THE REVERSIBILITY OF A DIFFERENTIABLE MAPPING
F.V. Atkinson
(received March 10, 1961)

1. Introduction. Given n functions of n wvariables, in
the real domain, by the equations

(1) yr-fr(xi,...,xn), r=1, ..., n,
we have in various contexts to consider whether the equations

are soluble for the x,. when the y_. are given. Such questions
receive fairly complete answers in complex variable theory; a
complex variable relation w =£(z) is of course brought under

the heading of the real equations (1) by setting w =yy + iy,

z =x, +ix,. For example, if f(z) is a polynomial the fundamen-
tal theorem of algebra asserts that the equations are soluble,
though not in general uniquely. Again, a basic theorem on
conformal mapping gives conditions under which the equations
are uniquely soluble, to the effect that a (1,1) mapping of the
boundaries of domain and range implies a (1,41) mapping of the
interiors. )

The other main context for this question is the '"'change
of variables" in multiple integration. Here it is desirable to be
able to say that the x,. are uniquely fixed by the y.. A stan-
dard result covers this point, but in a local sense only;
specialized to the form (1), the implicit function theorem asserts
that if the derivatives are continuous and the Jacobian not zero,
and if (1) holds for a particular set of the Xps Voo then corres-
ponding to a slightly perturbed set y). there will be a unique
perturbed set x'r so that Y'rzfr(x'i’ e, xﬁ)’ r=1, ... n.
It should be emphasized that the non-vanishing of the Jacobian
does not ensure the unique solubility of the equations (1) in the
large.
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In texts on real analysis it is only rarely that the treatment
of the implicit function theorem proceeds beyond the local version
just mentioned; a notable exception is however the text [2].

While definitive results are obtained in complex variable theory,
the methods are often of a special character.

It may therefore be useful if I give here a unified treat-
ment of these topics, treating the general case (1) in such a
manner as to cover some of the more basic complex variable
results. We have to deal here with matters which are well-
known in complex variable theory in a more special case, and
again in topology, to take a more general case, but which are
less often dealt with at an intermediate level of generality.

After preliminaries I discuss the solubility of (1) without
reference to uniqueness, related topics being the maximum and
minimum modulus principles and the '"fundamental theorem of
algebra'. Following some subsidiary results on "analytic"
continuation, I pass to the two main criteria for the unique solu-
bility of (1). One of these requires the range of the transfor-
mation to be simply-connected; another requires the mapping
of the boundary of the domain on to the boundary of the range to
be (1,1) at one point. These two results are similar to those of
[2], though there are certain differences in the consideration
of the boundaries and of the effect of isolated zeros of the
Jacobian. Finally, I consider the special cases of a convex or
unbounded range, and an application to the existence of a critical
value for a scalar function of several variables.

2. Terminology. Using vectorial notation we write (1) in
the form

(2) y = (x),

where v,f,x denote n-vectors or points in Euclidean n-space,
with n > 2; much of the reasoning applies also with n =1, and
to manifolds of more general types than E,.

2
With the usual metric in E; we write | x| =\/21: x - A
neighbourhood of x will be the set U(x;e) formed by all
x' € E; such that |x' - x| < ¢, forany ¢> 0. A '"region"in

E, will be an open connected set; if G is a region, and x ¢ G,
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then U(x;e) C G for some €> 0, and for any two points

x“'), ‘x(z)e G, there is to be an arc x(t), 0 <t<1i, lying entirely

(1) (2)

in G, where x(t) is continuous in t and x(0)=x ', x(1) =x

The boundary of any set V C En will be denoted by 3V,
and defined analytically as the set of x ¢ E; such that for every
€ >0, U(x;e) contains both a point of V and a point not in V,
that is to say a point of the complement E - V. In the case
when V is unbounded, we consider o as a point of 9V; here
o denotes a unique point at infinity, the same for all directions,
not actually in E  and sonot in V. It would of course be
possible to bring « on to the same basis as other points by
using analogues of the Riemann sphere or projective space. On
the present basis, however, a neighbourhood of ® will be the
set of x € E; such that |x| > R, for any R> 0.

If the region G is the domain of the vectorial function f,
we denote its range by f(G), the set of f(x), xe€ G. It is desirable
to have an interpretation for £(9G). If, as often happens, f is
defined not only in G but also in 3G, and is continuous in the
closed set G+ 8G, we define f(0G) as the set of f(x), x ¢ 9G.

k
Failing this, we consider all possible sequences x( ), k=1, 2,..

of points of G which converge to any finite point of 0G
or tend to ®, if G is unbounded. The corresponding sequence

f(x(k)), k=1, 2, ... , will have one or more limit-points, in-
cluding possibly . The set of all limit-points obtained from
all such sequences is to constitute the set f(9G); this agrees
with the previous definition where that was applicable.

