OUU; right block). The left block illustrates how the information from experimental data and
physical models are fused together to learn the missing probabilistic link. This learned probabilistic link
subsequently becomes a linchpin in predictive scenarios, particularly in downstream optimization tasks.
The right block illustrates querying the learned probabilistic model to complete the missing link and

interfacing the workflow describing the design variables, the physical models, and the key performance
indicators. Subsequently, this integrated approach facilitates the execution of OUU as per the proposed

methodology.
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a very expensive simulator is involved in the workflow, the core hours needed would naturally
increase as generating each sample would become expensive. Fortunately, as the optimization
scheme is embarrassingly parallelizable, physical time would be approximately equal to the time
needed for one run of simulator times the number of optimization steps.

The presented optimization scheme has the following limitations, which we will attempt to
address in the future. (1) Even after applying the baseline trick, one might observe some oscillations
in θ space near the optima. As suggested in Wierstra et al. (2014), these can potentially be eased
by using natural gradients. (2) The proposed method can get trapped in local optima in highly
multimodal surfaces. Casting the objective as U θð Þ can be seen as a Gaussian blurred version of the
original objective, the degree of smoothing being contingent upon the choice of initial . This
smoothening essentially helps escape the local optima (also one of the strengths of the method).
Still, for a highly multimodal surface (e.g., Ackley function), the smoothening might not be enough,
leading to an early convergence to local optima. A safe bet would be to choose “large enough” , but
this, in turn, might add to the computational cost (Wolpert and Macready, 1997). (3) The method
might struggle for an objective surface with valleys (e.g., Rosenbrock function). If the dimension is
not very high, a full matrix instead of the diagonal might help. (4) The applicability of the proposed
workflow for multi-objective optimization is not explored in the present work, but since evolutionary
strategies are a class of Variational Optimization and evolutionary strategies are known to work with
multi-objective optimization problems (e.g., Deb et al., 2002), this might be an interesting research
direction.

Algorithm 2 Black-box stochastic constrained optimization.

1: Input: distribution q xjθð Þ for the design variable x, n¼ 0, learning rate η
2: θ00,λ1 choose starting point
3: for k¼ 1,2,… do
4: while θk not converged do
5: Sample design variables and model parameters xi� q xjθnk

	 

, bi� p bjxi,φð Þ

6: Farm the workflow with physics-based solvers for the samples in different machines and
compute updated objectiveL xi,bi,λkð Þ for each of them ⊳Eq. (14)
7: Compute baseline
8: Monte-Carlo gradient estimate∇θU ⊳ Eq. (19)
9: θn+ 1k  θnk + η∇θU ⊳ Stochastic Gradient Descent
10: n n + 1
11: end while
12: if ∥θnk�θnk�1∥≤ ε then ⊳ Convergence condition
13: break
14: end if
15: λk + 1 λk ⊳Update penalty parameter
16: θ0k + 1 θnk ⊳Update parameters of distribution q
17: end for
18: return θnk

3. Numerical experiments

This section presents the results of the data-based model learning (Section 3.1) and optimization
(Section 3.2) methodological frameworks for the coupled workflow describing the concrete mix-design
and structural performance as discussed in Figure 4.
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3.1. Model-learning results

We report on the results obtained upon application of themethod presented in Section 2.5 on the hydration
and homogenization models (Table 4) along with the experimental data (Section 2.3).

Implementation details: We note that for the likelihood model (Eq. (3)) corresponding to the

hydration model, the observed output ẑ in the observed data D¼ x̂ ið Þ, ẑ ið Þ
n oN

i¼1
is the cumulative heat

Q̂ and the covariance matrix Σℓ¼ 32Idim Q̂ð Þ × dim Q̂ð Þ. The particular choice was made to account for the

cumulative heat sensor noise of ± 4:5J=g as reported in Gruyaert (2011). For the homogenization model,

the ẑ¼ Ec, fc½ �T where Ec is the Young Modulus and fc is the compressive strength of the concrete. The
covariance matrix Σℓ¼ diag 4× 1018,2× 1012

	 

Pa2. For both of the above, x̂ in the observed dataD is the

slag–binder mass ratio rsb.
For both cases, a fully connected neural network is used to parameterize the mean of the conditional of

model parameters b (Eq. (2)). The optimum number of hidden layers and nodes per layer was determined
to be 1 and 30, respectively. The Tanh was chosen as the activation function for all layers. The L2 weight
regularization was employed to prevent over-fitting. We employed a learning rate of 10�2 for all the
results reported here.

