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Refined Bohr inequalities for certain classes
of functions: analytic, univalent, and
convex
Sabir Ahammed and Molla Basir Ahamed

Abstract. In this article, we prove several refined versions of the classical Bohr inequality for the class
of analytic self-mappings on the unit disk D, class of analytic functions f defined on D such that
Re ( f (z)) < 1, and class of subordination to a function g in D. Consequently, the main results of this
article are established as certainly improved versions of several existing results. All the results are
proved to be sharp.

1 Introduction

Bohr’s remarkable work in the year 1914 on the power series in complex analysis has
generated a lot of research activities in complex analysis and related areas. This work is
popularly referred to as Bohr phenomenon. The phenomenon has been investigated
in various function spaces. Throughout the article, we denote A be the class of all
analytic functions f (z) = ∑∞n=0 anzn defined on the unit disk D ∶= {z ∈ C ∶ ∣z∣ < 1}.
We define two subclasses B ∶= { f ∈ A ∶ ∣ f (z)∣ ≤ 1} and P ∶= { f ∈ A ∶ Re ( f (z)) < 1}.

In 1914, the classical result related to the family B was discovered by Bohr [18] as
follows.

Theorem 1.1 [18] If f (z) = ∑∞n=0 anzn ∈ B, then

M f (r) ∶=
∞

∑
n=0
∣an ∣rn ≤ 1 for ∣z∣ = r ≤ 1

3
.(1.1)

Bohr initially, shows the inequality (1.1) for ∣z∣ = r ≤ 1/6. Subsequently, the inequal-
ity (1.1) was improved for ∣z∣ ≤ 1/3 by M. Riesz, I. Schur, and F. Wiener independently
and they showed that the constant 1/3 cannot be improved. The constant 1/3 and the
inequality (1.1) are called, respectively, the Bohr radius and the Bohr inequality for the
class B. Moreover, for

fa(z) ∶=
a − z
1 − az

, a ∈ [0, 1),
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10 S. Ahammed and M. B. Ahamed

it can be easily shown that M fa(r) > 1 if, and only if, r > 1/(1 + 2a), and it is easy to
see a → 1− suggests that the constant 1/3 is best possible.

Initially, the problem was considered by Harald Bohr while working on the
absolute convergence of the Dirichlet series of the form∑ an n−s , but in recent years,
it becomes an active area of research in modern function theory. In fact, this theorem
gets much attention as it has been applied to the characterization problem of Banach
algebra satisfying the von Neumann inequality [21]. However, several other proofs of
this interesting inequality were given in different articles (see [36, 41, 42]). In 1997,
Boas and Khavinson [17] first introduced the concept of the n-dimensional Bohr
radius K∞n and established the result: for every n ∈ N, the n-dimensional Bohr radius
K∞n with n ≥ 2 satisfies

1
3
√

n
<K∞n < 2

√
log n

n
.

Such study concerning multidimensional Bohr inequality, by Boas and Khavinsion,
was an incentive for many mathematicians to link the asymptotic behavior of K∞n to
various problems in analysis, for instance, geometry of Banach spaces, unconditional
basic constant for spaces of polynomials, etc.

In the majorant series∑∞n=0 ∣an ∣rn of the function f ∈ B, the beginning terms play
some significant role in the related discussion about the Bohr inequality. For instance,
in the case of ∣a0∣ = 0, Tomic [42] has proved the inequality (1.1) for 0 ≤ r ≤ 1/2 and
if the term ∣a0∣ is replaced by ∣a0∣2, then the constant 1/3 can be replaced by 1/2. In
addition, if ∣a0∣ is replaced by ∣ f (z)∣, then the constant 1/3 can be replaced by

√
5 − 2

which is best possible (see [28, 28]).
An extension of the Bohr inequality has established by Paulsen et al. [36] and the

following sharp inequality for the class P are obtained.

Theorem 1.2 [36] Suppose that f (z) = ∑∞n=0 anzn ∈ P. Then the following sharp
inequality holds:

∞

∑
n=0
∣an ∣rn ≤ 1 for r ≤ 1

3
.

It is generally known that the Bohr radius 1/3 remains valid in Theorem 1.1
even if the condition Re ( f (z)) < 1 in D and a0 = f (0) ∈ [0, 1) are substituted for
the assumption on f . Actually, this condition shows that (see [22, Carathéodory’s
Lemma, p. 41]) the coefficient bounds as ∣an ∣ ≤ 2(1 − a0) for all n ≥ 1 and with this,
the following sharp inequality holds (see [36]):

a0 +
∞

∑
n=1
∣an ∣rn ≤ a0 + 2(1 − a0)

r
1 − r

≤ 1 for r ≤ 1
3

.

For different aspects and some recent developments of the Bohr phenomenon for
different classes of functions, we may refer to the articles [4–15, 21, 23, 30, 31, 35] and
the references therein.

The exploration of the Bohr radius problem for subordinating families of analytic
functions in D adds another interesting layer to the overall understanding of the Bohr
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Refined Bohr inequalities for certain classes of functions 11

phenomenon. For any two analytic functions f and g in D, the function f is said to
be subordinate to g , denoted by f ≺ g if there exist an ω ∈ B satisfying ω(0) = 0 and
f (z) = g(ω(z)) in z ∈ D (see [22]).