<

3. Differentiability. We denote by dy/dx the n-by-n
matrix whose r-th row is afrlaxi, e, afr/axn, so that
det(dy/dx) will be the Jacobian of the mapping. We shall say
that y is differentiable at the point x if firstly dy/dx exists
there and if secondly there holds at x the formula of the total

differential, namely
»

(3) |8y - (dy/dx)6x | < & |6x];

here 0y =f(x+ &x) - f(x), and for every ¢ > 0 there is to be an
n =n(x, €) > 0 such that (3) holds if |&x| < q.

(€3
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We shall throughout be concerned with the case in which
y is differentiable at each point of its domain. Later on, when
it is a question of unique solubility, we restrict y to be uniformly
differentiable in various subsets V of its domain. By this we
me=an that for given € > 0 in (3), we may find > 0 which is
the same for all x € V. Both these situations are ensured by
the standard requirement that dy/dx exist and be continuous.
For further discussion of this aspect at various levels the books
([1], [2]) may be cited.

For the case when y is differentiable and has non-zero
Jacobian we have the following, which forms part of the con-
clusion of the local implicit function theorem.

LEMMA 1. Let y bedefined in the region G and be
differentiable at x € G, with dy/dx being non-singular there.
Then there exist ¢ > 0, M > 0 such that if x'e U(x;0), v ={(x),
y' =£(x'), then

(4) |x' - x| < M|y - y]-

In particular, y'# y if x'# x, x'e U(x;0). Furthermore, x

(k)

cannot be the limit of a sequence x ', k=14, 2, ..., such

that f(x(k)) =y(°) for some fixed y(o), x(k) 4 x for all k.

Writing éx =x' - x, 8y =y' - y we have, since dy/dx is
non-singular, |(dy/dx)éx]| > M1|6x! for some My > 0. Taking
€ = %Mi in (3) we have, for |6x] < 17 and some 7> 0,

o] > [tdy/ax) sx| - « [6x] > a1, |ox],

which establishes (4) with M = é—M and o =q.

1
As regards the last assertion in the lemma, it follows by

continuity that f(x) =y'°). Thus taking x' =x*, y'=y'® in (4)

(k)

we find that x =x for all large k, contrary to hypothesis.

4. Properties of a class of mappings. We consider here
a fairly general case in which the Jacobian of the mapping may
have an infinite number of zeros, but not a continuurm of zeros.
For this case we establish a number of more or less equivalent
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properties, from which the fundamental theorem of algebra will
be an easy consequence.

THEOREM 1. In the region G let y =f(x) be differen-
tiable. Let the limit-points of the zeros, if any, of the Jacobian
be isolated in G, so that if x € G is such a limit-point, there
is a neighbourhood of x containing no other limit-point of zeros
of the Jacobian. Then the following hold:

(i) (preservation of regions) the map of a neighbourhood
of any x€ G contains a neighbourhood of f(x),

(ii) (minimum modulus principle) for any fixed u ¢ Ep,
the minimum of |y - u| for x e G cannot be attained at a point
of G, unless it vanishes there,

(iii) (maximum modulus principle) for any fixed u ¢ E,,
the maximum of |y - u| cannot be attained at a point of G,

(iv) the boundary of the map is contained by the map of
the boundary, i.e. 9f(G) C £{(3G),

(v) if H is a region containing no point of £(9G), and if
'H contains at least one point of £{G), then H C{(G).

We first prove these results for the special case in which
det(dy/dx) has no zeros in G.

Starting with (ii), suppose that |y - u| attains a minimum
for some x € G; we have to prove that y - u=0 there. Ata
minimum, assumed at an interior point of the domain, the gradient
must vanish. Denoting by d/dx the gradient of a scalar-valued
function ¢, that is to say the n-vector formed by
/0%y, ... , 0Y/dx,, an easy calculation shows that

2
dly - u|%/dx = 2(dy/dx)(y - u),
and since dy/dx is non-singular it follows that y - u=0.

We pass to (i), which forms part of the local implicit
function; the following argument is a standard method of proof
of this theorem. Take any x(0) ¢ G. By lemma 1, there exists
a p > 0 such that on the sphere Ix - x(o)l = p we have
ly - y(o)]> ¢, for some { > 0, where y(0) denotes £(x(0)). For
any u, subject to |u - ylo)|< %1, consider the minimum of
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|y = ul as x ranges over the region formed by the disc ]x-x(o) I< p.
On the boundary of this disc, that is to say on the sphere lx- x(o) |= P
we have |y - u] > ly - y(o)l - |u - y(o)l > +, while at the centre

of the disc |y - u| = |y(0) - u| < +¢. This means that the

minimum of |y - u| is attained at a point of the disc, and there-

fore is zero. Thus the map of Ix - x(o)k p includes all u for
which |u - y(©)| < ¥¢, which proves (i).

