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Abstract

Let n be a positive integer and n = {1, 2, . . . , n}. A conjecture arising from certain polynomial near-ring
codes states that if k ≥ 1 and a1, a2, . . . , ak are distinct positive integers, then the symmetric difference
a1n Δ a2n Δ · · · Δ akn contains at least n elements. Here, ain = {ai, 2ai, . . . , nai} for each i. We prove this
conjecture for arbitrary n and for k = 1, 2, 3.
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Keywords and phrases: symmetric difference, polynomial codes.

1. Introduction

Although the conjecture mentioned in the title originated through its connections with
coding theory (see [4] regarding minimum distances of certain linear codes defined via
polynomial near-rings), we intend to discuss it here from a more informal and general
viewpoint, without its connections to coding theory.

Imagine three people with the numbers 1, 2 and 3 on their respective T-shirts
entering an empty room. After a minute, three other people with the numbers 2, 4
and 6 on their T-shirts enter the room. There are now two people with the number
2, and these two decide to leave the room, leaving the four people with numbers
1, 3, 4 and 6 behind in the room. After another minute, three further people, with
the numbers 3, 6 and 9 on their T-shirts enter the room, and the same procedure is
followed: the two with number 3, as well as the two with number 6, leave the room,
and the three without matching numbers (1, 4 and 9) stay in the room. Then three
more people with the numbers 4, 8 and 12 enter the room, and so on. The conjecture
is that there will always be at least three people left in the room. Note that we could
reformulate this in terms of symmetric differences of sets, namely, the cardinality of
{1, 2, 3}Δ {2, 4, 6}Δ · · ·Δ {k, 2k, 3k} is at least 3 for any positive integer k. This result
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is fairly easy to prove. A slightly more general form of this conjecture is also not too
difficult to establish: the cardinality of

{a1, 2a1, 3a1}Δ {a2, 2a2, 3a2}Δ · · ·Δ {ak, 2ak, 3ak}

is at least three for any sequence a1 < a2 < · · · < ak of positive integers.
The most general form of the conjecture is the following assertion.

GENERAL CONJECTURE. For any positive integer n, the cardinality of the set

{a1, 2a1, . . . , na1}Δ {a2, 2a2, . . . , na2}Δ · · ·Δ {ak, 2ak, . . . , nak}

is at least n for any sequence a1 < a2 < · · · < ak of positive integers.

Some partial results have been established. For example, the conjecture is known to
be true when {a1, a2, . . . , ak} = {1, 2, . . . , k} (see [2, 3]). We note that the reviewer of the
article [3] (Mathematical Reviews, #MR2862558) wrote ‘. . . and therefore establishes
the value of the distance of the aforementioned code’. This is not true as the minimal
distance of the code is only determined when the general conjecture is proved. The
general conjecture is also known to be true for all n with 1 ≤ n ≤ 6 (see [4]). There are
also combinatorial problems motivated by the conjecture (see [1]).

The aim of this paper is to show that the general conjecture is true for all positive
integers n and for all a1, a2, . . . , ak, where 1 ≤ k ≤ 3.

Although the general consensus is that the conjecture should be true, no proof
is known. One easily senses that the cardinality of such symmetric differences can
get as large as possible. In fact, this is true. As shown in [2], when {a1, a2, . . . , ak} =
{1, 2, . . . , k}, the resulting cardinality of the symmetric difference is at least max{k, n}.
As an extreme case, when {a1, a2, . . . , ak} = {1, n + 1, . . . , kn + 1}, the cardinality of the
symmetric difference is kn, since no cancellations occur. However, it is also true that
for any fixed n ≥ 2 and for any r ≥ 0, one can choose a1 < a2 < · · · < ak, where k > r,
such that the cardinality of

{a1, 2a1, . . . , na1}Δ {a2, 2a2, . . . , na2}Δ · · ·Δ {ak, 2ak, . . . , nak}

is exactly n. A proof of this fact will be given in the last section. One realises from these
facts that there can be no straightforward way to approach the problem. For example,
induction may not work on the general situation. Some new ideas are needed.

We hope that the material presented here will spark interest in the problem so that
more, if not all, cases will be proved.