Owing to the intractability of the conditional posterior given in Eq. (6), we approximate it withMCMC,
in particular we used the delayed rejection adaptive metropolis (DRAM) (Haario et al., 2006; Shahmoradi
andBagheri, 2020). The specific selectionwasmotivated by two primary considerations. First, a gradient-
free sampling strategy is imperative due to the absence of gradients in the physics-basedmodels employed
in this context. Second, we aim to introduce automation to the tuning of free parameters in the MCMC
methods, ensuring a streamlined and efficient convergence process. In the DRAM sampler, we bound the
target acceptance rate to be between 0.1 and 0.3.

Results: Figure 11 shows the learned probabilistic relation between the latent model parameters of the
homogenization model and the slag–binder mass ratio rsb. Out of the six available noisy datasets
(Section 2.3), five were used for training and the dataset corresponding to rsb¼ 0:5 was used for testing.
We access the predictive capabilities of the learnedmodel by propagating the uncertainties forward via the
homogenization model and analyzing the predictive density ppred (Figure 10) as illustrated in Figure 12.
We observe that the mechanical properties of concrete obtained by the homogenization model with
learned probabilistic model predictions as the input envelops the ground truth.

Similarly, for the hydration model, Figure 13 shows the learned probabilistic relation between the
latent model parameters B1,B2,η,Qpot

	 

and the ratio rsb. Out of the four available noisy datasets

(Section 2.3) for T ¼ 20 ° C, three were used for training and the dataset corresponding to rsb¼ 0:5
was used for testing. The value of Ea was taken from Gruyaert (2011). Figure 15 compares the
experimental heat of hydration for different rsb with the probabilistic predictions made using the learned

Figure 11. Learned probabilistic relation between the homogenization model parameters and the slag–
binder ratio rsb. The solid line denotes the mean, and the shaded area denotes ± 2 times standard

deviation.
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Figure 12. Predictive performance of the learned model corresponding to the homogenization process.
The solid line is the predictive mean, and the shaded area is ± 2 times standard deviation. The crosses

correspond to the noisy observed data.

Figure 13. Learned probabilistic relation between the hydration model parameters and the slag–binder
mass ratio rsb. The solid line denotes the mean, and the shaded area denotes ± 2 times standard deviation.

Figure 14. (a) Evolution of the entries ϕij of the lower-triangular matrix L of the covariance matrix
(Eq. (2)) with respect to EM iterations. (b) Heat map of the converged value of the covariance matrix LLT

of the probabilistic model corresponding to concrete hydration.
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probabilistic model as an input to the hydration model. We observe that the predictions entirely envelop
the ground truth data while accounting for the aleatoric noise present in the experimental data. Figure 14a
shows the evolution of the entries of the covariancematrix of the conditional on the hydrationmodel latent
parameters p bjx;φð Þ. It serves as an indicator for the convergence of the VB-EM algorithm. The
converged value of the covariance matrix is given by Figure 14b. It confirms the intricate correlation
among the hydration model parameters, also reported in Figure B1. This is a general challenge with most
physical models that are often overparameterized (at least for a given dataset) leading to multiple
configurations of parameters with similar likelihood (see Figure 6).

At this point, it is crucial to (re)state that the training is performed using indirect, noisy data. It is
encouraging to note that the learned models are able to account for the aleatoric uncertainty arising from
the noise in the observed data and the epistemic uncertainty due to the finite amount of training data. The
probabilistic model is able to learn relationships which were otherwise unavailable in literature, with the
aid of physical models and (noisy) data. In this study, the training and validation of the model were
somewhat constrained by the limited availability of data, a common challenge in engineering and physics
applications. However, this limitation does not detract from the demonstration of our algorithmic
framework. In future iterations of this work, an extensive set of experiments can be performed for a
larger dataset.