Throughout the article, we denote S(g), the class of functions f subordinate to a
function g . Many authors have studied Bohr phenomenon for functions in the class
S(g), where the function g belongs to different class (see [1, 16, 24, 37]).

Our primary interest in this article is to establish sharp refined versions of Bohr-
type inequalities for different classes of functions such as B, P, and S(g), where g
is a given function defined in D. The article is organized as follows: In Section 2,
we establish a sharp Bohr-type inequalities for the class B with help of the planar
integral Sr . In Section 3, we study refined version of Bohr-type inequality considering
certain power of the initial coefficient for functions of the classP. Finally, in Section 4,
we prove two results concerning refined versions of the Bohr inequality for the
class S(g).

2 Bohr-type inequalities for the class B

Inspired by the notion of Rogosinski’s inequality and Rogosinski’s radius investigated
in [38], Kayumov et al. [28] (see also [28]) obtained the following Bohr–Rogosinski
inequality and Bohr–Rogosinski radius for the class B.

Theorem 2.1 [28] Suppose that f (z) = ∑∞n=0 anzn ∈ B. Then

∣ f (z)∣ +
∞

∑
n=N
∣an ∣rn ≤ 1 for r ≤ RN ,

where RN is the unique root of the equation 2(1 + r)rN − (1 − r)2 = 0 in the interval
(0, 1). The radius RN is the best possible. Moreover,

∣ f (z)∣2 +
∞

∑
n=N
∣an ∣rn ≤ 1 for r ≤ R′N ,

where R′N is the unique root of the equation (1 + r)rN − (1 − r)2 = 0 in the interval
(0, 1). The radius R′N is the best possible.

In a number of articles (see [20, 32, 33] and the references therein) have further
refined and sometimes improved Theorem 2.1 for different classes of functions. Our
objective in this section is to improve Theorem 2.1. In order to do that, let us recall
some well-known formulations. Let f be holomorphic in D, and for 0 < r < 1, let
Dr ∶= {z ∈ C ∶ ∣z∣ < r}. Throughout the article, Sr = Sr( f ) denotes the planar integral

Sr = ∫
Dr
∣ f ′(z)∣2dA(z).

If f (z) = ∑∞n=0 anzn , than the quantity Sr has the following series representation:

Sr = π
∞

∑
n=1

n∣an ∣2r2n .
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12 S. Ahammed and M. B. Ahamed

In fact, if f is a univalent function, then Sr is the area of f (Dr). The quantity Sr has
a certain significant role in the study of improved versions of Bohr-type inequalities
(see, e.g., [7, 25, 27, 32]). For example, Kayumov and Ponnusamy [29] have proved
the following improved version of the Bohr inequality in terms of Sr .

Theorem 2.2 [29] Suppose that f (z) = ∑∞n=0 anzn ∈ B. Then
∞

∑
n=0
∣an ∣rn + 16

9
(Sr

π
) ≤ 1 for r ≤ 1

3

and the numbers 1/3, 16/9 cannot be improved. Moreover,

∣a0∣2 +
∞

∑
n=1
∣an ∣rn + 9

8
(Sr

π
) ≤ 1 for r ≤ 1

2

and the numbers 1/2, 9/8 cannot be improved.

In fact, Kayumov and Ponnusamy [28] have proved the following sharp inequality
for the function f (z) = ∑∞n=0 anzn ∈ B ∶

Sr

π
=
∞

∑
n=1

n∣an ∣2r2n ≤ r2 (1 − ∣a0∣2)2

(1 − ∣a0∣2r2)2 for 0 < r ≤ 1/
√

2.(2.1)

Furthermore, Ismagilov et al. [26] have observed that

1 − Sr

π
≥ (1 − r2)(1 − r2∣a0∣4)

(1 − ∣a0∣2r2)2 ,(2.2)

and hence, in view of (2.1) and (2.2), the following inequality can be obtained easily:

Sr

π − Sr
≤ r2(1 − ∣a0∣2)2

(1 − r2)(1 − r2∣a0∣4)
.(2.3)

In view of the upper bound of the quantity Sr/(π − Sr), Theorem 2.2 is investigated
further in [26] and obtained the following sharp result replacing the quantity Sr/π by
Sr/(π − Sr).

Theorem 2.3 [26] Suppose that f (z) = ∑∞n=0 anzn ∈ B. Then
∞

∑
n=0
∣an ∣rn + 16

9
( Sr

π − Sr
) ≤ 1 for r ≤ 1

3

and the number 16/9 cannot be improved. Moreover,

∣a0∣2 +
∞

∑
n=1
∣an ∣rn + 9

8
( Sr

π − Sr
) ≤ 1 for r ≤ 1

2

and the number 9/8 cannot be improved.