We have included (iii), the maximum modulus principle,
for completeness only. If f{G) includes vy, it also includes a
neighbourhood of y, and so includes points further than y from
the assigned point u.

We next prove (iv). Let y* € 0f(G). There is then a
sequence x(k), k=1, 2, ... , with x(k) -+ 0G, such that
f(x(k)) — y*. By selection of a sub-sequence, we may take it
that the sequence x(k) converges to a limit x%, possibly . In
the latter event y* is in f{0G), by definition. Suppose again
that x* is finite. If x* € G, then by continuity we should have
y* = f(x*), and by (i) y* would be an interior point of f{G),
contrary to hypothesis. Thus x% € dG, and therefore y* € £(0G),
as was to be proved.

Finally, for this special case of theorem 1, we prove (v).
Let y'e f{G)N H, and let y" be any other point of H. We have
to prove that y'" e f(G). Since H is a region there is a con-
tinuous arc y(t), 0<t< 1, y(0)=y', y(1) =y". Then y(t) ¢ {(G)
for t =0, and denote by t' the lower bound of t in [0, 1] for
which y(t) ¢ £{(G). If then t' < 1, we should have that
y(t') € 8f(G) C {(8G), whereas we assumed that HN f(8G) was
empty. Thus there is no such t', and the arc including y",
lies entirely in f(G).

We now permit det(dy/dx) to have zeros, whose limit-
points are to be isolated in G. Thus for any x(0) € G, there
will be a neighbourhood of x(©) in which the zeros of det(dy/dx)
ferm at most a denumerable sequence, say x(k), k=1, 2, ...,
whose only limit-point, if they are infinite in number, is x(0).
We assert that there still exist p > 0, £ > 0, such that if
|x - x(o)[ =p, then |y - y(o)l >, where y(o) = £(x(0)). Since
y is continuous, being differentiable it is sufficient to show
that y # y(0) for |x - x(0)]| =p, and some p > 0. Suppose on
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the contrary that for every p, 0<p < Py» there was an x = x{p)
such that |x - x(o)l =p, y =y(0). For every p-interval of the
form 0<p'<p<p'"<py, these x(p) would have a limit-point,

at which, by lemma 1, we should have det(dy/dx) =0. Thus

every closed annulus of the form 0<p'< Ix - x(O)I < p" < py
would contain a zero of det(dy/dx), whose zeros would accordingly
not have isolated limit-points.

Having chosen p,{ accordingly, let us denote by 1 the
set of zeros of det(dy/dx) lyingin |x =~ x(o)l < p. We apply
(v) of theorem 1, taking in place of G the set G* formed by
[x - x(o)l < p except for points of I. In place of H we take
the set H* formed by points of |y - y(o)l < { except for points
of f(I). '

To apply (v) we note first that G*, H* are both regions;
each is an open disc, from which has been removed at most a
denumerable sequence of points, whose only possible limit-point
is at the centre. Secondly, H* contains no point of f(9G*). In
this case 9G* consists of the sphere |x - x(o)l =p, together
with I; f(8G*) consists of the maps of these points, and by
construction does not intersect H*. Finally, we have to show
that f{G*) contains at any rate one point of H*. Take in fact
any x € G¥*, lying so close to x(0) that f(x) lies in ly - y(O_)l <.
Then f(x) ¢ H* except when f(x) happens to coincide with a
point of £(I); in this event we have only to perturb x slightly
to x', and then f(x') will, by lemma 1, be distinct from any
point of £{I). Thus £(G*)N H* is not empty, so that f(G¥*) D Hx*.
Adding to G*, H* the point-sets I, f(I) we find that the map of
a neighbourhood of %(0) contains a neighbourhood of f(x(o)).

The remainder of the properties (ii) - (v) then follow for
the general case, by essentially the same arguments as for the
special case in which det(dy/dx) does not vanish. This com-
pletes the proof of theorem 1. ’

As an example of the failure of property (i) when the
Jacobian has a continuous line of zerps, take the transformation

2
i = =x_. i f E
of E2 given by Yy x1 Xy ¥, =X, Plainly the map o 2 does

not contain a neighbourhood of the origin.

1e7
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5. The fundamental theorem of algebra. An n-dimensional
extension of this is

THEOREM 2. Let y be differentiable for all x, and let
the zeros of det(dy/dx) have only isolated limit-points. Let
|y| = o as |x| = o, uniformly in all directions. Then for any
u € En, the equation y =f(x) =u has at least one solution x.

For |y -u| = as |x| -~ o, and so must attain its
lower bound for some finite x, at which by theorem 1 it must
vanish. A similar result with slightly different conditions has
recently been given by Reichbach [3].