3.2. Optimization results

With the learned probabilistic links as discussed in the previous section, we overcame the issue of forward
and backward information flow bottleneck in the workflow connecting the design variables and KPIs
relevant for constraints/objective (as discussed in Section 2.4). In this section, we report on the results
obtained by performing OUU as discussed in Section 2.6 for the performance-based concrete design
workflow. The design variables, objectives, and the constraints are detailed in Table 3. For the temperature
constraint, we choose T limit¼ 60 ° C and for the demolding time constraint, we choose 10 hours. To
improve the numerical stability, we scale the variables, constraints, and objectives to make them of the
order 1. To demonstrate the optimization scheme proposed, a simply supported beam is used as discussed
in Section 1.1, with parameters given in Table D1. Colloquially, we aim to find the value(s) of slag–binder
mass ratio rsb and beam height h that minimize the objective, on average, while satisfying, on average, the
aforementioned constraints.

Figure 15. Predictive performance of the learned model corresponding to the hydration process. The
solid line is the predictive mean, and the shaded area is ± 2 times standard deviation. The crosses

correspond to the noisy observed data.
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As discussed, the workflow for estimating the gradient is embarrassingly parallelizable. Hence, for
each value considered in the design space, we call the ensemble of the workflows in parallel machines and
collect the results. For the subsequent illustrations, a step size of 0:05 is utilized in the ADAM optimizer
and S¼ 100was the number of samples for gradient estimation.We set λi¼ 1∀i∈ 1,…, If g as the starting
value. Figure 16 shows the optimization results. In the design space, we start from values of design
variables that violate the beam design constraints C1 as evident from Figure 16b. This activates the
corresponding penalty term in the augmented objective (Eq. (14)), thus driving the design variables to
satisfy the constraint (around iteration 40). Physically, this implies that the beam is not able to withstand
the applied load for the given slag–binder ratio, beam height, and other material parameters (which are
kept constant in the optimization procedure). As a result, the optimizer suggests to increase the beam
height h in order to satisfy the constraint while also simultaneously increasing the slag–binder mass ratio
rsb, owing to the influence of the GWP objective (see Figure 16c). As it can be seen in Figure 16a, this
leads to a reduction of the GWP because with the increase of the slag ratio, the Portland cement content,
which is mainly responsible for the CO2 emission, is ultimately reduced. In theory, the optimum value of
the slag–binder mass ratio rsb approaches one (meaning only slag in the mix) if only the GWP objective
with no constraints were to be used in the optimization. But the demolding time constraint C3 penalizes the
objective to limit the slag–binder rsb ratio to be around 0:8 (see Figure 16c), since the evolution of
mechanical properties is both much faster for Portland cement than for slag and at the same time the
absolute values for strength and Young’s modulus are higher. This s also evident in Figure 16b, when
around iteration 80, the constraint violation line is crossed thus activating the penalty from C3. This also
stops the nearly linear descent of the GWP objective. In the present illustrations, a value of 10 hours is
chosen as the demolding time to demonstrate the procedure. In real-world settings, a manufacturer would
be inclined to remove the formwork earlier so that it can be reused. But the lower the requirement of the
demolding time, the higher the ratio of cement content required in the mix, leading to an increased
hydration heat which in effect accelerates the reaction.

The oscillations in the objective and the constraints as seen in Figure 16a,b are due to the Monte Carlo
noise in the gradient estimation. As per Eq. (17), the design variables are treated as random variables
following a normal distribution. As discussed in Algorithm 2, the optimization procedure is assumed to
converge when the standard deviations σ of the normal distribution attain small values (Figure 17), that is,
when the normal degenerates to a Dirac-delta. The σ values stabilizing to relatively small values points
toward the convergence of the algorithm.