For recent development of Bohr-type inequalities with the quantity Sr/(π − Sr), we
may refer to the article [3]. In fact, there is an ongoing research effort aimed at refining
the Bohr inequality for the class B, with the objective of finding sharp results. In this
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context, recently, Liu et al. [32] have studied refined Bohr inequality with various
suitable settings and obtained the following result.

Theorem 2.4 [32] Suppose that f = ∑∞n=0 anzn ∈ B. Then

∣ f (z)∣ +
∞

∑
n=1
∣an ∣rn + ( 1

1 + ∣a0∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n ≤ 1

for ∣z∣ = r ≤ r0 = 2/ (3 + ∣a0∣ +
√

5(1 + ∣a0∣)) . The radius r0 is best possible and
r0 >
√

5 − 2. Moreover,

∣ f (z)∣2 +
∞

∑
n=1
∣an ∣rn + ( 1

1 + ∣a0∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n ≤ 1(2.4)

for ∣z∣ = r ≤ r′0 , where r′0 is the unique positive root of the equation

(1 − ∣a0∣3)r3 − (1 + 2∣a0∣)r2 − 2r + 1 = 0.

The radius r′0 is best possible and 1/3 < r′0 < 1/ (2 + ∣a0∣) .

The above discussion motivates us to pose the following question in order to
continue the study on the Bohr phenomenon for further improvement.

Question 2.1 Can we improve the inequality (2.4) in view of incorporating the
nonnegative quantities Sr/π and Sr/(π − Sr)?

We have utilized the proof of techniques discussed in [3, 26, 29] as inspiration to
derive the following refined Bohr inequalities to answer the Question 2.1.

Theorem 2.5 Suppose that f = ∑∞n=0 anzn ∈ B. Then

U1(z, r) ∶= ∣ f (z)∣2 +
∞

∑
n=1
∣an ∣rn + ( 1

1 + ∣a0∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n + λ (Sr

π
) ≤ 1(2.5)

for r ≤ 1/3, and the constant λ = 8/9 cannot be improved. Moreover,

U2(z, r) ∶= ∣ f (z)∣2 +
∞

∑
n=1
∣an ∣rn + ( 1

1 + ∣a0∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n + λ ( Sr

π − Sr
) ≤ 1

(2.6)

for r ≤ 1/3, and the constant λ = 8/9 cannot be improved.

Remark 2.1 The following observations are clear.
(i) If λ = 0, then the inequalities (2.5) and (2.6) coincide with the inequality (2.4),

which shows that Theorem 2.5 improves Theorem 2.4 by improving (2.4).
(ii) The extension of the inequality (2.4) in two distinct cases is achieved by

Theorem 2.5, which improves Theorem 2.4 for λ = 8/9.

The proof of Theorem 2.5 relies heavily on the following two lemmas. The first
lemma is established in [32] as a further refinement of Bohr-type inequalities, whereas
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14 S. Ahammed and M. B. Ahamed

the second lemma is well-known as “Schwarz–Pick lemma” used for the bounds of
analytic function f and their first-order derivatives.

Lemma 2.1 [32] Suppose that f (z) = ∑∞n=0 anzn ∈ B. Then, for any N∈ N, the follow-
ing inequality holds:
∞

∑
n=N
∣an ∣rn + sgn(t)

t
∑
n=1
∣an ∣2

rN

1 − r
+ ( 1

1 + ∣a0∣
+ r

1 − r
)
∞

∑
n=t+1
∣an ∣2r2n ≤ (1 − ∣a0∣2)rN

1 − r

for r ∈ [0, 1), where t = ⌊(N − 1)/2⌋.

Lemma 2.2 [40] (Schwarz–Pick lemma) Suppose that f (z) = ∑∞n=0 anzn ∈ B. Then:
(i)

∣ f (z1) − f (z2)∣
∣1 − f (z1) f (z2)∣

≤ ∣z1 − z2∣
∣1 − z1z2∣

holds for z1 , z2 ∈ D,

and the equality sign holds for distinct z1 , z2 ∈ D if, and only if, f is a Möbius
transformation.

(ii)

∣ f ′(z)∣ ≤ 1 − ∣ f (z)∣2
1 − ∣z∣2 holds for z ∈ D,

and the equality sign holds for some z ∈ D if, and only if, f is a Möbius transfor-
mation.

Proof of Theorem 2.5 We consider the function U1(z, r) which is given by (2.5).
Moreover, by applying the assumption of the result and the Schwarz–Pick lemma to
the function f, it is easily obtain

∣ f (z)∣ ≤ r + ∣a0∣
1 + r∣a0∣

for ∣z∣ ≤ r.(2.7)

By means of a basic computation involving the inequalities (2.1), (2.7), and Lemma 2.1
(with N = 1), it can be shown that

U1 (z, r) ≤ ( r + ∣a0∣
1 + r∣a0∣

)
2

+ (1 − ∣a0∣2)r
1 − r

+ 8(1 − ∣a0∣2)2r2

9(1 − ∣a0∣2r2)2 ∶= U∗1 (r).

