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The two-dimensional, steady, homogeneous flow field proposed by Astarita (J. Rheol.,
vol. 35, 1991, pp. 687–689) is studied for a range of viscoelastic constitutive equations of
differential form including the models due to Oldroyd (the upper and lower convected
Maxwell; UCM/LCM), Phan-Thien and Tanner (simplified, linear form; sPTT) and
Giesekus. As the flow is steady and homogeneous, the sPTT model results also give
the FENE-P model solutions via a simple transformation of parameters. The flow field
has the interesting feature that a scalar parameter may be used to vary the flow ‘type’
continuously from solid-body rotation to simple shearing to planar extension whilst the
rate of deformation tensor D remains constant (i.e. independent of flow type). The response
of the models is probed in order to determine how a scalar ‘viscosity’ function may be
rigorously constructed which includes flow-type dependence. We show that for most of
these models – the Giesekus being the exception – the first and second invariants of
the resulting extra stress tensor are linearly related, and for models based on the upper
convected derivative, this link is simply via a material property, i.e. half the modulus. By
defining a frame-invariant coordinate system with respect to the eigenvectors of D, we
associate a ‘viscosity’ for each of the flows to a deviatoric stress component and show
how this quantity varies with the flow-type parameter. For elliptical motions, rate thinning
is always observed and all models give essentially the UCM response. For strong flows,
i.e. flow types containing at least some extension, thickening occurs and only a small
element of extension is required to remove any shear thinning inherent in the model (e.g.
as occurs in steady simple shearing for the sPTT/Giesekus models). Finally, a functional
form of a viscosity equation which could incorporate flow type, but be otherwise inelastic,
the so-called GNFFTy (generalised Newtonian fluid model incorporating flow type,

† Email address for correspondence: robpoole@liv.ac.uk

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 987 A2-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:robpoole@liv.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.344&domain=pdf
https://doi.org/10.1017/jfm.2024.344


R.J. Poole

pronounced ‘nifty’), is proposed. In the frame-invariant coordinate system proposed, this
model is also capable of capturing normal-stress differences.

Key words: viscoelasticity

1. Introduction

Astarita (1991) proposed a steady, homogeneous, two-dimensional flow field of the form

u = γ̇ y/(1 + ξ), (1.1)

v = ξ γ̇ x/(1 + ξ), (1.2)

where u is the velocity in the x direction, v the velocity in the y direction, γ̇ is the
magnitude of the shear rate and ξ a flow-type parameter which is +1 for extensional flow, 0
for simple shear and −1 for solid-body rotation as shown in the streamline plots illustrated
in figure 1. The streamlines of the Astarita flow field can be calculated via

y2

2
− ξ

x2

2
= C, (1.3)

where C is a stream function value (constant along a streamline). Thus ξ < 0 leads to so
called ‘elliptical’ flows (closed streamlines), simple shear (ξ = 0) gives rise to a series
of horizontal lines where the stream function is only a function of y and ξ > 0 leads
to ‘hyperbolic’ flows where the streamlines are open. Although there are other velocity
field formulations where the same families of flows can be achieved (Fuller & Leal 1980;
Wagner & McKinley 2016), Astarita’s flow field has an interesting feature as the flow field
gives rise to the following velocity gradient tensor:

L = ∇uT = γ̇

⎡
⎣ 0 1/(1 + ξ) 0

ξ/(1 + ξ) 0 0
0 0 0

⎤
⎦ , (1.4)

such that D, the symmetric rate of deformation tensor, is totally independent of the
flow-type parameter for all types of flow (−1 < ξ ≤ 1), i.e.

D = 1
2

(∇u + ∇uT ) = γ̇

2

⎡
⎣ 0 (1 + ξ)/(1 + ξ) 0

(ξ + 1)/(1 + ξ) 0 0
0 0 0

⎤
⎦ = γ̇

2

⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦ .

(1.5)

The Astarita flow field (equation (1.4)) can also be used to illustrate the concept of Tanner
& Huilgol (1975) of so-called ‘strong’ or ‘weak’ flows. In particular, ‘strong’ flow is
characterised by at least one positive eigenvalue of L while in a ‘weak’ flow no positive
real eigenvalues can occur. The eigenvalues of L(ΞL) are given by

ΞL ∈
{
− γ̇

√
ξ

(1 + ξ)
; 0; γ̇

√
ξ

(1 + ξ)

}
, (1.6)

and thus elliptical flows (ξ < 0) lead to two imaginary eigenvalues and are strictly weak,
simple shear (ξ = 0) leads to three vanishing eigenvalues (a marginal case between
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The use of the Astarita flow field for viscoelastic fluids
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Figure 1. Streamlines for the steady and homogeneous ‘Astarita’ flow fields in the limit of (a) solid-body
rotation (ξ = −1.0) or (b) simple shearing (ξ = 0) and (c) planar extension (ξ = +1.0). Note that eigenvectors
of D are independent of flow type and aligned with x =±y.

weak and strong flow) and hyperbolic flows (ξ > 0) are strong as they have one positive
eigenvalue of L, no matter how small the actual value of ξ .