The performance increase (in terms of GWP) is difficult to evaluate in the current setting. This is due to
the fact that the constraint C1 is not fulfilled for the initial value of the design variables chosen for the
optimization. It is to be highlighted that this is actually an advantage of themethod—the user can start with

Figure 16. (a) Evolution of the expected objective Eb O½ � versus the number of iterations. The objective is
the GWP of the beam. (b) Evolution of the expected constraints Eb Ci½ � (which should all be negative)
versus the number of iterations. C1 represents the beam design constraint, C2 represents the temperature
constraint, and C3 gives the demolding time constraint. (c) Trajectory of the design variables (slag–binder

mass ratio rsb and the beam height h). The red cross represents the optimal value identified upon
convergence.
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a reasonable design that still violates the constraints. In order to make a reasonable comparison, a design
using only Portland cement (i.e., rsb¼ 0) with only the load-bearing capacity as a constraint (beam design
constraint C1) and the free parameter being the height of the beam was computed. This minimum height
was found to be 77.5 cmwith a corresponding GWP of the beam of 1,455 kgCO2eq. Note that this design
does not fulfill the temperature constraint C2 with a maximum temperature of 81°C. Another option for
comparison is the first iteration number in the optimization procedure that fulfills all the constraints in
expectation, which is the iteration number 30with a GWP of 1,050 kgCO2eq. In the subsequent iteration
steps, this is further reduced to 900 kgCO2eq for the optimum value of the design variables obtained in the
present study. This reduction in GWP is achieved by increasing the height of the beam to 100 cm while
replacing Portland cement with BFS so that themass fraction of slag–binder rsb is 0.8. The addition of slag
to the mixture decreases the strength of the material as illustrated in Figure 12, while at the same time, this
decrease is compensated by an increased height. It is also informative to study the evolution of the
(expected) constraints shown in Figure 16b. One observes that C3 (green line) associated with the
demolding time is the most critical. Thus, in the current example, the GWP could be decreased even
further when the time of demolding is extended (depending on the production process of removing the
formwork).

4. Conclusion and outlook

We introduced a systematic design approach for the precast concrete industry in the pursuit of sustainable
construction practices. It makes use of a holistic optimization framework which combines concrete
mixture design with the structural simulation of the precast concrete element within an automated
workflow. In this manner, various objectives and constraints, such as the environmental impact of the
concrete element or its structural efficiency, can be considered.

The proposed holistic approach is demonstrated on a specific design problem, but should serve as a
template that can be readily adapted to other design problems. The advocated black-box stochastic
optimization procedure is able to deal with the challenges presented by general workflows, such as the
presence of black-box models without derivatives, the effect of uncertainties, and nonlinear constraints.
Furthermore, to complete the forward and backward information flow that is essential in the optimization
procedure, a method to learn missing (probabilistic) links between the concrete mix design variables and
model parameters from experimental data is presented. We note that, to the best of our knowledge, such a
link is not available in the literature.

We demonstrated on the precast concrete element the integration of material and structural design in a
joint workflow and showcased that this has the potential to decrease the objective, that is, theGWP. For the

Figure 17. Evolution of the standard deviations σ of the design variables to highlight the convergence of
the optimization process. We note that the design variables are transformed and scaled in the optimization

procedure.
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structural design, semi-analytical models based on the Eurocode are used, whereas the manufacturing
process is simulated using a complex FE model. This illustrates the ability of the proposed procedure to
combine multiple simulation tools of varying complexity, accounting for different parts of the life cycle.
Hence, extending this in order to include, for example, additional load configurations, materials, or life
cycle models, is straightforward. The present approach to treat the design process as a workflow, learning
the missing links from data/models, and finally using this workflow in a global optimization is
transferable to several other material, structural, and mechanical problems. Such extensions could readily
includemore complex design processes with an increased number of parameters and constraints (the latter
due tomultiple load configurations or limit states in a real structure). Furthermore, this procedure could be
applied to problems involving a complete structure (e.g., bridge and building) instead of a single-element
and potentially entailing advanced modeling features that include multiscale models to link material
composition to material properties or improve the computation of the GWP using a complete life cycle
analysis.