It is easy to see that U∗1 (r) is a monotonically increasing function of r, and therefore,
it suffices to prove the inequality (2.5) for r = 1/3. For r = 1/3, it can be seen through
a simple calculation that

U∗1 (1/3) = 1 − (1 − ∣a0∣)2(1 + ∣a0∣)(47 − 2∣a0∣ − ∣a0∣2)
2(9 − ∣a0∣2)2 ≤ 1,

and, therefore, the desired inequality (2.5) holds for r ≤ 1/3 and ∣a0∣ ∈ [0, 1). Next, we
consider the function U2(z, r)which is given by (2.6). Using the inequalities (2.3) and
(2.7), and in view of Lemma 2.1 (with N = 1), we obtain
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U2(z, r) ≤ ( r + ∣a0∣
1 + r∣a0∣

)
2

+ (1 − ∣a0∣2)r
1 − r

+ 8(1 − ∣a0∣2)2r2

9(1 − r2)(1 − r2∣a0∣4)
∶= U∗2 (r).

It suffices to show the inequality (2.6) for r = 1/3 because U∗2 (r) is an increasing
function of r. For r = 1/3, by an easy computation, we obtain

U∗2 (1/3) = 1 − (1 − ∣a0∣)2(1 + ∣a0∣)(45 + 24∣a0∣ + 10∣a0∣2 + 8∣a0∣3 + ∣a0∣4)
2(9 − ∣a0∣4)(3 + ∣a0∣)2 ≤ 1

and, therefore, the desire inequality (2.6) holds for r ≤ 1/3 and ∣a0∣ ∈ [0, 1). In both
the cases, the sharpness of the constant λ = 8/9 can be easily shown with the help of
the function fa(z) = (a − z)/(1 − az), a ∈ (0, 1) and hence, we omit the details. ∎

3 Bohr-type inequalities for the class P

In geometric function theory, the subclass of the well-known class S that encompasses
convex functions and starlike functions are named as C and S∗, respectively. Closely
related to the classes C and S∗ is the class P of all functions φ analytic and having
positive real part in D, with φ(0) = 1 and the function φ can be represented as
Poisson–Stieltjes integral

φ(z) = ∫
2π

0

e i t + z
e i t − z

dμ(t),

where dμ(t) ≥ 0 and ∫ dμ(t) = 1.
In 2022, Ponnusamy et al. [37] further examined the Bohr inequality by replacing

the unimodular boundedness of f by the condition Re( f (z)) < 1 and established the
following sharp result.

Theorem 3.1 [37] Suppose that f (z) = ∑∞n=0 anzn ∈ P. Then
∞

∑
n=0
∣an ∣rn + ( 1

1 + ∣a0∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n ≤ 1(3.1)

for r ≤ r∗ , where r∗ ≈ 0.24683 is the unique root of the equation 3r3 − 5r2 − 3r + 1 = 0
in the interval (0, 1). Moreover, for any a0 ∈ (0, 1), there exists a uniquely defined
r0 = r0(a0) ∈ (r∗ , 1/3) such that

∞

∑
n=0
∣an ∣rn + ( 1

1 + ∣a0∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n ≤ 1 for r ∈ [0, r0].

The radius r0 = r0(a0) can be computed as the solution of the equation

4r3d2 − (7r3 + 3r2 − 3r + 1)d + 6r3 − 2r2 − 6r + 2 = 0, where d = 1 − a0 .

The result is sharp.

Since the initial coefficient ∣a0∣ in the majorant series M f (r) = ∑∞n=0 ∣an ∣rn , where
f ∈ B, plays some significant role in the study of Bohr radius, to determine the value
corresponding to r∗, we are interested to obtain sharp version of the inequality (3.1)
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16 S. Ahammed and M. B. Ahamed

by considering general power of ∣a0∣. Henceforth, in order to generalize Theorem 3.1,
it is natural to find the answer to the following question.

Question 3.1 Can we prove the inequality (3.1) sharp for any p ∈ N if the initial term
∣a0∣ is replaced by ∣a0∣p?

We obtain the following result answering the Question 3.1.

Theorem 3.2 Let f (z) be analytic function in D such that f (z) = ∑∞n=0 anzn ∈ P.
Then, for any p ∈ N, the following inequality holds:

Vf (r) ∶= ∣a0∣p +
∞

∑
n=1
∣an ∣rn + ( 1

1 + ∣a0∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n ≤ 1(3.2)

for r ≤ r∗ , where r∗ ≈ 0.24683 is the unique root of the equation

1 − 3r − 5r2 + 3r3 = 0

in the interval (0, 1). The result is sharp.

We have the following remark.

Remark 3.1 In Theorem 3.2, the following observations are clear.
(i) Clearly, if p = 1, then Theorem 3.2 reduces to the first part of Theorem 3.1.
(ii) Surprisingly, it is worth noticing that the constant r∗, which is a root of the

equation 1 − 3r − 5r2 + 3r3 = 0 is independent of the choice of p.

Proof of Theorem 3.2 To prove this result, we use the following lemma involving
subordination.

