PIETSCH INTEGRAL OPERATORS DEFINED ON INJECTIVE TENSOR PRODUCTS OF SPACES AND APPLICATIONS

by DUMITRU POPA

(Received 30 January, 1996)

Abstract. For X and Y Banach spaces, let $X \otimes_{\epsilon} Y$, be the injective tensor product. If Z is also a Banach space and $U \in L(X \otimes_{\epsilon} Y, Z)$ we consider the operator

$$U^{\#}:X\rightarrow L(Y,Z), \qquad (U^{\#}x)(y)=U(x\otimes y), x\in X, y\in Y.$$

We prove that if $U \in PI(X \otimes_{\epsilon} Y, Z)$, then $U^{\#} \in I(X, PI(Y, Z))$. This result is then applied in the case of operators defined on the space of all X-valued continuous functions on the compact Hausdorff space T. We obtain also an affirmative answer to a problem of J. Diestel and J. J. Uhl about the RNP property for the space of all nuclear operators; namely if X^* and Y have the RNP and Y can be complemented in its bidual, then N(X, Y) has the RNP.

An operator $U \in L(X, Y)$ is called a *Pietsch integral operator* if there exists a Y-valued vector measure with bounded variation on the Borel subsets of (U_{X^*}, weak^*) such that: $U(x) = \int_{U_{X^*}} x^*(x) dG(x^*)$ for each $x \in X$ and the Pietsch integral norm of U is: $||U||_{pint} = \inf |G|(U_{X^*})$. It is well known that the class of all Pietsch integral operators with the Pietsch integral norm is a normed ideal of operators in the sense of A. Pietsch, which in the sequel will be denoted by $(PI, || ||_{pint})$. Also $U \in PI(X, Y)$ if and only if for each $\epsilon > 0$, U admits a factorisation of the form

where $V \in I(X, L_1(\mu)), S \in L(L_1(\mu), Y)$ and $||V||_{int} \le ||U||_{pint} + \epsilon, ||S|| \le 1$; see [2] for details.

For the definition of integral operator, absolutely summing operator, nuclear operator and their basic properties see [2] or [4]. By $I(\ ,\)$, $\|\ \|_{int}$, (resp. $(As,\ \|\ \|_{as})$, $(N,\|\ \|_{nuc})$ we denote the normed ideal of all integral operators (resp. absolutely summing operators, nuclear operators). For all notations and notions used and not defined we refer the reader to [2]. Given $U \in L(X \otimes_{\epsilon} Y, Z)$ we consider the operator $U^{\#}: X \to L(Y, Z)$ defined by $(U^{\#}x)(y) = U(x \otimes y)$, $x \in X$, $y \in Y$, that is evidently linear and continuous. Also for a given normed ideal of operators \Im and $U \in \Im(X \otimes_{\epsilon} Y, Z)$ we have $U^{\#}x \in \Im(Y, Z)$, for any $x \in X$. Indeed, if $x \in X$, let $V_x \in L(Y, X \otimes_{\epsilon} Y)$ be the operator $V_x(y) = x \otimes y$, $y \in Y$. Since $U^{\#}x = UV_x$, by the ideal property of \Im we obtain $U^{\#}x \in \Im(Y, Z)$. Hence for a normed ideal of operators \Im and $U \in L(X \otimes_{\epsilon} Y, Z)$ we can consider the assertions

- (a) $U \in \mathfrak{I}(X \otimes_{\epsilon} Y, Z)$,
- (b) $U^{\#} \in \mathfrak{I}(X,\mathfrak{I}(Y,Z))$.

In the sequel for the normed ideal of Pietsch integral operators we study the connection between (a) and (b); see also [3], [6], [7] for corresponding work on other normed ideals.

Glasgow Math. J. 39 (1997) 227-230.

