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It is well known that a module M has finite length if and only if it is semi-artinian and Noetherian or,
equivalently, semi-noetherian and artinian. Our main result shows that finite length is often achieved by just
assuming that M is semi-artinian, semi-noetherian and has finitely generated socle.
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Introduction

Throughout R is a ring with identity and all modules are unital right /^-modules. The
category of all such modules is denoted by mod-R. A module M is called semi-artinian
(or a Loewy module) if every non-zero homomorphic image of M contains a simple
submodule or, equivalently, if every non-zero homomorphic image of M has essential
socle. Dually, a module M is semi-noetherian if every non-zero submodule contains a
maximal submodule. It is well known (see, for example, [1, §11]) that a module M has
finite length if and only if it is semi-artinian and Noetherian or, equivalently, it is semi-
noetherian and Artinian. The main result of this note shows that we can often get finite
length by just assuming that M is semi-artinian, semi-noetherian and has finitely
generated socle. As a consequence of this we can obtain a recent characterization of
quasi-Frobenius rings in [9].

The ring R is called right semi-artinian (respectively right semi-noetherian) if the right
/^-module R is semi-artinian (semi-noetherian). It is well known (see, for example, [10,
Proposition 22.32]) that if R is right semi-artinian then each non-zero M in mod-K is
also semi-artinian. Chapter 22 of [10] contains further information on semi-artinian
rings and rings for which every module is semi-noetherian, therein called socular and fi-
rings respectively. The relationship between these two classes of rings is considered in
[24]. In particular [24, Theoreme 3.1] shows that any commutative semi-artinian ring is
semi-noetherian.

For any module M, E(M) will denote its injective hull. The socle of M will be
denoted by Soc(M). The second socle Soc2(M) is the submodule of M containing Soc(M)
such that Soc2(M)/Soc(M) = Soc(M/Soc(M)).
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Results

Our first lemma features in [6, Remarks (2), (3)] and in [4, Proposition 4.4 and
Corollary 4.5]. (An analogue also appears in [3, Lemmas 2.1-2.3] with the descending
chain condition on essential right ideals instead of the semi-artinian condition.)

Lemma 1. (1) Let {Rx: AeA} be a (non-empty) collection of right semi-artinian rings
and let R = Y\\Rx- Then R is right semi-artinian if and only if A is finite.

(2) Let R be a right semi-artinian right or left self-injective von Neumann regular ring.
Then R is semiprime Artinian.

In the seminal paper [5], Bass shows in his Theorem P that every left perfect ring is
right semi-artinian (see also [1, Theorem 28.4]). We now note that the converse is true
in the presence of self-injectivity.

Proposition 2. Let R be a right or left self-injective ring. Then R is left perfect if and
only if R is right semi-artinian.

Proof. Suppose that R is right semi-artinian and let J denote the Jacobson radical of
R. Then J is left T-nilpotent [1, Remark 28.5] and R/J is right or left self-injective von
Neumann regular [10, Theorem 19.27]. By Lemma 1(2) and [1, Theorem 28.4], R is left
perfect. •

Corollary 3. Let R be a right or left self-injective ring. Suppose that R is right
semi-artinian. Then R is left semi-noetherian.

Proof. By [1, Theorem 28.4]. •

The converse to Corollary 3 is not true in general. To see this, let K be any field and
/? = P["=!/<„, where Kn = K for each n ^ l . Then R is a commutative self-injective von
Neumann regular ring, so that R is semi-noetherian (being a K-ring), by [20, Theorem
2.1]. However, R is not semi-artinian by Lemma 1(1).

A well known open question in ring theory asks whether a right and left perfect right
self-injective ring R must be quasi-Frobenius. In [9] this was answered affirmatively
under the additional assumption that the second right socle Soc2(R) is finitely generated.
Our next corollary extends this result.

Corollary 4. Let R be a right and left semi-artinian right self-injective ring such that
SOC2{RR) is a finitely generated right ideal. Then R is a quasi-Frobenius ring.

Proof. By Proposition 2 and [9, Theorem]. •

We aim to generalise Corollary 4. First we prove the main result of this note. Recall
that a module is finitely cogenerated if its socle is essential and finitely generated.
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Theorem 5. Let R be a ring satisfying the property:

(*) Soc2(E(l/)) is finitely generated for each simple right R-module U.

Then a right R-module M has finite length if and only if M is semi-artinian, semi-
noetherian and Soc(M) is finitely generated.

Proof. The necessity is clear. Conversely, suppose that M is semi-artinian, semi-
noetherian and Soc(M) is finitely generated. Suppose that M is not Artinian. By Zorn's
Lemma there exists a submodule P of M minimal in the collection of submodules L of
M such that M/L is not finitely cogenerated (see [1, Proposition 10.10]).

Because M is semi-artinian, M/P has essential socle. Thus Soc(M/P) is not finitely
generated. Note that P / 0 and, because M is semi-noetherian, P contains a maximal
submodule Q. By the choice of P, M/Q is finitely cogenerated and hence Soc(M/g) is
finitely generated. Thus, without loss of generality we can suppose that 2 = 0. In this
case, Soc2(M) is not finitely generated, because Soc(M/P) is not finitely generated.