In this short paper, we investigate the response of commonly used differential
viscoelastic constitutive models to this flow field, including the upper and lower convected
Maxwell (i.e. the limiting case of the Oldroyd-B/A models in the case of no solvent
viscosity; Oldroyd 1950), the linear form of the simplified Phan-Thien and Tanner (sPTT)
model (Phan-Thien & Tanner 1977) and the Giesekus model (Giesekus 1982). As the flow
is steady and homogeneous, the sPTT model results also give the FENE-P model solutions
via a simple transformation of parameters (Cruz, Pinho & Oliveira 2005; Davoodi et al.
2022). The response of the models is probed in order to determine how a scalar ‘viscosity’
function may be rigorously constructed which includes flow-type dependence but be
otherwise inelastic.

A few previous studies have proposed inelastic models which incorporate flow-type
dependence and these approaches have been recently reviewed (Poole 2023). Of particular
relevance here is the ground-breaking work of Schunk & Scriven (1990) who used the
flow-type parameter RD (due to Astarita 1979), to propose a generalised Newtonian fluid
constitutive equation which was a linear combination of two ‘Carreau-type’ equations
(e.g. one exhibiting rate thinning for shear and one exhibiting tensioning thickening for
extension). For two-dimensional and axisymmetric flows this was given as

η = ηSH(IID)RD + ηEX(IID)(1 − RD), (1.7)

where IID is the second invariant of D (IID = tr(D2) and γ̇ = √
2IID). The weighting

function RD was then allowed to vary between 1 for simple shear and 0 for pure extension
(i.e. limited to RD ≤ 1). Schunk & Scriven (1990) modified RD slightly such that a small
parameter is added to it to avoid the RD parameter becoming undefined as the flow tends to
solid-body rotation and simply set all locations in the flow where RD > 1 to be equivalent
to simple shear (i.e. RD = 1). Astarita (1991), in a responsive note to Schunk & Scriven
(1990), suggested this approach of limiting RD to be one that was flawed, as it failed to
distinguish elliptical motions (i.e. corresponding to solid-body-like flows) from shear and
used the response of the upper convected Maxwell (UCM) model to (1.1)–(1.2) to justify
this criticism. De Souza Mendes et al. (1995) showed that using a modified form of (1.7)
which now uses a weighted geometric mean, i.e.

η = ηSH(IID)RD + ηEX(IID)(1−RD), (1.8)
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produced viscosities for ‘mixed’ flows less dominated by the extensional viscosity.
Equation (1.8) also exhibits viscosities that decrease monotonically with increasing RD
– in agreement with Astarita’s (1991) postulate that it should based on the response of the
UCM model – and as RD → ∞ (i.e. as the motion approaches solid-body rotation), the
viscosity function approaches zero, and hence the extra stress is assured to approach zero
as it should. However, there is no theoretical basis for the dependence of a scalar viscosity
function to vary with flow type as postulated in (1.7) and (1.8). For steady homogeneous
flows it can be shown that a renormalised version of RD is equivalent to the flow-type
parameter (Mompean, Thompson & de Souza Mendes 2003) contained within (1.1) and
(1.2):

ξ = 1 − RD

1 + RD
= |D| − |W̄ |

|D| + |W̄ | , (1.9)

where again ξ = +1 corresponds to pure extensional flow, ξ = 0 corresponds to simple
shear and ξ = −1 corresponds to pure rotational flow (here |A| ≡

√
2tr(A2)). This arises

because in steady homogeneous flow fields the eigenvectors of D do not rotate and then the
relative vorticity tensor of Astarita (1979) (W̄ ) is simply equal to the vorticity tensor (W =
1
2 (∇uT − ∇u)). Outside of steady homogeneous flow, to calculate the relative vorticity
tensor W̄ then one must firstly determine the rate of rotation of the tensor D at a particle
(Ω). If ei (with i = 1, 2, 3) are the proper vectors of D – i.e. unit vectors along the principal
axes of D – the definition of Ω is

Dei

Dt
= Ω · ei, (1.10)

where D/Dt is the usual substantial derivative. The relative vorticity tensor W̄ is then
defined:

W̄ = W − Ω. (1.11)