Data availability statement. The code and the data of this study are openly available at the project repository: https://github.com/
BAMresearch/LebeDigital.
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A. Homogenization

A.1. Approximation of elastic properties
The chosen method to homogenize the elastic, isotropic properties E and ν is the Mori–Tanaka homogenization scheme (Mori and
Tanaka, 1973). It is a well-established, analytical homogenization method. The formulation uses bulk and shear moduli K and G.
They are related to E and ν as K¼ E

3 1�2νð Þ andG¼ E
2 1 + νð Þ. The used Mori–Tanaka method assumes spherical inclusions in an infinite

matrix and considers the interactions of multiple inclusions. The applied formulations follow the notation published in Nežerka and
Zeman (2012) where this method is applied to successfully model the effective concrete stiffness for multiple types of inclusions.
The general idea of this analytical homogenization procedure is to describe the overall stiffness of a bodyΩ, based on the properties
of the individual phases, that is, thematrix and the inclusions. Each of the n phases is denoted by the index r, where r¼ 0 is defined as
the matrix phase. The volume fraction of each phase is defined as
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c rð Þ ¼ Ω rð Þ�� ��
Ωk k for r¼ 0,…,n: (A1)

The inclusions are assumed to be spheres, defined by their radius R rð Þ. The elastic properties of each homogeneous and isotropic
phase is given by the material stiffness matrix L rð Þ, here written in terms of the bulk and shear moduli K and G,

L rð Þ ¼ 3K rð ÞIV + 2G rð ÞID for r¼ 0,…,n, (A2)

where IV and ID are the orthogonal projections of the volumetric and deviatoric components.

The method assumes that the micro-heterogeneous body Ω is subjected to a macroscale strain ε. It is considered that for each
phase a concentration factor A rð Þ can be defined such that

ε rð Þ ¼A rð Þε for r¼ 0,…,n, (A3)

which computes the average strain ε rð Þ within a phase, based on the overall strains. This can then be used to compute the effective
stiffness matrix Leff as a volumetric sum over the constituents weighted by the corresponding concentration factor

Leff ¼
Xn
r¼0

c rð ÞL rð ÞA rð Þ for r¼ 0,…,n: (A4)

The concentration factors A rð Þ,

A 0ð Þ ¼ c 0ð ÞI +
Xn
r¼1

c rð ÞA rð Þ
dil

 !�1
, (A5)

A rð Þ ¼A rð Þ
dilA

0ð Þ for r¼ 1,…,n, (A6)

are based on the dilute concentration factors A rð Þ
dil , which need to be obtained first. The dilute concentration factors are based on the

assumption that each inclusion is subjected to the average strain in the matrix ε 0ð Þ; therefore,

ε rð Þ ¼A rð Þ
dil ε

0ð Þ for r¼ 1,…,n: (A7)

The dilute concentration factors neglect the interaction among phases and are only defined for the inclusion phases r¼ 1,…,n. The
applied formulation uses an additive volumetric–deviatoric split, where

A rð Þ
dil ¼A rð Þ

dil,VIV +A rð Þ
dil,DID for r¼ 1,…,n, with A8)

A rð Þ
dil,V¼

K 0ð Þ

K 0ð Þ + α 0ð Þ K rð Þ �K 0ð Þ	 
 , (A9)

A rð Þ
dil,D¼

G 0ð Þ

G 0ð Þ + β 0ð Þ G rð Þ �G 0ð Þ	 
 : (A10)

The auxiliary factors follow from the Eshelby solution as

α 0ð Þ ¼ 1+ ν 0ð Þ

3 1 + ν 0ð Þð Þ and β 0ð Þ ¼ 2 4�5ν 0ð Þ	 

15 1� ν 0ð Þð Þ , (A11)

where ν 0ð Þ refers to the Poission ratio of the matrix phase. The effective bulk and shear moduli can be computed based on a sum over
the phases

Keff ¼
c 0ð ÞK 0ð Þ +

Pn
r¼1c

rð ÞK rð ÞA rð Þ
dil,V

c 0ð Þ +
Pn

r¼1c rð ÞA rð Þ
dil,V

, (A12)

Geff ¼
c 0ð ÞG 0ð Þ +

Pn
r¼1c

rð ÞG rð ÞA rð Þ
dil,D

c 0ð Þ +
Pn

r¼1c rð ÞA rð Þ
dil,D

: (A13)

Based on the concept of Eq. (A3), with the formulations (Eqs. (A2), (A4), and (A5)), the average matrix stress is defined as

σ 0ð Þ ¼L 0ð ÞA 0ð ÞLeff
�1σ: (A14)