Lemma 3.1 [37] Let f (z) and g(z) be two analytic functions in D with the Taylor
series expansions f (z) = ∑∞n=0 anzn and g(z) = ∑∞n=0 bnzn for z ∈ D. If f (z) ≺ g(z),
then
∞

∑
n=0
∣an ∣rn + ( 1

1 + ∣a0∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n ≤

∞

∑
n=0
∣bn ∣rn + ( 1

1 + ∣b0∣
+ r

1 − r
)
∞

∑
n=1
∣bn ∣2r2n

for r ≤ 1/3. The number 1/3 cannot be improved.

Since Re ( f (z)) < 1, we may write the given condition as

f (z) ≺ g(z), g(z) = a0 − 2(1 − a0)
z

1 − z
= a0 − 2(1 − a0)

∞

∑
n=1

zn .

Here, g(z) is a univalent function in D onto the half-plane {w ∶ Re(w) < 1}. Accord-
ing to the Lemma 3.1, if g(z) = ∑∞n=0 bnzn , then it is sufficient to show that

Vg(r) = ∣b0∣p +
∞

∑
n=1
∣bn ∣rn + ( 1

1 + ∣b0∣
+ r

1 − r
)
∞

∑
n=1
∣bn ∣2r2n ≤ 1 for r ≤ r∗ ,
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where r∗ is as in the statement. For simplicity, let 1 − a0 = μ so that a0 = 1 − μ and
bn = −2μ for n ≥ 1. This gives for μ ∈ [0, 1] and r ∈ (0, 1) that

Vg(r) = (1 − μ)p + 2μ
∞

∑
n=1

rn + ( 1
2 − μ

+ r
1 − r
)4μ2

∞

∑
n=1

r2n

= 1 − (1 − (1 − μ)p − 2μ r
1 − r

− (1 + r − rμ)4μ2r2

(2 − μ)(1 − r)(1 − r2))

= 1 − μ (1 + (1 − μ) + (1 − μ)2 + (1 − μ)3 + ⋅ ⋅ ⋅ + (1 − μ)p−1 − 2 r
1 − r
)

+ (1 + r − rμ)4μ2r2

(2 − μ)(1 − r)(1 − r2)

= 1 − μΨ(μ, r)
(2 − μ)(1 − r)(1 − r2) ,

where

Ψ(μ, r) ∶= (1 − r)(1 − r2)(2 − μ) (1 + (1 − μ) + (1 − μ)2 + (1 − μ)3 + ⋅ ⋅ ⋅ + (1 − μ)p−1)
− 2r(1 − r2)(2 − μ) − 4μ(1 + r − rμ)r2 .

We claim that Ψ(μ, r) ≥ 0 for every r ≤ r∗ and μ ∈ (0, 1]. For simplicity, set R(r) =
(1 − r)(1 − r2) and by a straightforward calculations, we obtain

∂Ψ(μ, r)
∂μ

= −(1 + (1 − μ) + (1 − μ)2 + (1 − μ)3 + (1 − μ)4 + ⋅ ⋅ ⋅ + (1 − μ)p−1)R(r)

+ (2 − μ)R(r) (−1 − 2(1 − μ) − 3(1 − μ)2 − ⋅ ⋅ ⋅ − (p − 1)(1 − μ)p−2)
+ 2r(1 − r2) − 4r2(1 + r) + 8r3 μ,

∂2Ψ(μ, r)
∂μ2 = 2 (1 + 2(1 − μ) + 3(1 − μ)2 + ⋅ ⋅ ⋅ + (p − 1)(1 − μ)p−2)R(r)

+ (2 − μ)R(r) (2 + 6(1 − μ) + 12(1 − μ)2 ⋅ ⋅ ⋅ + (p − 1)(p − 2)(1 − μ)p−3)
+ 8r3 ,

and

∂3Ψ(μ, r)
∂μ3 = −3R(r) (2 + 6(1 − μ) + ⋅ ⋅ ⋅ + (p − 1)(p − 2)(1 − μ)p−3)

− R(r)(2 − μ) (6 + 24(1 − μ) + . . . (p − 1)(p − 2)(p − 3)(1 − μ)p−4)
≤ 0 for all μ ∈ (0, 1].

Thus, it is easy to see that ∂2Ψ(μ, r)
∂μ2 is a decreasing function of μ in (0, 1], and hence,

∂2Ψ(μ, r)
∂μ2 ≥ ∂2Ψ(1, r)

∂μ2 = 4R(r) + 8r3 ≥ 0 for all r ∈ [0, 1).
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This shows that ∂Ψ(μ, r)
∂μ

is an increasing function of μ in (0, 1]. Therefore, we obtain

∂Ψ(μ, r)
∂μ

≤ ∂Ψ(1, r)
∂μ

= −2 + 4r − 2r2 ≤ 0 for all r ∈ [0, 1).

Clearly,

Ψ(μ, r) ≥ Ψ(1, r) = 1 − 3r − 5r2 + 3r3 ≥ 0 for all r ≤ r∗ ,

where r∗ is given as in the statement of the theorem, and hence, the proof is
complete. ∎

4 Bohr phenomenon for the class of subordinations

Studying the Bohr inequality for the class of subordination is an interesting and
difficult exercise. In recent years, researchers are studying the Bohr phenomenon
for such classes of functions and till date, the study continues. In [1], Abu-Muhanna
showed the following sharp Bohr phenomenon for the subordinate class S(g).