For mappings onto finite regions we have

THEOREM 3. Let y be differentiable and uniformly
bounded in the region G, and let the zeros of det(dy/dx) have
only isolated limit-points in G. Let £f(8G) be the common
boundary of a finite region H' and an unbounded region H'", so
that E, =H'+ H" + {(8G). Then y ={(x) is soluble for all
v € H' but not for y e H".

By (v) of theorem 1, if f(G) contained one point of H",
it would contain H'" entirely, which is impossible since y is
uniformly bounded on G and H" is unbounded. Hence f£(G)
cannot contain any point of f(0G); if so it would contain a
neighbourhood of such a point, and therefore a point of H",
which is impossible. Hence f£(G) lies in H', and therefore con-
tains H', by (v) of theorem 1.

In complex variable theory, the fundamental theorem of
algebra is often deduced from Liouville's theorem, that an ana-
Iytic function which is bounded at infinity is a constant. It is
natural to expect that Liouville's theorem admits extension to
n dimensions; this has been achieved by G.S. Young, ([4], where
further references are given).

6. The method of continuation. In what follows we explore
the method of the continuation of solutions of y =f{x), where y
moves along an arc and x varies accordingly. The process is
very similar to that of analytic continuation in complex variable
theory. Under suitable conditions, it can proceed indefinitely,
except in the neighbourhooed of a2 boundary, and gives a unique
result in simply-connected regions. We need to impose severer
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restrictions on y, assuming it uniformly differentiable, with
dy/dx having an inverse which is uniformly bounded in suitable
regions. These conditions are ensured by the usual assumptions
that dy/dx is continuous and non-singular.

The basis of continuation is of course the local implicit
function theorem, which we cite as

LEMMA 2. In any bounded closed subset V of the region
G let y be uniformly differentiable and let the inverse of dy/dx
exist and be uniformly bounded, in the sense that all its elements
are uniformly bounded. Then there are positive numbers o, T,
dependent only on V, such thatif xeV, y=£(x), |y'-y| < T,
there is a unique x'e€ G such that y'=f(x'), |x' -x[ < 0. More-
over we have (4), for some M > 0, dependent only on V.

This is contained in (i) of theorem 1, for the special case
in which dy/dx is non-singular, together with lemma 1. By the
assumptions of lemma 2, the determination of p, g M1 n, can
proceed independently of the choice of xe V. This is essentially
the proof of the local implicit function theorem given, for example,

in [5].

We shall need to apply this result repeatedly so as to cover
an arc, and need for this purpose conditions which ensure that
x does not approach 9G. We have .

LEMMA 3. Let the conditions of lemma 2 hold, and let
C be any bounded and closed set containing no point of f(9G).
Then the set of xe€ G, f(x) € C, is contained in a certain bounded
and closed subset V of G.

The set V 1is characterized by the requirements that if
x € V, then |x| < R and furthermore U(x;t) € G, for some
fixed positive R and €. Supposing the contrary, let there be
a sequence x(k) €eG, k=1, 2, ..., fx k)) € C, violating one of
these two requirements. We may suppose that f(x(k)) - y* ¢ C.
Supposing first that [x(k)l - o, we have at once that y* € £(9G),
contrary to hypothesis. If the sequence x(k) is bounded, we
may assume it tends to x%, eitherin G or in 9G. We assume
then that for a sequence €y With g3 >0, €™ 0 as k= oo,
U(x(k); €y) is not entirely contained in G. This is impossible
if x k) x* € G, since G has only interior points. Thus x* € 0G,
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and so again y* € f{0G), contrary to hypothesis.

Our result on the possibility of continuation is then lemma
4. Let C be'a continuous arc y(t), 0 <t< 1, which contains no
point of f(8G), and let the assumptions of lemma 2 hold. If then
there exists an x(0) € G such that f(x(0)) =y(0), there then
exists a continuous function x(t), 0 <t< 1, such that x(t) € G,
f(x(t)) = y(t). This function is unique.

For the bounded closed subset V C G corresponding to
this choice of C, according to lemma 3, we choose T > 0,
according to Iemma 2, and subdivide C at a finite number of
points y(tr), 0=ty<ty<...<ty=1, chosen so that if
to_4<t<t.,y then |y(t) - y(tr)l < T. By lemma?2 we can
continue x(t) as a function of t successively over the intervals
(tr, tr+i)’ r=0,1, ... , N-1, as required. Moreover, by
the last part of lemma 2, asserting that (4) holds, we have that
x(t) depends continuously on y(t), and so also on t. The same
reason ensures the uniqueness of x(t). If there existed a second
function x*(t) with the same properties, then x(t) =x*(t) for
t =0, and so for 0 <t< ty. By induction, x(t) = x*(t) also for
tp<t<tpyyq, r=1, ..., N-1, sothat x(t) =x*(t) for
0 5 t _<_ 1.

