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DECOMPOSITIONS OF GRAPHS OF MODULES
OVER SEMISIMPLE RINGS

GRACE ORZECH

In this paper we show that an R-module graph over a semisimple
ring R can be written as a direct sum of graphic submodules
that are uniquely determined up to isomorphism type. Moreover,
this decomposition enables us to describe the R-module graph in
graphic terms as a disjoint union of connected components, each
of which consists of a complete directed graph on its vertices
together with a set of loops at each vertex, determined by the
loops at 0. We also give a graphic version of Maschke's

Theorem.

0. Introduction

In [4] and [5] Ribenboim described a way of endowing an algebraic
object with a compatible directed graph structure. For example, an

R-module graph MF is a quadruple MF = (M,V(M),0,t) where M is an

ordinary R-module, V(M) is a submodule of M, and o,t: M+ V(M) are
R-homomorphisms that restrict to the identity on V(M}. Thus,

M = ker(o) @ V(M) = ker(t) @ V(M). These decompositions are natural in an
algebraic sense but unsatisfying categorically because ker(o) and ker(t)

are submodules which are not R-module graphs in their own right.

When R 1is a field we are dealing with vector space graphs and in
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[3] we have studied decompositions of MF into indecomposable

R-subspaces. BAn analogous decomposition is possible when R is a semi-

simple ring in the usual (nongraphic) sense.

Before launching into the study of R-module graphs over a semisimple
ring, R , we recall some observations made in [Z] concerning arbitrary

R-module graphs.
First, an R-module graph MF is a directed graph whose vertices

are the elements of V(M) and whose edges are the elements of

E(M) = M\ V(M). BAn edge e is directed from o(e) to t(e).

A submodule M' of M is called a graphic submodule if
o(M') U t(M') c M.

Let t{ker(o)) = Vb

theoretically adjacent to 0. CO = ker(o) C)VO is a graphic submodule

of M and it is the graph theoretic connected component of 0.

be the set of vertices that are graph

Lo = ker(o) N ker(t) is a graphic submodule and it consists of the

vertex 0 together with all loops at 0.

When F 1is semisimple, ordinary R-modules are completely reducible
in the sense described in [7, Chapter IIl. This is not the case for

R-module graphs, as we shall see.

1. A graphic decomposition of an R-module graph

The decomposition M = ker(o) @ V(M) is module theoretic but not

graph theoretic since ker(o) is not a subgraph of M} unless

kexr(o) = ker(t) = LO. similarly the decomposition CO = ker(o) C)Vo has

components which are not graphic.
When R is semisimple we can express CO and M as direct sums
of graphic submodules. To do this, first write ker(o) = Lo ®c.

This can be done because L, < ker(o) and ker(o) is completely

0

reducible. The complement C( of LO in ker(o) is not unique, but the

next proposition shows that for any choice of C, Vb =~ C.
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Proposition 1.1 If C c ker(o) and C satisfies
ker(o) = L, ®C, then C = Ve

Proof. sSince C < ker(o), t(e) is in VU for each ¢ in C.

Thus we can define wC : C ~> V0 by
(1.2) toc(c) = t(e) .

If wc(c) = 0, then ¢ is in Lo nc=1{0} rThus @ is one-one.
Let v be any element in V0' We can write v = t{x) for some X in

ker(o) since v is adjacent to 0. By hypothesis, x =£ + ¢ for

unique £ in LO and ¢ in (. Thus,
@C(C) = wc(x - L) =t(x - L) =t(x) ~ t(L) =v .

so, wc is onto.

Given (C as in Proposition 1.1, let KO c =c® VO. The properties
2

of KO c are summarized in the next proposition.
3

Proposition 1.3 KO,C is a graphic submodule of M. Moreover,

Ky o is a complete directed graph in the sense that for any ordered pair,
3

(v,w) of vertices, v # w, from Ky o s there is a unique edge e in
El

K, o satisfying ofe) =v and tle) = w.

