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Abstract. For X and Y Banach spaces, let X®, Y, be the injective tensor product. If
Z is also a Banach space and U € L(X®, Y, Z) we consider the operator

U: X L(Y,Z), WU*X)(y)=Ux®y),xeX,yecY.

We prove that if Ue PI(X®,Y, Z), then U* € I(X, PI(Y,Z)). This result is then
applied in the case of operators defined on the space of all X-valued continuous functions
on the compact Hausdorff space 7. We obtain also an affirmative answer to a problem of
J. Diestel and J. J. Uhl about the RNP property for the space of all nuclear operators;
namely if X* and Y have the RNP and Y can be complemented in its bidual, then
N(X,Y) has the RNP.

An operator U e L(X,Y) is called a Pietsch integral operator if there exists a
Y-valued vector measure with bounded variation on the Borel subsets of (Uy., weak*)
such that: U(x) = fy,. x*(x) dG(x*) for each x € X and the Pietsch integral norm of U is:
N Ullpine = inf |G| (Ux.). It is well known that the class of all Pietsch integral operators with
the Pietsch integral norm is a normed ideal of operators in the sense of A. Pietsch, which
in the sequel will be denoted by (PI, || ||,:.)- Also U e PI(X,Y) if and only if for each
€ >0, U admits a factorisation of the form

Xty

N
Li(p)

where V e I(X,Li(n)), S e L(Ly(u),Y) and [|[V|m=Ullpinc + €, IIS| =1; see [2] for
details.

For the definition of integral operator, absolutely summing operator, nuclear
operator and their basic properties see [2] or [4]. By I( ', ), | i (resp. (As, | llas)s
(N, || llaue) we denote the normed ideal of all integral operators (resp. absolutely
summing operators, nuclear operators). For all notations and notions used and not
defined we refer the reader to [2]. Given U e L(X®,Y,Z) we consider the operator
U*:X — L(Y, Z) defined by (U*x)(y)=U(x®y), x € X, y € Y, that is evidently linear
and continuous. Also for a given normed ideal of operators J and U € J(X®. Y, Z) we
have U*x € J(Y, Z), for any x € X. Indeed, if xe X, let V, e L(Y,X®,.Y) be the
operator V,(y)=x®y, y e Y. Since U*x = UV,, by the ideal property of & we obtain
U*x e (Y, Z). Hence for a normed ideal of operators & and U € L(X®, Y, Z) we can
consider the assertions

(a) Ue3(X®.Y,2),

(b) U* e 3(X, (Y, Z)).

In the sequel for the normed ideal of Pietsch integral operators we study the
connection between (a) and (b); see also [3], [6], [7] for corresponding work on other
normed ideals.
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Tueorem 1. If U € PI(X®. Y, Z), then U* € I(X, PI(Y, Z)) and |Uliu=< | Ul pine

Proof. We make first a remark. If W can be complemented in its bidual by a norm
one projection, then I(X®, Y, W) =I(X, I(Y, W)), which follows easily using Theorem
2.1 from [3]. Now if U € PI(X®.Y, Z), then for each fixed € >0, U admits a factorisation

X®. Yy 45 Z

N A
Ly(p)

where V & I(X®, Y, Ly(n)), S € L(Ly(1), Z) and |V [l =< |Ullpim + €, [|S]| < 1. (Here p
is a regular Borel measure on some compact Hausdorff space Q.). See [2, Theorem 11, p.
168). Using the above remark for W = L,(u) we obtain that V* e I(X, I(Y, L,(x))) and
IV *Hine = |V || ;. However Grothendieck’s theorem shows that I(., L,(n)) = PI(., Ly(w))
and || lzw =1l llpine» (See [2, Theorem p. 558] ) Thus we have the factorisation

Y, PI(Y,Z)

\/

PI(Y, Li(n))

where S*(A) = SA, A € PI(Y, Li(1)) and, by the ideal property of the class of all integral
operators, we obtain U* e I(X, PI(Y, Z)) and |U* |l =< IV *lline IS = IV*line IS] =
IV e

Thus | U* [l < | Ul pine + €, hence U line < 1U | pine

In the sequel, by T we denote a compact Hausdorff space and C(T, X) will be the
Banach space of all X-valued continuous functions on 7 under the supremum norm. For
X =R (or C) we note that C(T, X)=C(T). By £ we denote the o-field of all Borel
subsets of T. It is well known [2, p. 182] that any U e L(C(T, X), Y) has a representing
finitely additive vector measure G:Z— L(X, Y**). For U € L(C(T, X), Y), we consider
the operator

U*:C(T)-»L(X,Y), (U*e)x)=U(ex), ¢eC(T), xeX
Since C(T, X)=C(T)®, X, from Theorem 1 we obtain the following corollary.