2. Terminology

To begin with, we establish some notation and terminology. For any positive integer
n, put n = {1, 2, . . . , n}. For positive integers a1 < a2 < · · · < ak, where k ≥ 1, we con-
sider the symmetric difference of the sets ain = {ai, 2ai, . . . , nai}, i = 1, 2, . . . , k, that is,
Δk

i=1ain = a1nΔa2nΔ · · ·Δakn. Throughout the article, the k integers a1, a2, . . . , ak will
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be referred to as the multipliers. By using standard counting techniques based on the
inclusion–exclusion principle, it follows that the cardinality of Δk

i=1ain is given by

ξn,k(a1, a2, . . . , ak) =
k∑

r=1

∑
1≤i1<i2<···<ir≤k

(−1)r−12r−1
⌊ ai1 · n
[ai1 , ai2 , . . . , air ]

⌋
. (2.1)

Here, and throughout the rest of our discussion, we use [x, y, z, . . .] for the least
common multiple of the integers x, y, z, . . . . Likewise, we use (x, y, z, . . .) for the
greatest common divisor of x, y, z, . . . .

The conjecture asserts that ξn,k(a1, a2, . . . , ak) ≥ n for any n ≥ 1 and any sequence
a1 < a2 < · · · < ak of k multipliers, for any k ≥ 1. Our aim is to prove this conjecture
for the cases k = 1, 2, 3.

3. The cases k = 1 and k = 2

The conjecture is trivially true when k = 1, since ξn,1(a1) = n, which is the
cardinality of a1n = {a1, 2a1, . . . , na1}.

For k = 2, consider the multipliers a1 < a2. Since a1 < a2 ≤ [a1, a2], and since
a1 | [a1, a2], we have [a1, a2] ≥ 2a1. So, a1n/[a1, a2] ≤ n/2, from which it follows that

ξn,2(a1, a2) = 2n − 2
⌊ a1 · n
[a1, a2]

⌋
≥ 2n − 2

⌊n
2

⌋
≥ n,

since �n/2� ≤ n/2.

4. The case k = 3

The conjecture is known to be true for 1 ≤ n ≤ 6 [4, Corollary 2]. Hence, for the
remainder of this paper, we will assume that n ≥ 7. To avoid unnecessary subscripts,
we will simply denote the multipliers a1 < a2 < a3 by a < b < c in this section.
Furthermore, since a = 1 does not have any prime divisors, it turns out that we should
treat this case separately.

Hence, we will assume first that the multipliers are 1 < b < c. Here we want to show
that

ξn,3(1, b, c) − n
2

= n −
(⌊n

b

⌋
+

⌊n
c

⌋
+

⌊ bn
[b, c]

⌋)
+ 2
⌊ n
[b, c]

⌋
≥ 0. (4.1)

This will be investigated by considering two sub-cases.

(1) Assume b | c, say c = tb, t ≥ 2. Then,

n −
(⌊n

b

⌋
+

⌊n
c

⌋
+

⌊ bn
[b, c]

⌋)
+ 2
⌊ n
[b, c]

⌋
= n −

(⌊n
b

⌋
+

⌊n
c

⌋
+

⌊bn
c

⌋)
+ 2
⌊n

c

⌋

= n −
(⌊n

b

⌋
+

⌊ n
tb

⌋
+

⌊n
t

⌋)
+ 2
⌊ n
tb

⌋

= n −
(⌊n

b

⌋
+

⌊n
t

⌋)
+

⌊ n
tb

⌋
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≥ n − 2
⌊n
2

⌋
+

⌊ n
tb

⌋
, since b ≥ 2 and t ≥ 2

≥
⌊ n
tb

⌋
≥ 0.

So (4.1) holds in this case.

(2) Assume b � c. Before we proceed with this case, we first mention three results.

(a) For real numbers x and y, it is well known that �x� + �y� ≤ �x + y�.
(b) For a real number x, we have �−2x� = −2�x� + δ, where δ ∈ {−2,−1, 0}.

PROOF. Consider three cases.

(i) x = m ∈ Z. Then, �−2x� = −2m = −2�m� = −2�x�, which gives δ = 0.
(ii) x = m + ε, where m ∈ Z and ε ∈ Rwith 0 < ε < 1

2 . Then, −2x = −2m − 2ε =
−2m − 1 + (1 − 2ε) with 0 < 1 − 2ε < 1. It follows that �−2x� = −2m − 1 =
−2�x� − 1, giving δ = −1.

