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DECOMPOSITIONS OF GRAPHS OF MODULES

OVER SEMISIMPLE RINGS

GRACE ORZECH

In this paper we show that an i?-module graph over a semisimple

ring R can be written as a direct sum of graphic submodules

that are uniquely determined up to isomorphism type. Moreover,

this decomposition enables us to describe the /?-module graph in

graphic terms as a disjoint union of connected components, each

of which consists of a complete directed graph on its vertices

together with a set of loops at each vertex, determined by the

loops at 0. We also give a graphic version of Maschke's

Theorem.

0. Introduction

In [4] and [5] Ribenboim described a way of endowing an algebraic

object with a compatible directed graph structure. For example, an

/?-module graph M is a quadruple M = (M,V(M),o,t) where M is an

ordinary fl-module, V(M) is a submodule of M, and O,t: M -*• V(M) are

/?-homomorphisms that restrict to the identity on V(M). Thus,

M = kerfo.) 0 V(M) = ker(t) © V(M). These decompositions are natural in an

algebraic sense but unsatisfying categorically because ker(o) and kerfij

are submodules which are not R-module graphs in their own right.

When R is a field we are dealing with vector space graphs and in
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[3] we have studied decompositions of M into indecomposable

i?-subspaces. An analogous decomposition is possible when R is a semi-

simple ring in the usual (nongraphic) sense.

Before launching into the study of i?-module graphs over a semisimple

ring, R , we recall some observations made in [2] concerning arbitrary

f?-module graphs.

First, an Z?-module graph M is a directed graph whose vertices

are the elements of V(M) and whose edges are the elements of

E(M) = M\ V(M). An edge e is directed from o(e) to t(e).

A submodule M' of M is called a graphic submodule if

o(M') U t(M') c M'.

Let t(y:er(o)) = VQ be the set of vertices that are graph

theoretically adjacent to 0. C~ = kerfoj © F. is a graphic submodule

of M and it is the graph theoretic connected component of 0.

L = ker(o) fl Kerft) is a graphic submodule and it consists of the

vertex 0 together with all loops at 0.

When R is semisimple, ordinary i?-modules are completely reducible

in the sense described in [7, Chapter II]. This is not the case for

Z?-module graphs, as we shall see.

1- A graphic decomposition of an R-module graph

The decomposition M = kerfo,) © V(M) is module theoretic but not

graph theoretic since kerfoj is not a subgraph of M unless

'ke-c(o) = kerftj = L . Similarly the decomposition C. = kex(o) © V has

components which are not graphic.

When R is semisimple we can express C^ and M as direct sums

of graphic submodules. To do this, first write Y.ev(o) = L~ © C.

This can be done because LQ c \ex[o) and kerfo,) is completely

reducible. The complement C of L. in kerfoj is not unique, but the

next proposition shows that for any choice of C, V~ »* C.
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Proposition 1.1 If C czker(o) and C satisfies

ker(o) = LQ®C, then C » VQ.

Proof. Since C c kerio), t(o) i s in VQ for each c in C.

Thus we can define tp„ : C ->- V. by

(1.2) Wc(c)

If tyjc) = 0, then c is in L C\ C = {0}. Thus (p̂, is one-one.

Let V be any element in V'. We can write V. = t(x) for some x in

Y.ex(o) since V is adjacent to 0. By hypothesis, x = £ + e for

unique £ in L and c in C Thus,

ipje) = ipjx - I) = t(x - 1) = t(x) - t(i) = v .

So, H>£, is onto.

Given C as in Proposition 1.1, let X. „ = C ® VQ. The properties

of Kn n are summarized in the next proposition.

Proposition 1.3 Ko C is a graphic submodule of M. Moreover,

Kn is a complete directed graph in the sense that for any ordered pair,

(v,w) of vertices, v ± w, from K , there is a unique edge e in
U j 0

Kn n satisfying o(e) = v and tie) = w.

Proof. Given any k in K „ , write k = c + V where c is in

C and v is in Vg. Since tic) is also in V , tik) = tic) + v is in

VQ. Also, oik) = oic) + o(v) = V is in V.. Thus,

t(KQ c) U o(KQ c) c VQ c KQ c , which proves that K is graphic.