Theorem 4.1 [1] Suppose g is a univalent function in D and f ∈ S(g) such that
f (z) = ∑∞n=0 anzn . Then

∞

∑
n=1
∣an ∣rn ≤ d for ∣z∣ = r ≤ r0 = 3 −

√
8.

The radius r0 is sharp for the Koebe function f (z) = z/(1 − z)2.

In [2], Abu-Muhanna et al. established the results determining the Bohr radius
for subordinating families of analytic functions and bounded harmonic mappings.
In [34], Lie et al. studied two refined versions of the Bohr inequality and determine
the Bohr radius for the derivatives of analytic functions associated with quasi-
subordination. Bohr’s phenomenon for analytic functions subordinate to starlike or
convex function is investigated by Hamada in [24]. Recently, Ponnusamy et al. [37]
obtained the following refined versions of the Bohr-type inequalities.

Theorem 4.2 [37] Suppose that g is a univalent function in D and f ∈ S(g) such that
f (z) = ∑∞n=0 anzn . Then

∞

∑
n=1
∣an ∣rn + ( 1

2 − d
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n ≤ d(4.1)

for ∣z∣ = r < r′ , where r′ ≈ 0.128445 is the unique root of the equation

(1 − 6r + r2)(1 − r)2(1 + r)3 − 16r2(1 + r2) = 0

in the interval (0, 1), where d = dist(g(0), ∂g(D)) < 1. The sharpness of r′ is shown by
the Koebe function f (z) = z/(1 − z)2 .

Theorem 4.3 [37] Let f (z) = ∑∞n=0 anzn and g be analytic in D such that g is
univalent and convex inD. Assume that f ∈ S(g) and d = dist(g(0), ∂g(D)) ≤ 1. Then
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the inequality (4.1) holds for all r ≤ r∗ , where r∗ ≈ 0.24683 is the unique root of the
equation 3r3 − 5r2 − 3r + 1 = 0 in the interval (0, 1). Moreover, for any d ∈ (0, 1), there
exists a uniquely defined r0(a0) ∈ (r∗ , 1/3) such that the inequality (4.1) holds for all
r ∈ [0, r0(a0)]. The radius r0(a0) can be calculated as the solution of the equation
4r3d2 − (7r3 + 3r2 − 3r + 1)d + 6r3 − 2r2 − 6r + 2 = 0.

In the study of refined Bohr-type inequalities, finding different versions of refined
Bohr-type inequalities and their sharpness is interesting in geometric function theory.
Our aim in this section is to determine refined versions of Bohr-type inequalities
for functions in the class S(g). We now mention here refined versions of Bohr-type
inequalities obtained recently by Liu et al. [32] for functions in the class B.

Theorem 4.4 [32] Suppose that f = ∑∞n=0 anzn ∈ B. Then
∞

∑
n=0
∣an ∣rn + ( 1

1 + ∣a0∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n + ∣ f (z) − a0∣ ≤ 1 for ∣z∣ = r ≤ 1

5

and the number 1/5 cannot be improved. Moreover,
∞

∑
n=0
∣an ∣rn + ( 1

1 + ∣a0∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n + ∣ f (z) − a0∣2 ≤ 1 for ∣z∣ = r ≤ 1

3

if, and only if, 0 ≤ ∣a0∣ ≤ 4
√

2 − 5 ≈ 0.656854.

To continue the research, our objective in this section is to establish the inequalities
of Theorem 4.4 for the subordination class S(g), where g may be univalent or convex
univalent in D. Therefore, it is natural raise the following questions.

Question 4.1 Can we derive a sharp version of Theorem 4.4 for the class S(g)when
g is a univalent function in D?

Question 4.2 Can we derive a sharp version of Theorem 4.4 for the class S(g)when
g is the univalent and convex function in D?

We obtain the following two results answering Questions 4.1 and 4.2, respectively.

Theorem 4.5 Let g be analytic and univalent function in D and f ∈ S(g) so that
f (z) = ∑∞n=0 anzn . Then the inequality

X1, f (r) ∶=
∞

∑
n=1
∣an ∣rn + ( 1

2 − d
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n + ∣ f (z) − a0∣ ≤ d(4.2)

for r ≤ r1 , where r1 ≈ 0.0888988 is the unique root of the equation 1 − 9r − 27r2 + 19r3 +
3r4 − 11r5 − 9r6 + r7 = 0 in the interval (0, 1). Moreover,

X2, f (r) ∶=
∞

∑
n=1
∣an ∣rn + ( 1

2 − d
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n + ∣ f (z) − a0∣2 ≤ d(4.3)
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for r ≤ r2 , where r2 ≈ 0.10469 is the unique root of the equation

1 − 5r − 39r2 − 37r3 − 53r4 − 23r5 − 5r6 + r7 = 0

in the interval (0, 1), where d = dist(g(0), ∂g(D)) < 1. The sharpness of r1 and r2 are
shown by the Koebe function f (z) = z/(1 − z)2 .