A.1.1. Approximation of compressive strength
The estimation of the concrete compressive strength fc follows the ideas of Nežerka et al. (2018). The procedure here is taken from
the code provided in the link in Nežerka and Zeman (2012). The assumption is that a failure in the cement paste will cause the
concrete to crack. The approach is based on two main assumptions. First, the Mori–Tanaka method is used to estimate the average
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stress within the matrix material σ mð Þ. The formulation is given in Eq. (A14). Second, the von Mises failure criterion of the average
matrix stress is used to estimate the uniaxial compressive strength

fc ¼
ffiffiffiffiffiffiffi
3J2

p
, (A15)

with J2 σð Þ¼ 1
2σD : σD and σD¼ σ� 1

3 trace σð ÞI . It is achieved by finding a uniaxial macroscopic stress σ¼ � fc,eff 0 0 0 0 0
� T

,

which exactly fulfills the von Mises failure criterion (Eq. (A15)) for the average stress within the matrix σ mð Þ. The procedure here is
taken from the code provided in the link in Nežerka and Zeman (2012). First, a J test2 is computed for a uniaxial test stress

σtest ¼ ftest 0 0 0 0 0
� T

. Then the matrix stress σ mð Þ is computed based on the test stress following Eq. (A14). This is used to

compute the second deviatoric stress invariant J mð Þ
2 for the average matrix stress. Finally, the effective compressive strength is

estimated as

fc,eff ¼
J test2

J mð Þ
2

ftest: (A16)

A.1.2. Approximation of thermal conductivity
Homogenization of the thermal conductivity is based on the Mori–Tanaka method as well. The formulation is similar to Eqs. (A12)
and (A13). The expressions are taken from Stránský et al. (2011). The thermal conductivity χeff is computed as

χeff ¼
c mð Þχ mð Þ + c ið Þχ ið ÞA ið Þ

χ

c mð Þ + c ið ÞA ið Þ
χ

and (A17)

A ið Þ
χ ¼

3χ mð Þ

2χ mð Þ + χ ið Þ : (A18)

B. FE concrete model

B.1. Modeling of the temperature field
The temperature distribution is generally described by the heat equation as

ρC
∂T
∂t
¼∇ � λ∇Tð Þ + ∂Q

∂t
(B1)

with λ the effective thermal conductivity, C the specific heat capacity, ρ the density, and ρC the volumetric heat capacity. The
volumetric heatQ due to hydration is also called the latent heat of hydration, or the heat source. In this article, the density, the thermal
conductivity, and the volumetric heat capacity to be constants are assumed to be sufficiently accurate for our purpose, even though
there are more elaborate models taking into account the effects of temperature, moisture, and/or the hydration.

B.1.1. Degree of hydration α
The DOH α is defined as the ratio between the cumulative heat Q at time t and the total theoretical volumetric heat by complete
hydration Q∞:

α tð Þ¼Q tð Þ
Q∞

, (B2)

assuming a linear relation between the DOH and the heat development. Therefore, the time derivative of the heat source _Q can be
rewritten in terms of α,

∂Q
∂t
¼ ∂α

∂t
Q∞: (B3)

Approximated values for the total potential heat range between 300 and 600 J/g for binders of different cement types, for example,
OPC Q∞¼ 375 – 525J=g or Pozzolanic cement Q∞¼ 315 – 420 J/g.

B.1.2. Affinity
The heat release can be modeled based on the chemical affinity A of the binder. The hydration kinetics are defined as a function of
affinity at a reference temperature ~A and a temperature dependent scale factor a

_α¼ ~A αð Þa Tð Þ: (B4)
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The reference affinity, based on the DOH, is approximated by

~A αð Þ¼B1
B2

αmax
+ α

� �
αmax�αð Þexp �η α

αmax

� �
, (B5)

where B1 and B2 are coefficients depending on the binder. The scale function is given as

a¼ exp �Ea

R
1
T
� 1
T ref

� �� �
: (B6)

An example function to approximate the maximum DOH based on the water to cement mass ratio rwc, by Mills (1966), is the
following:

αmax ¼ 1:031rwc
0:194+ rwc

: (B7)

This refers to Portland cement. Figure B1 shows the influence of the three numerical parameters B1, B2, η and the potential heat
release Q∞ on the heat release rate as well as on the cumulative heat release.