Next consider V ± w in Vn = V(Kn n ) . From the proof of

Proposition 1.1, we know that there exist c and e in C such that
V W

v = tic ) and w = tic). The edge e = V - a + a is in K. _ and
v tL* v w u, c

satisfies

oie) = oiv) - o(ev) + o(cw) = v ,

tie) = tiv) - tic ) + tic )=v-v+w=w.
V W
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If e' in C also satisfies o(e') = V and t(e') = w, then e - e'

is in Ln fl K. „ = {(?}. This proves the uniqueness of the edge from V

to w.

Now let C be such that ker(o) = L ® C. Then

Thus C- j the connected component of 0, is the direct sum of two graphic

submodules, one characterized graphically as loops at 0 and having only

one vertex, the other characterized as a complete directed graph on the

vertices in the connected component of 0. While L. is unique, the

component Kn r is determined only up to isomorphism.

Since R is semisimple and V c; V(M), we can write V(M) = V, ® W.

W is graphic because every submodule of V(M) is graphic. Thus,

M = kerfo; © V(M)

= ker(o) ® (VQ ® W)

= (ker(o) © VQ) ® W

= Lo®Ko,c®w

is a way of expressing M as a direct sum of graphic submodules.

It is easy to see that the submodule W s» V(M)/V^ is determined up

to isomorphism. It plays a role in helping to describe M as a graph.

PROPOSITION 1.4. As a graph, M is the disjoint union of

subgraphs, C , where C is the connected component of w 3 and w

varies over W. Moreover, each C is graph theoretically isomorphic to

Proof. Let U, and Wn be in W and suppose C = C
1 2 wl W2

Then W- - W. is in Cn n V(M). Thus, U7 - w. is in V. . But then

0 + W- = (W- - W-) + W- and since V(M) = V. © W , we have 0 = U, - Uo

1 1 Z 6 U 1 Z
and Wj = w% .
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This shows that

U ,.M =
(disjoint)
W in W

To see that Cn and C are isomorphic as graphs, define
0 W

F-. C -*• M by F(x) = x - w and G: Cn -»• M by G(x) = x + w. First wew u

check that F(C ) c C'. Let V be a vertex in C and e an edge in
w — u w

C . There is a sequence of edges, e.,—,e, in C with o(e-) = W,
u/ J. K. Xu J.

t(e.) = o(e. -) for i = 1, ..., k-1, and t(ev) = v , and there is

another sequence, fJt ..., f , with oif^ = W, t(f^) = °(f^+1^
 f o r

i = 1, ..., 8-3 , and t(f ) = o(e). But then, o(e - w) = 0,
S J-

t(e. - w) = o(e. 7 - w) for i = 1, ..., k-1, and t(ev - w) = v-w = F(v).

So F(v) is in C . Also, o(f - w) = 0, t(f. - w) = o(f. - - w) for

i = 1, ...j s-l} and t(f - w) = tC/ -> - U = o(e) - w = o(e - w) =
s s

o(F(e)). Thus, F(e) is in CQ.
A similar argument can be used to show that G(Cn) c C . Since

0 — w

GF(x) = G(x - w) = (x - w) + W = x and

FG(x) = F(x + w) = (x + w) - w = x,
F and G are one-one and onto.

To see that F and G preserve graphic structure, note that

oF(x) = o(x - w) = o(x) - w = Fo(x) and

tF(x) = t(x - w) = t(x) - w = Ft(x)

and similarly, oG(x) = Go(x) and tG(x) = Gt(x).

In accordance with our observations we name the components Ln ,

Kn „ , and W of M as follows:

DEFINITION 1.5. LQ is called the loop component of M 3 K is

called the complete component, and W is called the partition component.
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The loop and partition components of a graphic module M share the

property that any ordinary submodule of either one is graphic. Kn r is

different. C is a submodule of Kn n but it is not graphic because
U j C

t(C) = VQ but VQ £ C since C 0 Vg c ker(o) fl VQ = {0}.

2. Decomposition of .R-module graphs into

indecomposable graphic R-submodules.

If an R-module graph M is indecomposable, then it must be

comprised entirely of one of its graphic components.

Definition 2.1. An R-module graph M is called loop type if

M = L^ , complete type if M = K~ „ , and vertex type if M = W.