THEOREM 1. If $U \in PI(X \otimes_{\epsilon} Y, Z)$, then $U^{\#} \in I(X, PI(Y, Z))$ and $||U||_{int} \leq ||U||_{pint}$

Proof. We make first a remark. If W can be complemented in its bidual by a norm one projection, then $I(X \otimes_{\epsilon} Y, W) = I(X, I(Y, W))$, which follows easily using Theorem 2.1 from [3]. Now if $U \in PI(X \otimes_{\epsilon} Y, Z)$, then for each fixed $\epsilon > 0$, U admits a factorisation

$$X \otimes_{\epsilon} Y \xrightarrow{U} Z$$

$$\downarrow \qquad \qquad \downarrow S$$

$$L_1(\mu)$$

where $V \in I(X \otimes_{\epsilon} Y, L_1(\mu))$, $S \in L(L_1(\mu), Z)$ and $\|V\|_{int} \leq \|U\|_{pint} + \epsilon$, $\|S\| \leq 1$. (Here μ is a regular Borel measure on some compact Hausdorff space Ω .). See [2, Theorem 11, p. 168]. Using the above remark for $W = L_1(\mu)$ we obtain that $V^{\#} \in I(X, I(Y, L_1(\mu)))$ and $\|V^{\#}\|_{int} = \|V\|_{int}$. However Grothendieck's theorem shows that $I(., L_1(\mu)) = PI(., L_1(\mu))$ and $\|V^{\#}\|_{int} = \|V\|_{pint}$, (See [2, Theorem p. 558].) Thus we have the factorisation

$$X \xrightarrow{U^{\#}} PI(Y, Z)$$

$$V^{\#} \searrow_{S^{\#}}$$

$$PI(Y, L_{1}(\mu))$$

where $S^{\#}(A) = SA$, $A \in PI(Y, L_1(\mu))$ and, by the ideal property of the class of all integral operators, we obtain $U^{\#} \in I(X, PI(Y, Z))$ and $\|U^{\#}\|_{int} \le \|V^{\#}\|_{int} \|S^{\#}\| \le \|V^{\#}\|_{int} \|S\| \le \|V\|_{int}$.

Thus
$$||U^{\#}||_{int} \le ||U||_{pint} + \epsilon$$
, hence $||U^{\#}||_{int} \le ||U||_{pint}$

In the sequel, by T we denote a compact Hausdorff space and C(T,X) will be the Banach space of all X-valued continuous functions on T under the supremum norm. For $X = \mathbf{R}$ (or \mathbf{C}) we note that C(T,X) = C(T). By Σ we denote the σ -field of all Borel subsets of T. It is well known [2, p. 182] that any $U \in L(C(T,X),Y)$ has a representing finitely additive vector measure $G: \Sigma \to L(X,Y^{**})$. For $U \in L(C(T,X),Y)$, we consider the operator

$$U^{\#}\colon C(T)\to L(X,Y), \qquad (U^{\#}\varphi)(x)=U(\varphi x), \qquad \varphi\in C(T), \qquad x\in X.$$

Since $C(T, X) = C(T) \otimes_{\epsilon} X$, from Theorem 1 we obtain the following corollary.

COROLLARY 2. Let $U \in L(C(T, X), Y)$, $U^{\#}$ be as above and G be the representing measure of U. We consider the following assertions:

- (a) $U \in PI(C(T,X),Y)$;
- (b) $U^{\#}\varphi \in PI(X,Y)$ for each $\varphi \in C(T)$ and $U^{\#}\in PI(C(T),PI(X,Y))$;
- (c) $G(E) \in PI(X, Y)$ for each $E \in \Sigma$ and $G: \Sigma \rightarrow PI(X, Y)$ has bounded variation with respect to the Pietsch integral norm on PI(X, Y).

Then we have $(a) \Rightarrow (b) \Rightarrow (c)$ and, in this case the following inequality holds: $||U^{\#}||_{\text{pint}} = |G|_{\text{pint}}(T) \le ||U||_{\text{pint}}$.

Proof. For the implication (a) \Rightarrow (b) we use Theorem 1 and the well known facts PI(C(T),.) = As(C(T),.) and $\| \|_{pint} = \| \|_{as}$. See Theorem 12 of [2, p. 169]. For the

implication (b) \Rightarrow (c) we again use Theorem 12 of [2, p. 69] and the obvious fact that the representing measure of U in the hypothesis of (b) coincides with that of U. The relations: $||U^{\#}||_{pint} = |G|_{pint} (T) \le ||U||_{pint}$ are also true. In this way arises the following conjecture.

Conjecture 3. If $U \in L(C(T, X), Y)$ has the representing measure G which satisfies the conditions

- (1) $G(E) \in PI(X, Y)$ for each $E \in \Sigma$ and
- (2) $G: \Sigma \to PI(X, Y)$ has bounded variation with respect to the Pietsch integral norm,

then it follows that $U \in PI(C(T, X), Y)$.