7. The domain as a covering space for the range. In

ensuring the uniqueness of "analytic' continuation for a given
path, according to lemma 4, we need to rely not so much on the
differentiability assumptions of lemma 2, but rather on the follow-
ing consequences of these assumptions. Let H' be a region
containing no point of f(8G), and let G' denote f'i(H‘), the set
of xe G, f(x) e H'. For any y'e H', let x(k), k=1, 2, ...,

be the solutions of y'=f(x), x € G'. Then there is a neighbourhood
U(y') of y', and neighbourhoods U(x(k)) of the x(k), each of
which is mapped topologically onto U(y') by vy =1f(x). Further-
more every x ¢ G' such that f(x) € U(y') belongs to at least one
of the U(x(k)). Finally, for every y'e€¢ H' there is to be at any
rate one x ¢ G', f(x) =y'.

With these latter three properties we have the essentials
for G' to be a covering space for H', under the continuous
mapping f; we cite [6], chapter 8, for a general discussion.
In this and the next section we outline some of the further
developments, insofar as they are relevant to the reversibility
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of a differentiable mapping. Side by side with the general topo-
logical development, one may consider the special case of com-
plex variable theory, in particular the theory of the Riemann
surface [7].

We first consider the number of '"sheets' in the covering.
For each y'e H', let v(y') be the number of solutions of
y'=1(x), x € G'. Then it turns out that v is a constant in H'.
We may say that G' is a v-sheeted covering of H'. A simple
example in the complex variable case is given by w = zz, which
gives a two-sheeted covering of the finite z-plane less the point
z =0. An allied concept is that of the degree of a continuous
mapping [6], [8], or more specially that of a differentiable
mapping. For our still more special case of an oriented and
differentiable mapping the main result that y =f(x) has a con-
stant number of solutions is given in [2] and [9]. Formally
expressed, we have

. If.EMMA 5. With ’ghe assumptions of lemma 2, let H' C E,
be a region such'that H' N{{8G) is empty. Then w(y), the
number of solutions of y =f(x), x € G, is constant for y ¢ H'.

We remark first that the result also holds when v =0;
that is to. say if y =f(x), x € G is insoluble for one y ¢ H', it is
then insoluble for all.

Suppose that for some y', y'"' ¢ H' we have v(y')> v(y"),
so that v(y')> 1. Let y', y" be connected by a continuous arc
in H', say y(_t:), 0<t< 1. Letthe solutions of y'={f(x) be
formed at t =0 and continued as functions of t for 0<t< 1,

say x(k)(t), k=1, ..., v(y"), being solutions of y(t) = {(x).
These will constitute v(y') solutions of y' =f(x) when t=1,
giving a contradiction, provided that the x(¥)(1), k=1, ..., v(y'),

are all distinct. This must be so; if two of them coincided,
then by continuation in the reverse sense from t=1 to t=0
we would get a contradiction to the uniqueness of continuation
along a path, which is ensured by lemma 4. '

8. Homotopy, fundamental and monodromy groups. A
basic result in the theory of analytic continuation is the "mono-
dromy principle', according to which the result of analytic con-
tinuation is independent of the path followed, at least for a class
of homotopic paths, any one of which can be derived from any
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other by continuous variation, within a region in which the
function concerned is analytic. Likewise for our case

LEMMA 6. Let the assumptions of lemma 2 hold, and
let H' be a region containing a point of f{G) and no point of
f(8G). Let y(s,t), 0<s,t<1, liein H' and be continuous in
s and t, and such that y(s,0) =y', y(s,4) =y", for 0<s< 1.
Let x(s,t) be continuous in t and a solution of y(s,t) = f(x(s,t))
for 0<s,t<1 such that x(s,0) =x', for some x'¢ G. Then
x(s,1) has the same value for 0< s < 1.

By lemma 3 the x(s,t) must all lie in a certain bounded
and closed subset V of G. For this V we choose positive
numbers o,T and M according to lemma 2. We also choose
8 >0 sothat |s'- s| < & ensures that

(5) ly(s',t) - y(s,t)| < min(3Mo,T)

for 0<t< 1. Then, by lemma 1, either

(6) [x(s',t) - x(s,t)| >0,
or else
(7) (st 8) = xls,0)] < M7V y(s', 1) - y(s,0)]

whence, by (5),
(8) |x(s',t) - x(s,t)| <Fo.

Since there can be no continuous transition between (6) and (8)
as t goes from 0 to 1, and since (8) holds when t =0, it follows
that (8), and so also (7) as the alternative to (6), holds also
when t=4. Thus x(s',1) =x(s,1) if [s' - s[ < 6, and since
this is so for the whole s-interval [0, 1] we have the result.

