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On the Sum of Digits of Numerators of
Bernoulli Numbers

Attila Bérczes and Florian Luca

Abstract. Let b > 1 be an integer. We prove that for almost all 1, the sum of the digits in base b of
the numerator of the Bernoulli number By, exceeds clogn, where ¢ := ¢(b) > 0 is some constant
depending on b.

1 Introduction

Let {B, }»>0 be the sequence of Bernoulli numbers given by By = 1 and

n—1
Z (Z)Bk =0 forall n>2.

k=0

Then B; = —1/2 and B,,; = 0 forall n > 0. Furthermore, we have (—1)""!B,, > 0.
Write By, =: (—1)"*1C,,/D,, with coprime positive integers C, and D,,. The denomi-
nator D,, is well understood by the von Staudt—Clausen theorem, which asserts that

D,= ][ p-

p—1|2n

Let b > 1 be an integer. For a positive integer m, put s,(m) for the sum of digits of m
in base b. In [2], it was shown that there exists a positive constant ¢y depending on
b such that the inequality s;(n!) > ¢y log n holds for all positive integers n. Here, we
prove that a similar inequality holds with n! replaced by C,, on a set of n of asymptotic
density 1.

Theorem 1.1 The inequality

logn
6logh

sp(Cp) >

holds on a set of positive integers n of asymptotic density 1.
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Our main tools are the classical formula

@m)*  Cy(2m)*

(1.1) (2n) = (_1)“132”2(2;1)' "~ D,2(2n)!

valid for all n > 1 and the following result, which is [1, Theorem 2].

Lemma 1.2 Foreverye > 0, thereisa T := T(g) such that ifx > T, then the number
of n < x that have a divisor p — 1 > T with p prime is less than ex.

In what follows, we use the Landau symbols O and o and the Vinogradov symbols
> and < with their usual meaning. We also use x, for a large real number, not
necessarily the same from one occurrence to the next.

Proof Consider the following set of positive integers:

1
My(x) := {n € [x/2,x) : 5,(Cy) < 6(1)5;1)}.

We need to show that #M,(x) = o(x) as x — 00, because after this the conclusion of
Theorem 1.1 will follow by replacing x by x/2, then by x/4, and so on, and summing
up the resulting estimates.

Put y := logx and consider the set

L(x):={n € [x/2,x): p— 1| 2nfor some prime p > y}.
It follows from Lemma 1.2 that
(1.2) #L(x) = o(x) as  x — oo.
We now put Np(x) := M,(x)\L(x). Inlight of (1.2), it suffices to show that #N;,(x) =

o(x) as x — oo. Let
D(x) :={D, : n € Nyp(x)}.

Since n & L(x), it follows that if p | C,, then p < y. Thus,
(1.3) #D(x) < 270 = xo as X — 00.

For n € Ny(x), we write C,, = d;b™ + dyb™ + --- + d;b"™, where dy,...,d, €
{1,...,b—1}and n; > ny > -+ > n,.. We next put ¢t := t(n) for the smallest index

i€{1,2,...,s— 1} such that ¥ ~"+ > n? if it exists and set t := s otherwise. From
the definition of #(n), we see immediately that

(1.4) C,= (dlb”l +.t dtb”’) (1 + O(n_z)) = b’””En(l + O(x_z)) ,
where m = m,, :== n; and E,, := db" ™™ + do,b™ "™ + ... + d;.

Let
Ep(x) = {E, : n € Ny(x)}.
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Let us find an upper bound for the cardinality of €,(x). First observe that

(15) En < ™ —n+1 < b2(logx)/(log b)+1.

The positive integers E := E, bounded by the right-hand side of inequality (1.5) have
at most K := |2(logx)/(logb) + 2] digits in base b. As n € Ny(x), the number of

nonzero digits of E, is bounded by S := | (logx)/(61ogb) |, so the number of possible
values for E is at most

5. /K i K s (b—1)eK\
;(i>(b—l) §(5+1)<S>(b—1) §(5+1)(f)

— (logx)/(6log b) .
< ( log x +1) ((b 1)6+0(1)> BWIIOTORY o)
6logh 3

as x — 0o, where

5 log((b — 1)e/3) - l
6logh 6
Thus, we get that
(1.6) #8,(x) = 0 a5 x — o0.