(iii) x = m + ε, where m ∈ Z and ε ∈ R with 1
2 ≤ ε < 1. As in Case (ii), we see

that �−2x� = −2�x� − 2, so that δ = −2. �

(c) Consider the function f (x, y) = 1/x + 1/y − 2/xy, where x and y are real variables
with x ≥ 2 and y ≥ 3. Then the maximum value of f (x, y) is given by f (2, y) = 1/2
for any y ≥ 3.

PROOF. f (x, y) = (1/x)(1 − 2/y) + 1/y, and since 1 − 2/y > 0, f (x, y) achieves its
maximum value when x is as small as possible, that is, x = 2. However, then
f (2, y) = 1/2 for any y ≥ 3. �

We are now ready to proceed with Case (2), where b � c. We have b < c < [b, c],
and from b | [b, c] and c | [b, c], we get 3b ≤ [b, c]. Hence, n/3 ≥ bn/[b, c], from which
it follows that −�bn/[b, c]� ≥ −�n/3�. So we see that

n −
(⌊n

b

⌋
+

⌊n
c

⌋
+

⌊ bn
[b, c]

⌋)
+ 2
⌊ n
[b, c]

⌋
≥ n −

⌊n
b

⌋
−
⌊n

c

⌋
−
⌊n
3

⌋
+ 2
⌊ n
[b, c]

⌋
.

It therefore suffices to show that⌊n
b

⌋
+

⌊n
c

⌋
− 2
⌊ n
[b, c]

⌋
≤ n −

⌊n
3

⌋
. (4.2)

From item (c),
n
2
≥ n

b
+

n
c
− 2n

bc
so that

⌊n
2

⌋
≥
⌊n
b

⌋
+

⌊n
c

⌋
+

⌊
− 2n

bc

⌋
,

using item (a). It follows that⌊n
2

⌋
≥
⌊n
b

⌋
+

⌊n
c

⌋
− 2
⌊ n
bc

⌋
+ δ where δ ∈ {−2,−1, 0},

by item (b). Since [b, c] ≤ bc, this gives⌊n
2

⌋
+ 2 ≥

⌊n
b

⌋
+

⌊n
c

⌋
− 2
⌊ n
[b, c]

⌋
.
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For n ≥ 12, it easily follows that n − 2 ≥ n/2 + n/3 ≥ �n/2� + �n/3�, that is,
�n/2� + 2 ≤ n − �n/3�. Direct checking shows that this relation is also valid for
7 ≤ n ≤ 11. Indeed,

n = 7 : � 7
2 � + 2 = 5 ≤ 7 − 2 = 7 − � 7

3 �,
n = 8 : � 8

2 � + 2 = 6 ≤ 8 − 2 = 8 − � 8
3 �,

n = 9 : � 9
2 � + 2 = 6 ≤ 9 − 3 = 9 − � 9

3 �,
n = 10 : � 10

2 � + 2 = 7 ≤ 10 − 3 = 10 − � 10
3 �,

n = 11 : � 11
2 � + 2 = 7 ≤ 11 − 3 = 11 − � 11

3 �.

Hence, for all n ≥ 7,
⌊n
b

⌋
+

⌊n
c

⌋
− 2
⌊ n
[b, c]

⌋
≤
⌊n
2

⌋
+ 2 ≤ n −

⌊n
3

⌋
,

that is, (4.2) holds. This completes the discussion for a = 1.
From here on, we assume that 2 ≤ a < b < c. We may also assume that (a, b, c) = 1

(since each fraction ai1/[ai1 , ai2 , . . . , air ] in (2.1) remains unchanged if we cancel out
any common factor between ai1 and [ai1 , ai2 , . . . , air ].) We begin by investigating when

g(a, b, c) :=
a

[a, b]
+

a
[a, c]

+
b

[b, c]
≤ 1. (4.3)

Note that whenever (4.3) holds,

ξn,3(a, b, c) − n
2

= n −
(⌊ a · n

[a, b]

⌋
+

⌊ a · n
[a, c]

⌋
+

⌊ b · n
[b, c]

⌋)
+ 2
⌊ a · n
[a, b, c]

⌋

≥ n −
( a · n
[a, b]

+
a · n
[a, c]

+
b · n
[b, c]

)
using Case (2)(a)

=
(
1 − g(a, b, c)