Theorem 4.6 Let g be analytic in D such that g is univalent and convex in D and
f ∈ S(g) so that f (z) = ∑∞n=0 anzn . Then the inequality (4.2) holds for r ≤ r3 , where
r3 ≈ 0.174789 is the unique root of the equation 1 − 5r − 5r2 + 5r3 = 0 in the interval
(0, 1). Moreover, the inequality (4.3) holds for r ≤ r4 , where r4 ≈ 0.20473 is the unique
root of the equation

1 − 3r − 9r2 − r3 = 0

in the interval (0, 1), where d = dist(g(0), ∂g(D)) ≤ 1.

We now discuss the proof of Theorems 4.5 and 4.6.

Proof of Theorem 4.5 Let f ≺ g , where g(z) = ∑∞n=0 bnzn is a univalent mapping
on D onto a simply connected domain Ω = g(D). Then it is well known from the
Koebe estimate and Rogosinski’s coefficient estimates for univalent functions that (see
[19, 39])

1
4
∣g′(0)∣ ≤ d ≤ ∣g′(0)∣, ∣bn ∣ ≤ n∣g′(0)∣ for n ≥ 1,

where d = dist(g(0), ∂Ω). Also, the above first inequality gives ∣bn ∣ ≤ 4nd for n ≥ 1.
Since f ≺ g , [16, Lemma 1] we see that

∣ f (z) − a0∣ = ∣
∞

∑
n=1

anzn∣ ≤
∞

∑
n=1
∣an ∣rn ≤

∞

∑
n=1
∣bn ∣rn for r ≤ 1

3
.(4.4)

By the similar argument used in the proof of Theorem 4.2 and in view of (4.4) and
Lemma 3.1, an easy computation shows that

X1, g(r) ≤ 8d
∞

∑
n=1

nrn + ( 1
2 − d

+ r
1 − r
) 16d2

∞

∑
n=1

n2r2n

= d − d ( 1 − 10r + r2

(1 − r)2 − (1 + r − rd)16dr2(1 + r2)
(1 − r)(1 − r2)3(2 − d) )

= d − dA1(d , r)
(1 − r)(1 − r2)3(2 − d) ,

where

A1(d , r) ∶= (1 − 10r + r2)(1 − r)2(1 + r)3(2 − d) − 16d(r2 + r4)(1 + r − dr).

Our aim is to show that A1(d , r) ≥ 0 for every r ≤ r1 and d ∈ (0, 1]. We see that

∂2A1(d , r)
∂2d

≥ 0 for d ∈ (0, 1]
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and thus, ∂A1(d , r)
∂d

is an increasing function of d . This gives

∂A1(d , r)
∂d

≤ ∂A1(1, r)
∂d

= (1 − r)(−1 + 8r + 3r2 − 35r4 − 8r5 + r6) ≤ 0

for r ≤ 0.120502, and hence A1(d , r) is a decreasing function of d in interval (0, 1].
Therefore,

A1(d , r) ≥ A1(1, r) = 1 − 9r − 27r2 + 19r3 + 3r4 − 11r5 − 9r6 + r7 ≥ 0

for all r ≤ r1, where r1 ≈ 0.0888988 is the unique root in the interval (0, 1) of the
equation

1 − 9r − 27r2 + 19r3 + 3r4 − 11r5 − 9r6 + r7 = 0.

Moreover, in order to show the inequality (4.3), it is enough to show that

X2, g =
∞

∑
n=1
∣bn ∣rn + ( 1

2 − d
+ r

1 − r
)
∞

∑
n=1
∣bn ∣2r2n + (

∞

∑
n=1
∣bn ∣rn)

2

≤ d for r ≤ r2 .

Since ∣bn ∣ ≤ 4nd for n ≥ 1, an easy computation shows that

X2, g(r) ≤ 4d
∞

∑
n=1

nrn + ( 1
2 − d

+ r
1 − r
) 16d2

∞

∑
n=1

n2r2n + 16d2 (
∞

∑
n=1

nrn)
2

= d − d (1 − 4r
(1 − r)2 −

(1 + r − rd)16dr2(1 + r2)
(1 − r)(1 − r2)3(2 − d) −

16dr2

(1 − r)4 )

= d − dA2(d , r)
(1 − r)(1 − r2)3(2 − d) ,

where

A2(d , r) ∶= (1 − 6r + r2)(1 − r)2(1 + r)3(2 − d) − 16d(r2 + r4)(1 + r − dr)
− 16dr2(1 + r)3(2 − d).