Aside from Astarita’s original short note (Astarita 1991) where the response of the UCM
model to (1.1) and (1.2) to elliptical motions was shown, we are unaware of any other
studies which have probed the response of viscoelastic models to this flow field. Clearly,
many previous studies have determined the response of these models to two limiting cases
of flow type (i.e. shear ξ = 0 and planar extension ξ = +1). Given the ubiquity of such
solutions and their textbook nature (Bird, Armstrong & Hassager 1987; Tanner 2000), we
will not discuss these further here (although we confirmed that the solutions obtained here
are in agreement with these limiting cases for the models studied). Of closest relevance
to the results in the current study is the paper by Lagnado, Phan-Thien & Leal (1985),
which studied the stability of two-dimensional linear flow fields for models of ‘Oldroyd
type’ similar to the flow field of (1.1) and (1.2) but with the extensional/compressional
axes aligned with the x and y directions rather than at 45° to them (figure 1). (We
note, parenthetically, that in the formulation of Lagnado et al. (1985) however, D is not
independent of the flow-type parameter.) To study the stability of the flow field, they firstly
derived analytical expressions for the stress components and so the UCM/lower convected
Maxwell (LCM) results we show here could be obtained from the results of Lagnado
et al. (1985) via a simple rotation of axes or, as we have actually done, via comparison of
invariants of the stress tensor which are obviously independent of the frame of reference.

The rest of the paper is structured as follows. Firstly, we find it instructive to consider
the response of a Newtonian fluid to the flow field. We then follow this with a section
devoted to the response of the UCM/Oldroyd-B model where analytical results for the
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The use of the Astarita flow field for viscoelastic fluids

various stress tensor components can be determined and several approaches are tested
for defining a scalar apparent viscosity function. These results give rise to an intriguing
relation between the invariants of the extra stress tensor and this is explored for a broader
range of models in the following subsection. The detailed results for the sPTT/FENE-P
and Giesekus models are then shown which highlight the need to move to an eigenbasis
to define an apparent viscosity. These results are then used to propose a scalar viscosity
function as a function of both the shear rate magnitude and the flow-type parameter. In the
final section, it is shown how this viscosity model can, in our frame-invariant coordinate
system, also be extended to include normal-stress differences. The paper ends with a short
conclusions and outlook section.

2. Newtonian fluid response

Before proceeding to analyse the response of viscoelastic models, we find it is firstly
worthwhile to understand the response of a simple, Newtonian fluid which is governed
by a linear equation for the stress:

τ = 2ηD, (2.1)

where τ is the stress tensor, η is the constant viscosity and D is still the rate of deformation
tensor. Having already demonstrated that the rate of deformation tensor is independent of
the flow-type parameter (equation (1.5)), we immediately see that the stress in a Newtonian
fluid for the Astarita flow is also independent of flow type. The result of this invariance
means that, in a Newtonian fluid, any scalar viscosity function must be independent of
flow type in a steady, homogeneous two-dimensional flow.

Given the linear nature of a Newtonian fluid, it is also possible to make the following
observations: (1) the invariants of the stress tensor are simply related to the invariants of
the rate of deformation tensor via the multiplier 2η (the same must also be true for the
eigenvalues of τ and D); (2) the eigenvectors – i.e. the principal directions – of τ and D
are shared; (3) a corollary of (1) is that, for incompressible materials, in planar flows D
has only one non-zero principal invariant (the second invariant; Poole 2023) and therefore
for Newtonian fluids the same is true of the stress tensor; and (4) a corollary of (3) is that,
attempting to define a frame-independent ‘viscosity’ for a Newtonian fluid in an arbitrary
steady planar flow, e.g. via taking an invariant measure of the stress and dividing it by an
invariant measure of the rate of deformation tensor, will always return a constant value,
independent of flow type if the same invariant measures are used for both tensors.

The well-read reader at this point is probably asking themselves what has happened
to the well-known ‘Trouton ratios’, i.e. the ratio of an extensional viscosity to a shear
viscosity, which are covered in all standard rheology textbooks (e.g. Bird et al. 1987, p.
39; Barnes, Hutton. & Walters 1989, p. 80) but here appear to be totally missing in action.
In Newtonian fluids these are stated ubiquitously to be equal to 3 in uniaxial extensional
flow and, of more relevance to the two-dimensional flows considered here, either 4 (or
2) in planar extensional flow (depending on whether the planar viscosity or the so-called
‘cross-viscosity’ is considered; Petrie 1990).