B.1.3. Discretization and solution
Using Eq. (B3) in Eq. (B1), the heat equation is given as

ρC
∂T
∂t
¼∇ � λ∇Tð Þ +Q∞

∂α

∂t
: (B8)

Now we apply a backward Euler scheme

_T ¼Tn+ 1�Tn

Δt
and (B9)

_α¼Δα
Δt

with Δα¼ αn + 1�αn (B10)

and drop the index n+ 1 for readability to obtain

ρCT �Δt∇ � λ∇Tð Þ�Q∞Δα¼ ρCTn: (B11)

Using Eqs. (B10) and (B4), a formulation for Δα is obtained:

Δα¼Δt~A αð Þa Tð Þ: (B12)

We define the affinity in terms of αn and Δα to solve for Δα on the quadrature point level

~A¼B1 exp �ηΔα+ α
n

αmax

� �
B2

αmax
+Δα + αn

� �
� αmax�Δα�αnð Þ: (B13)

Now we can solve the nonlinear function

f Δαð Þ¼Δα�Δt~A Δαð Þa Tð Þ¼ 0 (B14)

using an iterative Newton–Raphson solver.

Figure B1. Influence of the hydration parameters on the heat release rate and the cumulative heat
release.
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B.2. Coupling material properties to degree of hydration

B.2.1. Compressive strength
The compressive strength in terms of the DOH can be approximated using an exponential function (cf. Carette and Staquet, 2016):

fc αð Þ¼ α tð Þa fc fc∞: (B15)

Thismodel has two parameters, fc∞, the compressive strength of the parameter at full hydration, α¼ 1, and a fc the exponent, which is
a material parameter that characterizes the temporal evolution.

The first parameter could theoretically be obtained through experiments. However, the total hydration can take years. Therefore,
we can compute it using the 28 days values of the compressive strength and the corresponding DOH:

fc∞¼
fc28
α28a fc

: (B16)

B.2.2. Young’s modulus
The publication (Carette and Staquet, 2016) proposes a model for the evolution of the Young modulus assuming an initial linear
increase of the Young modulus up to a DOH αt :

E αð Þ¼ E∞
α tð Þ
αt

αt
aE for α< αt

E∞α tð ÞaE for α≥ αt :

8<
: (B17)

Contrary to other publications, no dormant period is assumed. Similarly to the strength standardized testing of the Youngmodulus is
done after 28 days, E28. To effectively use these experimental values, E∞ is approximated as

E∞¼ E28

α28aE
, (B18)

using the approximated DOH.

B.3. Constraints

The FEM simulation is used to compute two practical constraints relevant to the precast concrete industry. At each time step, the
worst point is chosen to represent the part, therefore ensuring that the criterion is fulfilled in the whole domain. The first constraint
limits the maximum allowed temperature. The constraint is computed as the normalized difference between the maximum
temperature reached Tmax and the temperature limit T limit

CT ¼ Tmax�T limit

T limit
, (B19)

where CT > 0 is not admissible, as the temperature limit 60°C has been exceeded.

The second constraint is the estimated time of demolding. This is critical, as themanufacturer has a limited number of forms. The
faster the part can be demolded, the faster it can be reused, increasing the output capacity. On the other hand, the part must not be
demolded too early, as it might get damaged while being moved. To approximate the minimal time of demolding, a constraint is
formulated based on the local stresses Cσ . It evaluates the Rankine criterion for the principal tensile stresses, using the yield strength
of steel fyk and a simplified Drucker–Prager criterion, based on the evolving compressive strength of the concrete fc,

Cσ ¼ max

CRK ¼
∥σ0t∥� fyk

fyk

CDP¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
I21� I2

r
� f3cffiffiffi

3
p

fc

8>>>>><
>>>>>:

, (B20)

where Cσ > 0 is not admissible. In contrast to standard yield surfaces, the value is normalized, to be unit less. This constraint aims to
approximate the compressive failure often simulated with plasticity and the tensile effect of reinforcement steel. As boundary
conditions, a simply supported beamunder its ownweight has been chosen to approximate possible loading conditionswhile the part
is moved. This constraint is evaluated for each time step in the simulation. The critical point in time is approximated where
Cσ tcritð Þ¼ 0. This is normalized with the prescribed time of demolding to obtain a dimensionless constraint.