Of particular importance is the situation in which we con-
tinue x as a function of y along a closed path y(t), 0<t< 1,
y(0) =y(1) =y', say, in the region H'. In the first place we
note that the result of this will be the same, for fixed y' and
for fixed initial x', f(x') =y', for any two closed paths which
are homotopic in H'. Arranging the closed paths in H', be-
ginning and ending at y', in homotopic classes we derive the
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fundamental group of H'. The identity element in this group
consists of a closed curve formed by the single point y', to-
gether with all closed curves homotopic to it, that is to say
which are continuously contractible to a point within H'. Mul-
tiplication in the group, though we shall not actually need this,
is of course given by making one closed path follow another.

Suppose now that, as in the proof of lemma 5, we form
the solutions of y'=f(x) and continue them as functions
x(k)(t), k=1, ..., v, for 0<t<1, where now y(t) describes
a closed path, y(0) =y(1) =y'. In this case the x{K)(1) must
also be solutions of y'=1f(x), and so must coincide with the
x(k)(0), being a permutation of them. This group of permutations
forms the monodromy group, and is clearly a representation of
the fundamental group of H', with correspondence in particular
of the identity elements.

The monodromy group is transitive, in the sense that it
contains an element taking any one root x{(i)(0) of y'=£(x) into
any other x{i)(0), so that .x{j)(0) = x(i)(1), provided that H'
coincides with f(G) and contains no point of £(8G). To form
the required closed path in H', we take a path in G which has
x(1)(0), x(j)(0) as its end-points, and then form the map of this
path in H'. This will be a closed path, beginning and ending at
y', and has the required property.

As a result we have that if y'=f(x) has more than one
root for x, then the fundamental group of H' does not reduce
to the identity. This provides one of the main criteria for our
mapping to be (1,1).

9. The first global implicit function theorem. We now
obtain one set of conditions that y = f(x) have a single-valued
inverse. This is based on the result of continuation of x along
closed y-paths, as just described. A second test will depend
on the nature of the mapping of the boundary.

In this first test we shall require the range f(G) to be
simply~-connected. This is to mean that any two arcs in £(G)
with the same end-points can be continuously deformed irto one
another within f(G), in the manner described in lemma 6.
Equivalently, any closed curve in f(G) is to be homotopic to a
point. This definition of simple-connectedness is more
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appropriate to our method of analytic continuation than some
others, such as that a region is simply-connected if its boundary
or its complement is connected. Moreover, these latter
definitions are equivalent to the one we use here only if n = 2.

The criterion is then

THEOREM 4. Let y =1f(x) be defined in the region G
and let '

(i) y be uniformly differentiable in any bounded and
closed subset V of G,

(ii) dy/dx have an inverse which is uniformly bounded in
any such V,

(iii) f(8G) be the common boundary of two regions H', H",
of which H' is simply-connected, and such that E, = H'+ H" + £(8G),

(iv) H" be not contained in f(G), as for example if H"
is unbounded and f(x) uniformly bounded in G.

Then y =1(x), x € G, is uniquely soluble for y ¢ H'.

As proved in connection with theorem 3, f(G) in this case
coincides with H', and we have only to dispose of the possibility
that v(y) > 2 in H'. If this were so, then, by the argument
of §8, H' could not be simply-connected. To recapitulate, for
some y'e H', take two roots of y'=1{(x), join them by an arc in
G, and form the map of this arc, which will be a closed curve
beginning and ending at y'. This closed curve can then be
shrunk to a point within H'; continuation along the original
closed curve of x as a function of y and along the point version
of it will give different results, contrary tc lemma 6.

For the case n =2 this result is essentially that of
de la Vallee Poussin [10]; see also [11], [2], pp.193-194, and
[6], p-193, Aufgabe 3.

If n> 3, the simple-connectivity of H' will not be affected
by the removal of a restricted set of points, such as a finite
number, and accordingly theorem 4 can be extended for this

case. We need

LEMMA 7. Let GCE, be a region, and let ICG be a
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point set. Let I; be the set of limit-points of I which lie in
G, and let Iy CI. Let furthermore I; have no limit-point in
G. Then, if n>2, G -1 isa region; if n> 3, and G is
simply-connected, then sois G - I.

This may be proved by direct constructions. Two points
of G -1 can be joined by an arc in G, which can contain at
most a finite number of points of Iy. If n> 2, these points of
I4 may be avoided by introducing detours round circles, which
if sufficiently small will introduce no further points of I. Any
remaining points of I - I; on the modified arc will be finite in
number, and again may be avoided by further detours around
small circular arcs. Again, any two arcs in G - I with the
same end-points may be joined by a family of arcs of the form
y(s,t), 0<s<1, 0<t< 1, lyingin G. As in the previous case,
this family of arcs will contain at most a finite number of points
if I4, which may be avoided by perturbations of the arcs; the
remaining points of I -1, on the perturbed family of arcs may
be avoided similarly.