Proof. Given any k in KO c? write kK =c¢ + v where ¢ is in
3
C and v is in Vb. Since ¢t(e) is also in VO’ t(k) = tle) + v is in

VO' Also, o(k) = ole) + o(v) = v is in VO' Thus,

t(KO,C) U O(KO,C) < VO < KO,C , which proves that KO,C is graphic.
Next consider v # w in VO = V(KO c). From the proof of
3
Proposition 1.1, we know that there exist Cy and C, in C such that
v = tle ) a w-= . =0 - is i
,)  an t(cw) The edge ¢ =v -¢ +¢  isin KU,C and

satisfies

ole) = olv) - o(cv) + o(cw) =v ,

1]
<
1
<
+
[
]
€

tle) = tlv) - t(cv) + t(cw)

https://doi.org/10.1017/50004972700021651 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700021651

408 Grace Orzech

If e’ in ( also satisfies ofe') =v and t(e’) =w, then e - e’

is in LO n KO c = {0}. This proves the uniqueness of the edge from v
E

to w.

Now let C be such that ker(o) = L0®C. Then

¢, = kex(o) @Vo = (L0@0)®V0 =L0@ (C@Vo) =L0@K0’C .

Thus CO , the connected component of 0, is the direct sum of two graphic

submodules, one characterized graphically as loops at (¢ and having only
one vertex, the other characterized as a complete directed graph on the
vertices in the connected component of 0. While Lo is unique, the
component KO c is determined only up to isomorphism.
>
Since R is semisimple and VO < V(M), we can write V(M) = VO @ W.

W is graphic because every submodule of V(M) is graphic. Thus,

M = xer(o) @ V(M)

ker(o} @ (VO @ W

(ker(o) @ VO) @ W

C'0®W

L0®K0’C@w

is a way of expressing M as a direct sum of graphic submodules.
It is easy to see that the submodule W = V(M)/Vo is determined up
to isomorphism. It plays a role in helping to describe M as a graph.

PROPOSITION 1.4. As a graph, M 1is the disjoint union of

subgraphs, Cw » Where Cw 18 the connected component of W , and W

varies over W. Moreover, each C LS graph theoretically isomorphic to
CO .
Proof. Let W, and w2 be in W and suppose ij = Cw2 .

Then w; - w2 is in CO n V(M). Thus, wl - v, is in VO . But then

0 +w =(w1—w2)+w and since V(M)=V0®W,we have 0=w1—w2

1 2

and w1 = w2 .
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This shows that

M= c..
(disjoint)
w in W

To see that Co and Cw are isomorphic as graphs, define

F: Cw->M by F(x) =x - w and G: CO+M by G(x) = x + w. First we

check that F(Cw) [= CO' Let v be a vertex in C'w and e an edge in

C, There is a sequence of edges, €g5-+-5€ in Cw with o(el) = w,

) for 2=1, ..., k-1, and t(ek) = v , and there is

t(ei) = o(ei”

another sequence, fl’ eoes fs » With O(fl) = w, t(fi) = O(fi+1) for
=1, ..., 8-1 , and t(fs) = ofe). But then, o{el -w) =0,
-w) for i =1, ..., k-1, and t(ek - w) =v-w = Fv).

t(ei -w) = 0(ei+l

So F(v) is in Co. Also, o(fl -w =0, t{fi -w = O(fi+1 - w) for
i=1, ..., 8-1, and t(fs-w) =t(fs) -w=o0(e) -w=o0(e - w =
o(F(e)). Thus, F(e) is in CO'

A similar argument can be used to show that G(CO) c Cw. Since

GF(x) = G(x - w) (r - w) +w=x and

FG(x}) = F(x +w) = (x + w) - w =x,

F and G are one-one and onto.

To see that F and (G preserve graphic structure, note that

Fo(x) and

OF(x) = o(x - w) =o(x) - w

tF(x) = t(x - w) = t(x) - w = Ft(x)

and similarly, oG(x) = Go(x) and tG(x) = Gt(x).
In accordance with our observations we name the components LO s

KO_,C" and W of M as follows:

DEFINITION 1.5. L, is called the loop component of M , Ky o

called the complete component, and ¥ is called the partition component.

is
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The loop and partition components of a graphic module M share the

property that any ordinary submodule of either one is graphic. KO c is
3
different. € is a submodule of KO c but it is not graphic because
3

t(C) = VO but VO ¢ C since CN VO < ker(o) N V0 = {0}.

2. Decomposition of R-module graphs into
indecomposable graphic R-submodules.

If an R-module graph M} is indecomposable, then it must be
comprised entirely of one of its graphic components.
Definition 2.1. An R-module graph MF is called loop type if

M=1L,, complete type if M = Ky o » and vertex type if M =W.