) · n ≥ 0,

from which it follows that ξn,3(a, b, c) ≥ n.
Let d1 = (a, b), d2 = (b, c) and d3 = (a, c). Then, (d1, d2) = (d1, d3) = (d2, d3) = 1,

because (a, b, c) = 1. So a = d1d3q1, b = d1d2q2, c = d2d3q3 for some mutually rela-
tively prime positive integers q1, q2 and q3. It follows that

d1d3q1 < d1d2q2 < d2d3q3, (4.4)

and

g(a, b, c) =
1

d2q2
+

1
d2q3

+
1

d3q3
. (4.5)

Furthermore, there exist positive integers s1, s2 and s3 such that b = a + s1d1,
c = b + s2d2 and c = a + s3d3.
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We now proceed by partitioning the possible values of the triples (d1, d2, d3) into
four different classes.

Class 1: triples (d1, d2, d3) for which d1 ≥ 2. Here, b = a + s1d1 implies that
d2q2 = d3q1 + s1 ≥ 2. Similarly, c = b + s2d2 implies that d3q3 = d1q2 + s2 ≥ 3, and
also, c = a + s3d3 implies that d2q3 = d1q1 + s3 ≥ 3. If each of these inequalities
happens to be an equality, we obtain g(a, b, c) = 1

2 +
1
3 +

1
3 =

7
6 , which is greater

than 1. However, if any one of these inequalities becomes strict, we see that
g(a, b, c) ≤ 1. In the special event of three equalities, we must have d2q2 = 2, d3q3 = 3
and d2q3 = 3. However, this can only happen if d2 = d3 = 1, q2 = 2 and q3 = 3, giving
c = d2d3q3 = 3, which is not possible, since a ≥ 2. Therefore, g(a, b, c) ≤ 1 for all
triples (a, b, c) for which d1 = (a, b) ≥ 2.

Class 2: triples (d1, d2, d3) for which d1 = 1 and d2 ≥ 2. Here, b = d2q2 = d3q1 + s1 ≥
2, d3q3 = q2 + s2 ≥ 2 and d2q3 = q1 + s3 ≥ 2.

If d2 = 2, then, since a = d3q1 ≥ 2 and (a, b, c) = 1, we must have either d3 ≥ 3
or q1 ≥ 3. If d3 ≥ 3, then, from the inequalities above, b = d2q2 = d3q1 + s1 ≥ 4,
d3q3 = q2 + s2 ≥ 3 and d2q3 = q1 + s3 ≥ 2, so that g(a, b, c) ≤ 1

4 +
1
3 +

1
2 = 13/12. By

checking the small cases, there is only one instance where 1 < g(a, b, c) ≤ 13/12,
namely g(3, 4, 6) = 13/12. In this case, referring to (4.1),

ξn,3(3, 4, 6) − n
2

= n +
⌊n
4

⌋
−
⌊n
2

⌋
−
⌊n
3

⌋
≥ 0 for all n ≥ 1.

However, if q1 ≥ 3, then, as above, b = d2q2 = d3q1 + s1 ≥ 4, d3q3 = q2 + s2 ≥ 2 and
d2q3 = q1 + s3 ≥ 4, implying that g(a, b, c) ≤ 1

4 +
1
2 +

1
4 = 1.

Next, consider d2 ≥ 3. Using the same inequalities as above, we see that now
g(a, b, c) ≤ 1

3 +
1
2 +

1
3 =

7
6 . Again, checking small cases, there is only one instance here

where 1 < g(a, b, c) ≤ 7
6 , namely g(2, 3, 6) = 7

6 . In this case,

ξn,3(2, 3, 6) − n
2

= n −
⌊n
2

⌋
≥ 0 for all n ≥ 1.

We see that, apart from these two exceptional cases (which satisfy ξn,3(a, b, c) ≥ n
by direct checking), all the other triples (a, b, c) in this class have g(a, b, c) ≤ 1, so that
1
2 (ξn,3(a, b, c) − n) ≥ (1 − g(a, b, c))n ≥ 0.

