Structural Analysis of Plants Exposed to Titanium Dioxide (TiO2) Nanoparticles Eric McDaniel^{1,2}, Ivana Chen⁴, Erika Balogh^{1,2}, Yingchao Yang ^{1,3}, and Soumitra Ghoshroy^{1,2} Nano-sized material production and application have advanced rapidly in recent years and they have been used in a number of consumer products. Due to their wide scale use, various nanomaterials are expected to reach the environment and accumulate over time. This will likely create a new class of environmental pollutants and therefore, the assessment of their potential impact on plant and animal life is essential. Plants are likely to come in contact with various types of nanoparticles in the environment and this exposure may result in uptake and accumulation in various plant tissue types. A handful of recent studies have demonstrated the ability of nanoparticles to interact with plants [1]. However, the results tend to vary to a great extent and various plant species may respond differently to nanoparticles in the environment. Titanium dioxide (TiO₂) is a commonly used nanomaterial in many applications including sunscreens, paints and photocatalysis. TiO₂ in suspension has exhibited leaf growth inhibition in maize [2]. However, the environmental impacts of TiO₂ nanoparticles in plants still remain unclear. We describe here the effects of anatase TiO₂ nanoparticles (5-15nm) on three plant species, tobacco (*Nicotiana tabacum*), mustard (*Brassica juncea*) and jalapeno (*Capsicum annuum*) by electron microscopy techniques. In this study we primarily investigated the uptake of TiO₂ particles through the plant root system and subsequent response. Plants were grown from seeds in potting soil mix under controlled temperature, humidity, and light condition, then moved to the hydroponic Hoagland's Solution (pH 6.5) and maintained for 3-4 days to acclimate in the soil free environment. After acclimation, the solutions were replaced with TiO₂ nanoparticles dissolved in water at the concentrations of 0 (control), 75, 150, and 300 mg/L and the plants were maintained for 7-8 days (fig. 6). At the end of 7th or 8th day of TiO₂ exposure, plant root specimens from control and experimental groups were washed vigorously, fixed in glutaraldehyde, post-fixed in osmium tetroxide, dehydrated in ethanol, critically dried, gold sputter coated, and viewed and analyzed under a Tescan Vega-3 SBU SEM outfitted with a Thermo Scientific EDS detector. SEM and EDS analyses of roots of all three plant species treated with TiO₂ confirmed the presence of titanium on the surface of roots even after extensive washing of roots prior to fixation (fig 3, 4, 5). Structural deformities and damages of root epidermal cells in mustard plants were observed in the 300mg/L TiO₂ groups, indicating a negative impact of the nanoparticles on the plant (fig. 2). The mustard plants exposed to 75 & 150 mg/L TiO₂ showed enhanced growth indicating a possible growth stimulation triggered by TiO₂. On the contrary, tobacco and jalapeno roots exposed to TiO₂ did not show any morphological deformities indicating possible exclusion of TiO₂ by its root system or hyperaccumulation of TiO₂. The control group of roots with no TiO₂ did not exhibit any sort of structural damage (fig. 1). Therefore, mustard might be more susceptible to TiO₂ exposure than tobacco or jalapeno. Further experiments are in progress to evaluate the effect of TiO₂ at subcellular level. ¹Electron Microscopy Center, University of South Carolina, Columbia, SC 29208 USA ²Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 USA ³Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 USA ⁴Dutch Fork High School, Irmo, SC 29063 USA ## References: - 1. Sabo-Attwood T., Unrine J., Stone J. W., Murphy C. J., Ghoshroy S., Blom D., Bertsch P. M., and Newman L. A. (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (*Nicotiana xanthi*) seedlings. *Nanotoxicology* 6(4): 353-360 - 2. Asli S. and Neumann P. M. (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport *Plant, Cell and Environ*. 32(5):577–584 Fig. 1 Control mustard root tip showing no structural damage Fig. 3 Root tip epidermis showing TiO₂ clusters Fig. 5 Mid-section of TiO₂ exposed roots showing TiO₂ particle clusters on the surface, but no structural damage in tobacco and jalapeno Fig. 2 Mustard root tip ($300mg/L\ TiO_2$) showing structural damage Fig. 4 EDS spectrum showing presence of TiO₂ on root epidermis of all treatment groups Fig 6 Experimental set up for TiO₂ exposure to tobacco, mustard, and jalapeno plants