Let Sj = Soc(M). There exists a positive integer n and simple submodules Ut for
l g i ^ n of M such that S, = Ut © ••• © V„. Then, without loss of generality, M is a
submodule of X = E(Ul)® ••• © E(l/n) and so M/Sl is a submodule of X/S^
[E(l/1)/C/1] © • •• © [E(C/n)/l/„]. By property (*), Soc2(X) is finitely generated and hence
Soc2(M)/Si is also finitely generated. It follows that Soc2(M) is finitely generated, a
contradiction. Thus M is Artinian and so has finite length. •

Our theorem has the following corollaries.

Corollary 6. Let R be a ring for which there exists an injective cogenerator X for
mod-R such that Soc2(X) is finitely generated. Then a right R-module M has finite length
if and only if M is semi-artinian, semi-noetherian and Soc(M) is finitely generated.

Proof. If X is an injective cogenerator for mod-i? such that the socle of X/So^X) is
finitely generated then Soc2(E(l/)) is finitely generated for each simple right R-module
V. •

Corollary 7. Let R be a ring and M be an injective cogenerator for mod-R. Then M
has finite length if and only if M is semi-artinian, semi-noetherian and Soc2(M) is finitely
generated.

Proof. The necessity is clear. Conversely, suppose that M is semi-artinian, semi-
noetherian and Soc2(M) is finitely generated. Clearly M/Soc(M) has finite Goldie
dimension n (say). Suppose that Soc(Af) is not finitely generated. Then

Soc( M) = Si@---@Sn+l

for some non-finitely generated submodules S,(l _ i : g n + 1). Thus
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and hence

It follows that there exists 1 g ; g n + 1 such that E(Sj) - Sj ̂  Soc2(M), which is finitely
generated. Being a direct summand of Soc2(M), Sj is finitely generated, a contradiction.
It follows that Soc(A/) is finitely generated. By the theorem, M has finite length. •

We note that Corollary 4 above is now a consequence of Corollary 7 (taking M = R),
Corollary 3 and the well-known fact that any right self-injective right Artinian ring is
quasi-Frobenius.

Remarks and examples

(1). Let /? = Z, the ring of integers. Then
(i) the R-module R is Noetherian (whence semi-noetherian) with zero socle but is

not Artinian,
(ii) for any prime p, the Prufer p-group is an Artinian (whence semi-artinian) R-

module with simple socle but is not Noetherian, and
(iii) any non-finitely generated semisimple R-module is semi-artinian and semi-

noetherian but does not have finite length.
Thus is is not clear how the theorem can be improved.

(2). Following J. P. Jans [16], a ring R is called right co-Noetherian if every factor
module of every finite cogenerated right R-module is again finitely cogenerated or,
equivalently, every finitely cogenerated right /^-module is Artinian. As a consequence of
results of P. Vamos [26], R is right co-Noetherian if and only if each simple right R-
module has an Artinian injective hull. Thus any right co-Noetherian ring R satisfies
property (*) of Theorem 5. In what follows we give some indication of the ubiquity of
co-Noetherian rings.

Firstly, Vamos \loc. cit] has shown that a commutative ring is co-Noetherian if and
only if each localization RM is Noetherian for all maximal ideals M of R. Also, trivially,
every right V-ring is right co-Noetherian.

Theorem 2 of Jategaonkar [17] states that the injective hull of a simple module over
a Noetherian P. I. ring is an Artinian module. Consequently any Noetherian P. I. ring is
co-Noetherian. On the other hand, Example 7.14 of Chatters and Hajarnavis [7] shows
that there are Artinian rings R which do not satisfy property (*) of Theorem 5. More
specifically, let D be a division ring with a subdivision ring K such that D is finite-
dimensional as a left vector space over K but not as a right vector space over K. Let
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Then R is left and right Artinian. Moreover M = Den + De12 is a right K-module which
is an essential extension of the simple right R-module N = Del2 and the /?-submodules
of M/N correspond to the right /C-subspaces of D so that M/N is not Artinian. It
follows that the socle of E(N)/N is not finitely generated.

Gupta and Varadarajan have shown [15, Proposition 2.14] that a ring R is right co-
Noetherian if and only if there is a cogenerator for mod-/? which is a direct sum of
Artinian modules. They also consider when the endomorphism ring of a finitely
generated quasi-projective module is left co-Noetherian. Some of their arguments have
been generalised by Garcia Hernandez and Gomez Pardo [14].

From Theorem 4 of S. Singh [25] it follows that any hereditary Noetherian prime
ring is also co-Noetherian.