We claim that A2(d , r) ≥ 0 for every r ≤ r2 and d ∈ (0, 1]. It can be shown that

∂2A2(d , r)
∂2d

≥ 0 for d ∈ (0, 1]

and hence, ∂A2(d , r)
∂d

is an increasing function of d . Evidently,

∂A2(d , r)
∂d

≤ ∂A2(1, r)
∂d

= (1 − r)(−1 + 4r − 5r2 − 27r4 − 4r5 + r6) ≤ 0

for every r ≤ 1, and hence, A2(d , r) is a decreasing function of d in interval (0, 1].
Therefore,

A2(d , r) ≥ A2(1, r) = 1 − 5r − 39r2 − 37r3 − 53r4 − 23r5 − 5r6 + r7 ≥ 0
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for all r ≤ r2, where r2 ≈ 0.10469 is the unique root of the equation

1 − 5r − 39r2 − 37r3 − 53r4 − 23r5 − 5r6 + r7 = 0

in the interval (0, 1).
The sharpness of r1 and r2 can be easily shown by the Koebe function f (z) = z/

(1 − z)2 and hence, we omit the details. ∎

Proof of Theorem 4.6 Let f ≺ g , where g(z) = ∑∞n=0 bnzn is a univalent function
onD onto a convex domain Ω = g(D). Then it is well known from the growth estimate
for convex functions and Rogosinski’s coefficient estimate (see [19, 39]) that

1
2
∣g′(0)∣ ≤ d ≤ ∣g′(0)∣, and ∣bn ∣ ≤ ∣g′(0)∣ for n ≥ 1,

where d = dist(g(0), ∂Ω). It follows that ∣bn ∣ ≤ 2d for n ≥ 1. Combining these
inequalities and the inequality (4.4), we see that the desired inequality follows with
the help of Lemma 3.1 if we able to show the inequality

W1, g(r) ∶= 2
∞

∑
n=1
∣bn ∣rn + ( 1

2 − d
+ r

1 − r
)
∞

∑
n=1
∣bn ∣2r2n ≤ d for r ≤ r3 .

Since ∣bn ∣ ≤ 2d for n ≥ 1, we have

W1, g(r) ≤ 4d
∞

∑
n=1

rn + ( 1
2 − d

+ r
1 − r
)4d2

∞

∑
n=1

r2n

= d − d (1 − 4r
1 − r

+ (1 + r − rd)4dr2

(1 − r)(2 − d)(1 − r2))

= d − dΦ1(d , r)
(1 − r)(1 − r2)(2 − d) ,

where

Φ1(d , r) ∶= (1 − 5r)(1 − r2)(2 − d) − 4dr2(1 + r − dr).

We claim that Φ1(d , r) ≥ 0 for every r ≤ r3 and d ∈ (0, 1]. We see that

∂2Φ1(d , r)
∂2d

≥ 0 for d ∈ (0, 1]

and thus, ∂Φ1(d , r)
∂d

is an increasing function of d . This gives

∂Φ1(d , r)
∂d

≤ ∂Φ1(1, r)
∂d

= −1 + 5r − 3r2 − r3 ≤ 0

for every r ≤ 0.236068, and hence Φ1(d , r) is a decreasing function of d in interval
(0, 1]. Therefore

Φ1(d , r) ≥ Φ1(1, r) = 1 − 5r − 5r2 + 5r3 ≥ 0 for all r ≤ r3 ,
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where r3 ≈ 0.174789 is the unique root of the equation 1 − 5r − 5r2 + 5r3 = 0 in the
interval (0, 1). Moreover, for the inequality (4.3), it suffices to show that

W2, g ∶=
∞

∑
n=1
∣bn ∣rn + ( 1

2 − d
+ r

1 − r
)
∞

∑
n=1
∣bn ∣2r2n + (

∞

∑
n=1
∣bn ∣rn)

2

≤ d .

Since ∣bn ∣ ≤ 2d for n ≥ 1, we have

W2, g(r) ≤ 2d
∞

∑
n=1

rn + ( 1
2 − d

+ r
1 − r
)4d2

∞

∑
n=1

r2n + (2d
∞

∑
n=1

rn)
2

= d − d (1 − 2r
1 − r

+ (1 + r − rd)4dr2

(1 − r)(2 − d)(1 − r2) +
4dr2

(1 − r)2 )

= d − dΦ2(d , r)
(1 − r)2(1 − r2)(2 − d) ,

where

Φ2(d , r) ∶= (1 − 3r)(1 − r2)(2 − d) − 4r2(1 + r − dr)d − 4dr2(1 + r)(2 − d).

Our aim is to show that Φ2(d , r) ≥ 0 for every r ≤ r4 and d ∈ (0, 1]. A simple
computation shows that

∂2Φ2(d , r)
∂2d

≥ 0 for d ∈ (0, 1]

which implies that ∂Φ2(d , r)
∂d

is an increasing function of d . This gives

∂Φ2(d , r)
∂d

≤ ∂Φ2(1, r)
∂d

= −1 + 3r − 3r2 + r3 ≤ 0 for r ≤ 1,

and hence Φ2(d , r) is a decreasing function of d in interval (0, 1]. Therefore,

Φ2(d , r) ≥ Φ2(1, r) = 1 − 3r − 9r2 − r3 ≥ 0 for r ≤ r4 ,

where r4 ≈ 0.20473 is the unique root in the interval (0, 1) of the equation 1 − 3r −
9r2 − r3 = 0. The sharpness of r3 and r4 can be easily shown by the function f (z) =
1/(1 − z) and hence, we omit the details. ∎
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