If Y can be complemented in its bidual, then it is well known that we have I(., Y) = PI(., Y) Corollary 10 of [2, p. 235] and hence using the result of P. Saab from [6] we obtain that this with supplementary hypothesis about Y Conjecture 3 is true. In the sequel we describe the Question 5 from the paper of P. Saab [6] as the Saab conjecture.

Saab conjecture. If Y has the RNP and $U \in L(C(T, X), Y)$ has the representing measure G which satisfies the conditions

- (1) $G(E) \in N(X, Y)$ for each $E \in \Sigma$ and
- (2) $G: \Sigma \to N(X, Y)$ has bounded variation with respect to the nuclear norm, it follows that $U \in N(C(T, X), Y)$.

Recall also the following open problem of Diestel and Uhl. See [2, p. 258].

Diestel-Uhl conjecture. If X^* and Y have the RNP, then the space of all nuclear operators from X to Y also has the RNP.

The following theorem establishes a connection between these problems.

THEOREM 4. Conjecture 3 is true implies Saab conjecture is true implies Diestel-Uhl conjecture is true.

Proof. Conjecture 3 is true implies Saab conjecture is true; it is obvious since, if Y has the RNP, then PI(., Y) = N(., Y) and $\| \|_{pint} = \| \|_{nuc}$. See Theorem 2 of [2, p. 175].)

Saab conjecture is true implies Diestel-Uhl conjecture is true. Let X and Y be Banach spaces such that X^* and Y have the RNP. Let Σ be the Borel subsets of [0,1] and $G \in rcabv(\Sigma, N(X, Y), \| \|_{nuc})$. Let $U:C([0,1], X) \to Y$ be the operator $U(f) = \int_0^1 f dG$, $f \in C(T, X)$. Then U is a linear and continuous operator and G is its representing measure.

Since Y has the RNP and the Saab conjecture is true then, U will be a nuclear operator. Since X^* has the RNP from [5, Theorem 1] or [7, Theorem 6] we obtain that $G: \Sigma \to (N(X, Y), \| \|_{nuc})$ has a Bochner integrable derivative $g \in L_1(\mu, N(X, Y), \| \|_{nuc})$, where $\mu = |G|_{nuc}$. Thus N(X, Y) has the RNP.

In [2, Theorem 5 p. 249] and [1, Theorem 7 p. 119] are given positive answers to the Diestel-Uhl conjecture, with supplementary hypotheses about X or Y. Since as we have seen the Conjecture 3 is true when Y can be complemented in its bidual from Theorem 4 we obtain the following corollary which is another positive answer to the Diestel-Uhl conjecture different from those given in [1] and [2].

COROLLARY 5. If X and Y are Banach spaces such that X^* and Y have the RNP and Y can be complemented in its bidual, then N(X, Y) also has the RNP.

DUMITRU POPA

REFERENCES

- 1. K. T. Andrews, The Radon Nikodym property for spaces of nuclear operators, J. London Math. Soc. 28 (1983), 113-122.
 - 2. J. Diestel and J. J. Uhl, Vector measures, Math Surveys No 15, (A.M.S., 1977).
- 3. S. Montgomery-Smith and Paulette Saab, p-summing operators on injective tensor products of spaces, Proc. Royal Soc. Edinburgh Sect. 120 (1992), 283-296.
 - 4. A. Pietsch, Operator ideals (Veb. Deutscher Verlag der Wiss., Berlin, 1978).
 - 5. D. Popa, Nuclear operators in C(T, X), Studii si Cercet. Mat. 42(1) (1990), 47-50.
- 6. P. Saab, Integral operators on spaces of continuous vector valued functions, *Proc. Amer. Math. Soc.* 111 (1991) 1003-1013.
- 7. P. Saab and B. Smith, Nuclear operators on spaces of continuous vector valued functions, Glasgow Math., 33 (1991), 223-230.
- 8. Charles Swartz, Absolutely summing and dominated operators on spaces of vector-valued continuous functions, *Trans. Amer. Math. Soc.* 179 (1973), 123–131.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CONSTANTA
8700 CONSTANTA
ROMANIA