More generally, we may rely on the fact that such a set
I is denumerable, and the known fact that a denumerable set I
has the property claimed, insofar as connectivity is concerned.
The arcs, or families of arcs as the case may be, each admit a
continuous, and so non-denumerable, set of perturbations, of
which at least one in each case must be free of points of the de-
numerable set I. We shall not, however, reproduce the details.

Finally, we verify that G - 1 is a region in respect of
being an open set. This follows from the fact that I contains
all its limit points which are in G.

The extension of theorem 4 is then

THEOREM 4'. The conclusion of theorem 4 remains in
force if n> 3 and if for (ii) we substitute

(ii') dy/dx has a uniformly bounded inverse in any closed
and bounded subset of G - I, where I C G, the set I of limit-
points of I in G has no limit-point in G, and Iy C I

We apply theorem 4 with G* =G - I, H¥ = H' - {(I). It is
only necessary to verify that G*, H* are regions and that H=*
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is simply-connected. It will be sufficient to verify that f(I) has,
in regard to H', the properties postulated of I in lemma 7, in
regard to G. Consider the limit-points of f(I). Any convergent
sequence in - f(I) has, as its inverse image, a sequence in I,
which will have a limit-point, either in G or on 9G, possibly
co; if this limit-point is in G, it will be in I,, if not, the cor-
responding limit-point of £(I}) will be in £(8G), and so not in

H'. Thus the limit-points of f(I) which are in H' are the set
f(I;), and have, by the same argument, no limit-point in H'.
This completes the proof.

What we have proved, strictly speaking, is that y ={(x)
is uniquely soluble for given y € H'- £(I), and for xe G -1 to
be found. Clearly then y =f(x) is soluble for y ¢ H', and
x € G to be found. The possibility that for some vy* € f(I) there
might be two x e G, say x' and x', is easily disposed of. By
theorem 1, neighbourhoods of x', x'"" would be mapped into
regions containing a neighbourhood of y', and so both contain-
ing points not in f(I). Thus we should have v(y) > 2 for points
in H'- {{I), contrary to what has just been proved.

10. A second global theorem. The extension of theorem
4 to allow the Jacobian to have isolated zeros is inadmissible
when n =2, and so we fail to cover the following standard
theorem in conformal representation. ILet w =f(z) effecta
(1,1) mapping of a simple closed curve C onto another, C',
and be analytic in the finite region D bounded by C; then w
maps the z-region D in a (1, 1) manner onto the finite region
D' bounded by C'. This is covered by theorem 4 if we assume
that D' is simply-connected, the complement of D'+ C' being
an unbounded region, and furthermore that f'(z) has no zeros
in D, the Jacobian being |f'(z)[%. While nothing is lost by this
last hypothesis, it seems desirable to dispense with it if possible.

Assurning the situation of theorem 3, that f(98G) is the
boundary of the range, the position may be put roughly as follows.
If the inverse relationship x=f"1(y) is many-to-one in the
regions concerned, then it is many-to-one on their boundaries.
Restricting the relationship to be (1,1) at at any rate one point on
the boundaries, we shall restrict it to be (1,1) in the interiors
also. We have

THEOREM 5. Let the conditions of theorem 4'hold, éxcept
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that H' need not be simply-connected, and let in addition

(v) there be at least one point x(°) ¢ 3G, and a corres-
ponding point y(0) € £(3G) which is the unique map of it, in the
sense that x(k) ¢ G, k=1, 2, ..., x(K) > xx € G, f(x(k)) - y(o)
as k - o, imply that x*:x(O), )

(vi}) in some region W, the intersection of G and some
neighbourhood of x(0), vy ={(x) is univalent, so that
x, x'e W, x# x' imply that f(x) # £(x'). '

Then y =f(x), x € G is uniquely soluble for y ¢ H'.

As in the case of theorem 4, it is only a question of re-
jecting the eventuality that v(y)> 2 in H'. By lemma 5,
applied to G*=G - I, H* = H' - {(I), which by lemma 7 are both
regions, we have that v(y) is constant in H*. Since f£(I) is
denumerable, there will be points of H¥* arbitrarily close to
y(o). Thus for a sequence y(k), k=1, 2, ... , tending to y(o),
there will be two solutions x'(k), (k) of y(k) =f(x). We con-
sider the limiting behaviour of these x-sequences as k - .
They cannot both tend to x(°), by condition (vi). Neither can
they have a limit-point in G, since y(o) would then be in the
interior of H'. Nor can they both have separate limit-points
on 8G, by (v). This completes the proof.