CoROLLARY 2. Let U e L(C(T, X),Y)), U* be as above and G be the representing
measure of U. We consider the following assertions:

(a) UePI(C(T,X),Y),

(b) U*¢ e PI(X,Y) for each ¢ € C(T) and U* € PI(C(T), PI(X,Y));

(¢) G(E)e PI(X,Y) for each E € X and G:Z— PI(X,Y) has bounded variation
with respect to the Pietsch integral norm on PI(X,Y).

Then we have (a)=>(b)=(c) and, in this case the following inequality holds:
" U# llpim = |G|pim(T) = ” U”pint-

Proof. For the implication (a)= (b) we use Theorem 1 and the well known facts
PI(C(T),.)= As(C(T),.) and || llpim =1 llas- See Theorem 12 of [2, p. 169]. For the
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implication (b) = (c) we again use Theorem 12 of [2, p. 69] and the obvious fact that the
representing measure of U in the hypothesis of (b) coincides with that of U. The relations:
1 U* | pire = |Glpine (T) = ||U|| pine are also true. In this way arises the following conjecture.

Conjecture 3. If U e L(C(T, X),Y) has the representing measure G which satisfies
the conditions

(1) G(F)e PI(X,Y) for each E € X and

(2) G:Z—> PI(X,Y) has bounded variation with respect to the Pietsch integral
norm,
then it follows that U e PI(C(T, X), Y).

If Y can be complemented in its bidual, then it is well known that we have
I(.,Y)=PI(., Y) Corollary 10 of [2, p. 235] and hence using the result of P. Saab from [6]
we obtain that this with supplementary hypothesis about Y Conjecture 3 is true. In the
sequel we describe the Question S from the paper of P. Saab [6] as the Saab conjecture.

Saab conjecture. If Y has the RNP and U e L(C(T,X),Y) has the representing
measure G which satisfies the conditions

(1) G(E) e N(X,Y) for each E € Z and

(2) G:Z—- N(X,Y) has bounded variation with respect to the nuclear norm,
it follows that U e N(C(T, X), Y).

Recall also the following open problem of Diestel and Uhl. See [2, p. 258].

Diestel-Uhl conjecture. If X* and Y have the RNP, then the space of all nuclear
operators from X to Y also has the RNP.

The following theorem establishes a connection between these problems.

THEOREM 4. Conjecture 3 is true implies Saab conjecture is true implies Diestel-Uhl
conjecture is true.

Proof. Conjecture 3 is true implies Saab conjecture is true; it is obvious since, if Y
has the RNP, then PI(., Y)=N(,Y) and l| llpm = | llnue See Theorem 2 of [2, p. 175].)

Saab conjecture is true implies Diestel-Uhl conjecture is true. Let X and Y be Banach
spaces such that X* and Y have the RNP. Let = be the Borel subsets of [0,1] and
G e rcabu(Z,N(X,Y), | llnue)- Let U:C([0,1], X)— Y be the operator U(f) = [{fdG,
feC(T,X). Then U is a linear and continuous operator and G is its representing
measure.

Since Y has the RNP and the Saab conjecture is true then, U will be a nuclear
operator. Since X* has the RNP from [5, Theorem 1] or [7, Theorem 6] we obtain that
G:Z—-(NX,Y), || lmc) has a Bochner integrable derivative g € Li(u, N(X,Y), || llnuc)s
where p = |G|, Thus N(X, Y) has the RNP.

In [2, Theorem S p. 249] and [1, Theorem 7 p. 119] are given positive answers to the
Diestel-Uhl conjecture, with supplementary hypotheses about X or Y. Since as we have
seen the Conjecture 3 is true when Y can be complemented in its bidual from Theorem 4
we obtain the following corollary which is another positive answer to the Diestel-Uhl
conjecture different from those given in [1} and [2].

CoroLLARY 5. If X and Y are Banach spaces such that X* and Y have the RNP and Y
can be complemented in its bidual, then N(X,Y) also has the RNP.
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