If M- is a loop type or vertex type indecomposable Z?-module graph

then M must be irreducible as an i?-tnodule since any nontrivial

submodule would be a direct summand and the summands would automatically

be graphic. On the other hand, if M is a complete type indecomposable,

then M is not indecomposable as an i?-module since M = C ® V' with

C M VQ ± {0}.

Proposition 2.2. A complete type R-module graph Kn r = C © V is

indecomposable if and only if VQ is an irreducible R-module.

In order to prove this it will be useful to know the next fact:

Lemma 2.3. If C®V is a complete type R-module graph and V

is any submodule of V , then K = ip ~ (V) © V is a graphic submodule

(where <p_ was defined -in equation (1.2)).
is

Proof. Each k in K can be written uniquely as k = x + v

where x is in (P_ (V) and V is in V. Thus,

o(k) = o(x) + o(v) = V and

t(k) = t(x) + t(v) = wc(x) + v.

This shows that o(K) \S t(K) a V = V(K).
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Proof (of Proposition 2.2.)- First suppose V. is not irreducible.

Since R is semisimple, V. = V^ © . . . © V , where each V. is an

irreducible .fl-module. Let K. = tp (V.) © V. . It is graphic by Lemma
"V 0 x- "Z«

2.3 and given the nature of tp_ , it is clear that Kn _ = K © ... © K .

That is, X. _ is not indecomposable.

On the other hand, suppose V. is irreducible but K „ = G © H
0 C/j C

for some graphic submodules G and ff. Since V(Kn J = Vn = V(G) © V(H),
U 3 is U

we may assume that V(G) = V and V(H) = {0}. Thus, H cz L which is

{0} for a complete type /?-module. This shows that K. r is

indecomposable.

The next fact is an easy consequence of our understanding of the

nature of indecomposable i?-module graphs and the usual decomposition

theorem for modules over semisimple rings (e.g. see [?])•

THEOREM 2.4. If M is any R-module graph then

M = LQ1® ... ®L()X®K1® ... © K^ © W1 © . . . © W

where each Ln. is a loop type indecomposable, each K. is a complete

type indecomposable, and each W, is a vertex type indecomposable. The

numbers \, i, and y are unique and if

M = L'® ... ®L'®K'®... ®K'@... ®W'® ... ®W
Ul UK 1 T 1 y

is another decomposition of M into indecomposable graphic submodules,

the indices may be chosen so that LQ• » L'. , K. fa K'• , and (/, » WJ for

i = 1, ..., \, j = l, ..., T, and k = 1, ..., y.

3. Modules over semisimple group rings.

In this section we suppose R = k[G] where k is a field of

characteristic not dividing the order of G. By Maschke's Theorem, R is

known to be a semisimple ring. Each R-module graph M is also a
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fe-vector space graph. Observe also that each g in G acts as a

graphic fe-linear operator, T(g), on M .

The main theorem of this section shows how the graphic vector space

structure of M influences its graphic module structure. It is a

relative of Maschke's Theorem.

THEOREM 3.1. Let k be a field and G a finite group satisfying

ohar(k) \ [G:1J. Let M be a k[G]-module graph and M^, a graphic

submodule of M . If there is a graphic k-subspace N of M such that

M = M' © N, then there is a graphic k[G]-submodule N' of M such that

M = M' © N' .

Proof. Let E: M •* M' be the projection of M onto M' arising

from the decomposition M = M' © N. E is a graphic linear transformation

and so is

F = 77^77 I T(g)ET(9r
1 .

lU-1J g in G

It is easy to check that for each g in G , FT(g) = T(g)F, which means

F is actually a graphic K[G]-module homomorphism that maps M to M' .

Also easy to verify is the fact that F \ M' = idM, .

Now let N' = (idM - F)(M). N' is a k[G]-submodule of M since

id and F are fc/^y-homomorphisms.

Let s be in {o^t} and m in M. Then

s(m - F(m)) = s(m) - sF(m) = s(m) - F(s(m)) = (id.. - F)(s(m)) .
M

This shows tha t o(N') U t(N') c N' . Thus, N' i s a graphic

kA7/-subinodule of M and F: M -*• M' may be interpreted as a project ion

homomorphism corresponding to the desired decomposition: M = M' © N' .
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