Class 3: triples (d1, d2, d3) for which d1 = d2 = 1 and d3 ≥ 2. Now we have
b = q2 = d3q1 + s1 ≥ 3, c = d3q3 = q2 + s2 ≥ 2 and c = d3q3 = d3q1 + s3d3, giving
q3 = q1 + s3 ≥ 2. From q3 ≥ 2 and d3 ≥ 2, it follows that c = d3q3 is actually greater
than or equal to 4. For c = 4, there is only one possible triple (a, b, c), namely
a = 2, b = 3 and c = 4, and we already know that ξn,3(2, 3, 4) ≥ n. So we may
assume that q3 ≥ 3 or d3 ≥ 3. In the former case, g(a, b, c) = g(d3q1, q2, d3q3) =
1/q2 + 1/q3 + 1/d3q3 ≤ 1/3 + 1/3 + 1/6 = 5/6 ≤ 1, and in the latter case, g(a, b, c) =
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1/q2 + 1/q3 + 1/d3q3 ≤ 1/3 + 1/2 + 1/6 = 1. As in the previous paragraphs, we
conclude that ξn,3(a, b, c) ≥ n for all triples (a, b, c) that belong to this class.

Class 4: d1 = d2 = d3 = 1. From (4.4), 2 ≤ q1 < q2 < q3. Then, g(a, b, c) =
g(q1, q2, q3) ≤ 1

3 +
1
5 +

1
5 = 11/15 < 1, and we again have ξn,3(a, b, c) ≥ n.

5. Infinitely many cases where ξn,k(a1, a2, . . . , ak) = n.

One should not be misled by thinking that ξn,k(a1, a2, . . . , ak) would grow without
bound as k gets bigger. In this section, we conclude our discussion by proving that
ξn,k(a1, a2, . . . , ak) = n is possible for arbitrarily large k.

THEOREM 5.1. Let n ∈ N, n ≥ 2. For each r ≥ 0, we can find multipliers a1 < a2 <
· · · < ak, where k > r, such that Δk

i=1ain = {a1, 22r · a1, 32r · a1, . . . , n2r · a1}.

PROOF. For the sake of this theorem, we denote

Dr
n,k(a1, a2, . . . , ak) = Δk

i=1ain = {a1, 22r · a1, 32r · a1, . . . , n2r · a1}.

The proof is by induction on r. For r = 0, take k = 1 and a1 = 1 so that

D0
n,1(1) = {1, 2, 3, . . . , n} = {1, 220 · 1, 320 · 1, . . . , n20 · 1}.

Assume that the statement is true for some r ≥ 0, and a1 < a2 < · · · < ak, where k > r,
are the multipliers used to produce the symmetric difference

Dr
n,k(a1, a2, . . . , ak) = {a1, 22r · a1, 32r · a1, . . . , n2r · a1}.

Then, for each m, 1 ≤ m ≤ n,

Δk
j=1(m2r

aj · n) = m2r
Δk

j=1(ajn)

= {m2r · a1, m2r
(22r · a1), m2r

(32r · a1), . . . , m2r
(n2r · a1)}

= m2r
Dr

n,k(a1, a2, . . . , ak).

Now take the symmetric difference between the n sets:

{ a1, 22r
a1 , 32r

a1 , . . . , n2r
a1 },

{22r
a1, 22r

(22r
a1), 22r

(32r
a1), . . . , 22r

(n2r
a1)},

{32r
a1, 32r

(22r
a1), 32r

(32r
a1), . . . , 32r

(n2r
a1)},

...
...

...
. . .

...

{n2r
a1, n2r

(22r
a1), n2r

(32r
a1), . . . , n2r

(n2r
a1)}.

Due to the symmetry of this ‘matrix’, the symmetric difference is the ‘diagonal’,

D = {a1, 22r+1 · a1, 32r+1 · a1, . . . , n2r+1 · a1}.
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This symmetric difference uses the list of multipliers

a1, a2, . . . , ak; 22r · a1, 22r · a2, . . . , 22r · ak; . . . ; n2r · a1, n2r · a2, . . . , n2r · ak.

There may be duplicates in this list. Since two identical entries will not have any effect
on D, our final list of multipliers a′1 < a′2 < · · · < a′k′ is given by

A′ = Δn
m=1(m2r

A) = {a′1, a′2, . . . , a′k′ }
and

Dr+1
n,k′ (a

′
1, a′2, . . . , a′k′) = D.

Since n > 1, there is a prime p with n/2 < p ≤ n. Then, {a1, p2r
a1, p2r

a2, . . . , p2r
ak} ⊆

A′, and so r + 1 < k + 1 ≤ k′. The induction is complete. �
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