We next use formula (1.1) as well as the aproximation

C(Zn):1+2—;+3—;+~-~:1+o(2%)
to get that

_ 5 2@n)! o 20n)! 1
(1.7) Cn =D, (Zﬂ)%g(zn) =D, 2 (1 +0 (22ﬂ>) .

We take logarithms in (1.7) to arrive at

(18)  log(Cy/Dy) — log(2(2m)1) + 2nlog(27) = 1og(1 +o(2%)) < zi

Taking logarithms in (1.4) and comparing the result with (1.8), we get
1
(19)  log(2(2n)!) — 2nlog(2m) = log(E,/D,) + my logb + o( 7) .
X
Now fix a pair of numbers (D, E) € Dj(x) x E,(x) and look at the set
Nopg(x) = {n € Ny(x) : (Dy, Ex) = (D, E)}.

We let z := x'/> and show that if x > xo, then every subinterval I of (x/2, x] of length
z contains at most two elements of Ny, p g(x). Now, assume that this is not so and let
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ng < nm < ny be all three in N, p (x), where n, — ny < z. Write n; = ny + k; for
i=1,2,with0 < k; < k, < z. We evaluate relation (1.9) in ny, n;, and n, getting

(1.10) log(2(2n;)!) + 2n; log(27) = log(E/D) + my, logb + o( iz)
X
fori =0, 1, 2. Welet A := (X\o, A1, A\2) = (ko — k1, —ks, k;). Observe that

(1) {)\0+)\1+>\2—0,

T’l())\() + 1’11)\1 + 1’12)\2 =0,

and max{|\;| : i = 0,1,2} < z. Taking the linear combination of the three relations
(1.10) with the coefficients given by A and using the second equation (1.11), we get

2
z
(1.12) ;)\ilog(2(2ni)!) :I‘logb+0<x—2),

where I := Z?:o Aitmy, € 7. Write
2(2n;)! = 2(2ne)!(2ne + 1) - - - (2n;) =: 2(2ng)'X;, (i =10,1,2).

Hence,

2 2
> Ailog(2(2m)t = Ai(log(2(2mo)!) + log X;)
1=0

= i=0

2 2
= Ailog(2(2n)!) + Y AilogX;

i=0 i=0
2

= Z AilogXi = A log X + Az log X5,
i=0

where in the above equalities we used the first equation of (1.11) as well as the fact
that Xy = 1. Writing

2k; 2k; .
logX; = Zlog(Zno + 7) = 2k;log(2ny) + Zlog(l + nio)

j=1 j=1

* . )
= 2k;log(2n,) + ;(n]o * O(;]Tg) )

2k; . 2k; )
= 2k;log(2no) + E n]+0( E 1]12)

- 0

=1

j=0 "0

2ki(2k; + 1) . O(k—?>

= Zk,' I 2 +
og(2no) o 2
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fori = 1,2, we get that

Arlog Xi + Az log Xz

4)\1k% + 4)\2](% + 2M1ky + 20k, + O( E)

= 2()\1k1 + )\zkz) log(2n0) + n2
0

o o
4

:4(M) +o(i).

N x2

Inserting the above estimate into the left-hand side of (1.12), we get

2 2 4
(1.13) 4<M z

" ) :Flogb+0(§+?) :Flogb-i—O(#).

IfI" = 0, then (1.13) implies that

MK+ Ak :o( o ) :o(i) — o(1)

x6/5 x1/5

as x — 00, showing that A\ k{ + \,k3 = 0 for x > xo. This last equation is equivalent
to kiky(k; — ky) = 0, which is impossible. Thus, I' # 0, showing that the right-
hand side in estimate (1.13) is > 1, and since the left-hand side of estimate (1.13)
is O(k3 /x), we get that k, > x'/3. This is not possible for large x because k, < z.
We conclude that indeed for large x, I cannot contain three numbers from Nj, p (x).
This shows that

x—x/2

#Np p p(x) < [ ] +2 < 50,

Hence, by estimates (1.3) and (1.6), we get that

Ny(x) = > #Nppp < %% X #Dy(x) x #&,(x)
(D.E)EDy(x) X Ep(x)
< x4/5+(5+0(1) < x29/30+0(1) _ O(X)
as x — 00, which is what we wanted to prove. ]
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