Theorem A of I. Musson [22] implies that if R is the group ring S[G~\ where G is a
polycyclic-by-finite group and the coefficient ring S is either Z or an absolute field then
R is co-Noetherian. Also the Main Theorem of [23] shows that if K is a non-absolute
field and G is a polycyclic-by-finite group then /C[G] is co-Noetherian if and only if G is
abelian-by-finite. In fact, Theorem 3.1 of [23] provides another example of a Noetherian
ring which does not satisfy Theorem 5's property (*) by proving that if K is a non-
absolute field and G is a nilpotent-by-finite group which is not abelian-by-finite then
there is a simple K[G]-module V such that Soc(E(K)/K) is not finitely generated.

(3). Following Vamos [27], a ring R is defined to be (right) classical if E(K) is linearly
compact for each simple right R-module V. An account of linearly compact modules can
be found in the recent monograph by Xue [28]. In particular, Proposition 3.4 there
shows that linearly compact modules have finite Goldie dimension. Consequently,
classical rings satisfy property (*) of Theorem 5. Moreover, by Lemma 3.1 of [28],
every Artinian module is linearly compact and so right co-Noetherian rings are classical.
In view of this, we now give a brief discussion of classical rings.

From Vamos [loc. cit] it follows, using results of Matlis [18] and Muller [21]
respectively, that almost maximal valuation rings are classical and any commutative
ring with a Morita duality is also classical. Indeed, Pham Ngoc Anh [2] has recently
characterized commutative classical rings as being those rings R for which the
completion of the localization RM of R at each maximal ideal M has a Morita duality.

Vamos [loc. cit] defines an R-module M to be subdirectly irreducible if E(M)^E(K)
for some simple R-module V or, equivalently, if M has a simple essential socle. He also
defines a commutative ring R to be a SISl ring if, for each ideal / or R, the factor ring
R/I is self-injective if the R-module R/I is subdirectly irreducible. He proves [27,
Proposition 3.2] that a commutative classical ring is SISI but gives the following
example R to show that the converse is false. (A similar example appears in Section 1.11
of C. Menini and A. Orsatti [19].)

Let F be a field, let P = F[xl,x2,x3,...'] be the polynomial ring over F in a countable
number of indeterminates, let / be the ideal of P generated by the set of products {x.oc,-:
i ^ l , j ^ l } , and let R = P/I. Then R is a local ring and its maximal ideal M is a
countable direct sum of copies of R/M^F. Moreover E = E{R/M)/(R/M) is an infinite
direct sum of copies of R/M (see [27] for details). Thus R is not classical and does not
satisfy Theorem 5's property (*).
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For further information about SISI rings see [11], [12].
(4). We now give an example of a commutative ring R which satisfies property (*)

but is not classical. The ring in question featured in [8] (for other purposes) and we
follow its presentation given there.

Let A be a discrete valuation ring with maximal ideal I = At and quotient field K.
Moreover assume that A is countable, so that A is not complete in the /-adic topology.
Let M denote the /1-module K/A and, for each positive integer n, let Mn denote the
/1-submodule AC/A of M where

At~" = {at~n: aeA} = {utk: u is a unit in A, keZ, k^ -n}.

Then M is the direct union \J™=iMn and any proper nonzero. /1-submodule of M is Mn

for some n ̂  1.
Now let R = A © M be the trivial extension of the ring A by its module M. Then the

nonzero ideals of the ring R properly contained in M are precisely the /1-submodules
Mn for each n while the other nonzero ideals of R each contain M and, apart from M
and R, are of the form Rt" = Atn® M, with M = f)™=1Rt". In fact the ideals of R are
linearly ordered, forming the following chain:

0 c M , c M 2 c - <=Mna - c M c - • cRtnc •

Thus Mt is, up to isomorphism, the unique simple i?-module and
Since M is a faithful injective /4-module, it follows from the discussion on page 22 of

[13] that E(R) a EndA(M) © M. Moreover, by arguments in [8], EndA(M)^A, where A
is the /-adic completion of A. Since A is countable and f)™=iI"=0, we can regard A as
properly embedded in A. It follows that R is not self-injective and has A® M as
injective hull. Since (A © M)/Mt ~A © M as K-modules and the latter has M, as a
unique minimal submodule, it follows that E(M1)/M1 has finitely generated socle. Hence
R satisfies property ( •).

It remains to see that R is not classical. For this, consider the countable set of
congruences in R given by

jx= £

Then, for any fixed n, setting x = £ l = 1r* gives a simultaneous solution to the first n of
these congruences. However there is no simultaneous solution to the complete set of
congruences. Hence R is not linearly compact. Thus E(i?) = E(M1) is not a linearly
compact /^-module and so, since M, is the only simple R-module up to isomorphism, it
follows that R is not classical.

https://doi.org/10.1017/S0013091500022999 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022999


ON SEMI-ARTINIAN MODULES AND INJECTIVITY CONDITIONS 269

In fact, R is not SISI. To see this, note that the K-module R is subdirectly irreducible
yet R is not a self-injective ring, and so, with / as the zero ideal, R fails to satisfy the
definition of an SISI ring.

(5). From the above remarks we have the following strict implications for any ring R:

R is co-Noetherian=>i? is classical=>i? has property (•).
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