In the above, we may admit © as a boundary point in )
either case.

We may replace condition (vi) of theorem 5 by more explicit
conditions. We have

THEOREM 5'. The conclusion of theorem 5 holds if (vi)
is replaced by

(vi') in the region W of (vi) y is uniformly differentiable

and dy/dx has an inverse which is uniformly bounded.

This condition is essentially that of [2], p.192. In postu-
lating uniform differentiability, the formula for the total
differential need only hold for points in W, and so in G.

What seems essentially this result was given by Jacobsthal

[12]. Fundamentally, it seems to be a case of degrees of map-
pings of sets and their boundaries.
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11. Two-dimensional cases. The following result approxi-
mates to the standard theorem on conformal mapping mentioned
at the beginning of §10, and is a little more general in some

ways. Let -C, C' be simple closed curves, bounding regions

D, D', the complementary regions being unbounded. Let f(z)

be analytic in D, and let f(z) -~ C' as z =~ C. Let {(z) > w e C'
imply 2z = z, € C, and in the intersection of a neighbourhood of
z, with D let f'(z) be uniformly continuous and bounded from
zero. Then w =1(z) effects a {(1,41) mapping of D onto D'.

A similar result holds for the more general two-dimen-
sional mapping yy4 ={f;{x1,%5), v, =f5(x4,x%5). Assuming, for
simplicity, continuous differentiability it will be sufficient that
D' be simply-connected and that the Jacobian have no zeros, or
alternatively that the boundary mapping be (1, 1) at at least one
point and that the Jacobian have, say, zeros without limit-point
in D. It is not necessary to postulate both a (1,4) mapping of
the boundary and that the Jacobian should have no zeros at all.

12. The case of a convex range. Since a convex region
is simply-connected, we have

THEOREM 6. In any bounded and closed subset of the
region G let y be uniformly differentiable, and let dy/dx
have a uniformly bounded inverse. Let f(0G) be the common
boundary of regions H', H", with E =H'+ H" + {(8G), of which H'
is convex. If then f(G) does not contain H", in particular if
H" is unbounded and f{x) is uniformly bounded in G, then
v =f(x), x € G is uniquely soluble in H'.

As in the case of theorem 4, of which this is a special
case, we could admit isclated zeros of the Jacobian if n > 3.

We cite this result separately, since it can be proved in-
dependently, by methods of successive approximation. We indi-
cate the approach briefly.

The general idea is the following. Supposing we have an
x'e G, f(x') =y'e H'. We wish to solve y ={(x) for some y e¢H',
and treat x' as a first approximation to the desired root x.
Assuming the method is available, and that there are in fact
several roots x(K), k=1, 2, ..., of vy = f(x) for the given vy,
we may classify G into subsets Gy, so thatif x'e G, is the
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first approximation, the method leads to the root x(K). The sets
Gy will then be non-empty, disjoint and open, if the method
satisfies rather desirable conditions. It is however impossible
to dissect G into a number of disjoint open regions, since a line
joining points in two regions would contain boundary points not

in any of the G-

The argument could be based on one of the methods of
successive approximations used to prove the local form of the
implicit function theorem. In the treatment of Graves [13],

"this involves the principle that a contraction mapping has a
fixed point. Such mappings have recently been considered by
Edelstein [14]. )

Another approach would be to replace discrete successive
approximations by continuous approximation, obtaining the
desired x, starting from x', as the limit as t — o of the
solution of dx/dt = - (dy/dx)‘i(y -vy'), %(0) =x'. Equivalently,
we could join y to y' by a straight line, and continue x by
‘means of the local implicit function theorem along this line,
starting with™ X' at the point y'.

13. MaEBings of E,. An interesting special case is

THEOREM 7. Let y be uniformly differentiable in any
finite x-region, and in any such region let dy/dx have a uni-
formly bounded inverse. Let also |y| = o as [xl - 0, uni-
formly in all directions. Then to each y corresponds exactly
one X.

As previously, if n> 3 we could allow the Jacobian to
have isolated zeros, but not if n =2.

14. A result on critical values. For a critical value of a
scalar-valued function F(x) we must of course have grad F = 0.
Setting y =grad F, we have a mapping of the form y ={(x), in
which det(dy/dx) will be the determinant of second partial deri-

“vatives of F, that is to say the Hessian of F. Thus

THEOREM 8. Let the scalar-valued function F(x) be
continuously twice differentiable, and let its Hessian nowhere
vanish. Let also |grad F| - ® as |x| - «, uniformly in all
directions. Then there is a unique critical point x at which
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grad F = 0.
If in addition F -+ o, say, as |x| = o, we derive that
F has a unique minimum. For deeper results of this character
we refer to [15]. Again, the Hessian could have isolated zeros
if n> 3.
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