3

If MF is a loop type or vertex type indecomposable F-module graph

then M must be irreducible as an F-module since any nontrivial
submodule would be a direct summand and the summands would automatically

be graphic. On the other hand, if M} is a complete type indecomposable,

then M is not indecomposable as an R-module since M = C @ VO with

C w VO # {0}.
Proposition 2.2. A complete type R-module graph K, . = C(:)Vo is
indecomposable if and only if ) 18 an irreducible R-module.

In order to prove this it will be useful to know the next fact:
Lemma 2.3. If C(:)Vb is a complete type R-module graph and V
is any submodule of V, , then K = wc—l(V)(D V is a graphic submodule

(where ®, was defined in equation (1.2)}).

Proof. Each k in K can be written uniquely as k =x + v

where x is in wb_J(V) and v is in V. Thus,

v and

o(k) = o(x) + o(v)

t(k)

tl(x) + t(v) = tpc(x) + V.

This shows that oK) U t(K) c V = V(K).
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Proof (of Proposition 2.2.). First suppose VO is not irreducible.

Since R is semisimple, VO = Vl @...® Vn , where each Vi is an

irreducible HR-module. Let Ki = wC_l(Vi) C)Vi . It is graphic by Lemma
2.3 and given the nature of ¢, , it is clear that K =K @®... Kk .
¢ O:C 1 n

That is, KU c is not indecomposable.
3

On the other hand, suppose VO is irreducible but K, . =G ® H
£l

for some graphic submodules G and H. Since V(KO C) = Vb = V(G) ® V(H),
2

we may assume that V(G) = VO and V(H) = {0}. Thus, Hc LO which is

{0} for a complete type R-module. This shows that KO c is
E

indecomposable.
The next fact is an easy consequence of our understanding of the

nature of indecomposable RF-module graphs and the usual decomposition

theorem for modules over semisimple rings (e.g. see .

THEOREM 2.4. If M, is any R-module graph then
M=L,@... 0L, QK @... DK @W, ©... @Wu

where each L is a loop type indecomposable, each Kj i8 a complete

01
type indecomposable, and each Wy is a vertex type indecomposable. The

nwnbers A, 1, and u are unique and if

M=L0'1@... @Lé)\@Kl'@... @K_;@...@Wl'@... @w‘:

is another decomposition of M into indecomposable graphic submodules,

. . r ! 14
the indices may be chosen so that LOi ~ Loi s Kj = Kj , and Wk ] Wk

1 =1y, vouy Ay J=1, vo.y T, and k=1, ..., H.

for

3. Modules over semisimple group rings.

In this section we suppose R = k/G] where k is a field of
characteristic not dividing the order of G. By Maschke's Theorem, R is

known to be a semisimple ring. Each R-module graph MP is also a
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k-vector space graph. Observe also that each g in (G acts as a
graphic k-linear operator, T(g/), on MI‘ .

The main theorem of this section shows how the graphic vector space

structure of MI‘ influences its graphic module structure. It is a

relative of Maschke's Theorem.

THEOREM 3.1. ILet k be a field and G a finite group satisfying
char(k) ) [G:1]. Let M, be a klG]-module graph and My a graphic

submodule of M. . If there is a graphic k-subspace N of M such that

M =M @V, then there is a graphic k[G]-submodule N’ of M such that
M=M DN .

Proof. Let E: MI‘ +M'I, be the projection of M onto M’ arising

from the decomposition M = M' ®N. E is a graphic linear transformation

and so is

1 -1
F == Y T(g)ET(g)™ " .
[G:1] g iné

It is easy to check that for each g in G , FT(g) = T(g)F, which means

F is actually a graphic K/GJ-module homomorphism that maps MI‘ to MIf

Also easy to verify is the fact that F | M' = idM, .

Now let N' = (idM ~ F)(M). N' is a k[G]-submodule of M since
idM and F are k/[G]-homomorphisms.

Let s be in {o,t} and m in M. Then
s(m - F(m)) = s(m) -~ sF(m) = s(m) - F(s(m)) = (idM - F)s(m))

This shows that of(N'’) U ¢(N') < N' . Thus, N' is a graphic
k[G]-submodule of M and F: M, > MIZ may be interpreted as a projection

homomorphism corresponding to the desired decomposition: MI‘ = MIZ @ IVI', .
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