C. Beam design
We follow the design code (DIN EN 1992-1-1, 2011) for a singly reinforced beam, which is a reinforced concrete beam with
reinforcement only at the bottom. The assumed cross-section is rectangular.
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C.1. Maximum bending moment

Assuming a simply supported beam with a given length l in millimeters, a distributed load q in Newton per millimeters and a point
load F in Newton per millimeters, the maximum bending moment Mmax in Newton per square millimeter is computed as

Mmax¼ q
l2

8
+F

l
4
: (C1)

The applied loads already incorporate any required safety factors.

C.2. Computing the minimal required steel reinforcement

Given a beamwith the height h in millimeters, a concrete cover of c in millimeters, a steel reinforcement diameter of d in millimeters
for the longitudinal bars, and a bar diameter of d in millimeters for the transversal reinforcement also called stirrups,

heff ¼ h� c�dst�1
2
d: (C2)

According to the German norm standard safety factors are applied, αcc¼ 0:85, γc¼ 1:5, and γs¼ 1:15, leading to the design
compressive strength for concrete fcd and the design tensile yield strength fywd for steel

fcd ¼ αcc
fc
γc
, (C3)

fywd ¼
fyk
γs

, (C4)

where fc denotes the concrete compressive strength and fyk the steel’s tensile yield strength.

To compute the force applied in the compression zone, the lever arm of the applied moment z is given by

z¼ heff 0:5+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25�0:5μ

p� �
, with (C5)

μ¼ Mmax

bh2eff fcd
: (C6)

The minimum required steel As,req is then computed based on the lever arm, the design yield strength of steel and the maximum
bending moment, as

As,req ¼Mmax

fywdz
: (C7)

C.3. Optimization constraints

C.3.1. Compressive strength constraint
Based on Eq. (C6), we define the compressive strength constraint as

Cfc¼ μ�0:5, (C8)

where Cfc > 0 is not admissible, as there is no solution for Eq. (C6).

C.3.2. Geometrical constraint
The geometrical constraint checks that the required steel area As,req does not exceed themaximum steel area As,max that fits inside the
design space. For our example, we assume the steel reinforcement is only arranged in a single layer. This limits the available space
for rebars in twoways, by the requiredminimal spacing smin between the bars, to allow concrete to pass, and by the required space on
the outside, the concrete cover c, and stirrups diameter dst. To compute As,max , the maximum number for steel bars ns,max and the
maximum diameter dmax from a given list of admissible diameters are determined that fulfill

s≥ smin, with (C9)

s¼ b�2c�2dst�ns,maxdmax

ns,max �1
and (C10)

ns,max ≥ 2: (C11)

According to DIN1992-1-1 (2011), the minimum spacing between two bars smin is given by the minimum of the concrete cover
(2.5 cm) and the rebar diameter. The maximum possible reinforcement is given by
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As,max ¼ nsπ
d
2

� �2

: (C12)

The geometry constraint is computed as

Cg¼As,req�As,max

As,max
, (C13)

where Cg > 0 is not admissible, as the required steel area exceeds the available space.

C.3.3. Combined beam constraint
To simplify the optimization procedure, the two constraints are combined into a single one by using the maximum value:

Cbeam ¼ max Cg,Cfc
	 


: (C14)

Evidently, this constraint is also defined as: Cbeam > 0 is not admissible.

D. Parameter tables
This is the collection of the used parameters for the various example calculations.

Cite this article: Agrawal A, Tamsen E, Unger JF and Koutsourelakis P.-S (2024). From concrete mixture to structural design—a
holistic optimization procedure in the presence of uncertainties. Data-Centric Engineering, 5, e20. doi:10.1017/dce.2024.18

Table D1. Parameters of the simply supported beam for the computation of the steel reinforcement

Name Value Unit

Length 1,000 cm
Width 350 mm
Height 450 mm
Steel yield strength 300 N=mm2

Diameter stirrups 10 mm
Minimal concrete cover 2.5 cm
Load 50 kN
Concrete compressive strength 40 N=mm2
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