To understand why we do not recover this well-known Trouton ratio for a Newtonian
fluid in the planar extension limit (i.e. ξ = +1), we simply have to recall how both
shear and extensional viscosities are defined. In so doing, we see they are somehow
inconsistent and any consistently defined measure of viscosity would result in a constant
value of ‘viscosity’ for a Newtonian fluid independent of flow type in homogeneous,
two-dimensional flows, as we have already shown. For example, in a simple shear flow
where the flow direction is x, the velocity gradient direction is y and the velocity is u, a
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fluid’s shear viscosity (ηSH) is defined (Dealy et al. 2013) as the stress in the xy plane (τxy)
divided by the shear rate (γ̇xy = du/dy):

ηSH = τxy

γ̇ xy
, (2.2)

i.e. one component of the stress tensor being divided by one component of the rate of
deformation tensor. As for steady simple shear flow the rate of deformation tensor D is
simply

2D = ∇u + ∇uT = γ̇

[
0 1
1 0

]
, (2.3)

and the magnitude (
√

2tr(D.D)) is simply γ̇ . In contrast, in a planar extensional flow where
now the flow direction is x′, the velocity is u′ but the extensional viscosity (ηEX) is defined
by a normal stress difference (τx′x′ − τy′y′) divided by the strain rate (ε̇x′x′ = du′/dx′), i.e.

ηEX = τx′x′ − τy′y′

ε̇x′x′
. (2.4)

For ‘classical’ planar extensional flow for an incompressible material (i.e. du′/dx′ =
−dv′/dy′) the rate of deformation tensor D is now

2D = ∇u + ∇uT = 2ε̇x′x′

[
1 0
0 −1

]
, (2.5)

i.e. now the magnitude of D is 2ε̇x′x′ . Thus, inconsistent scalar magnitudes are being used
for the deformation rate between shear and extensional viscosity definitions and this gives
rise to a factor of two difference in the viscosity so determined. Finally, as the stress in
each case is plane, we can use plane stress transformative rules (Boresi & Schmidt 2002)
to show that rotating from the principal axes of extensional flow (x′ and y′) back to the
shear flow axes (x, y) gives a relationship between the shear stress and the normal stress
difference in each frame:

τxy = 1
2 (τx′x′ − τy′y′), (2.6)

which shows where the remaining factor of two comes from in the Trouton ratio. If
the shear and extensional viscosities were defined consistently, either as the ratio of the
magnitude of the stress divided by the magnitude of the rate of deformation tensor or as
the first normal-stress difference in a frame aligned with the principal axis divided by
the magnitude of the rate of deformation tensor, then the ‘viscosity’ so defined would be
identical in each case.

Finally, simple shearing can be decomposed into a locally rotating (solid-body)
component and a straining/purely planar extensional flow oriented at 45° to the flow
direction (Duprat & Stone 2016) and is often thought of in this manner (Mackley 2010).
As the Newtonian constitutive equation is linear, this decomposition means that the stress
from simple shear must then be equal to the stress in planar extension plus the stress due to
solid-body rotation. As, by definition, no viscous stress is produced in a fluid undergoing
solid-body rotation (i.e. D = 0) then the stress in simple shear for a Newtonian fluid must
be equal to the stress in planar extension.
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The use of the Astarita flow field for viscoelastic fluids

3. Oldroyd-B/UCM model response

Having shown the response of a Newtonian fluid, we now proceed to the Oldroyd-B model
as this represents the backbone of all the models we study in the remainder of the main
body of the paper (Bird et al. 1987). In fact, we limit our investigations in this paper to
cases of no solvent viscosity contribution to the stress – as we have just shown that this
Newtonian solvent viscosity contribution is independent of flow type – and therefore we
are studying the so-called UCM model (Oldroyd 1950):

τ + λ ∇
τ = 2ηpD, (3.1)

where ηp is the polymeric viscosity, λ is the relaxation time and the operator acting on the
second term represents Oldroyd’s upper convected (‘contravariant’) derivative:

∇
τ = Dτ

Dt
− (∇u)T · τ − (τ · (∇u)). (3.2)

Combining this derivative operator with the definitions of the velocity gradient and its
transpose,

∇uT = γ̇

[
0 1/(1 + ξ)

ξ/(1 + ξ) 0

]
, ∇u = γ̇

[
0 ξ/(1 + ξ)

1/(1 + ξ) 0

]
, (3.3a,b)

together with the constitutive equation (3.1) gives rise to the following five equations for
the various stress components:

τxy − λγ̇ (1/(1 + ξ))τyy − λγ̇ (ξ/(1 + ξ))τxx = ηpγ̇ , (3.4a)

τyx − λγ̇ (ξ/(1 + ξ))τxx − λγ̇ (1/(1 + ξ))τyy = ηpγ̇ , (3.4b)

τxx − λγ̇ (1/(1 + ξ))τxy − λγ̇ τxy(1/(1 + ξ)) = 0, (3.4c)

τyy − λγ̇ (ξ/(1 + ξ))τxy − λγ̇ τxy(ξ/(1 + ξ)) = 0, (3.4d)

τzz = 0. (3.4e)

From (3.4a) and (3.4b), we see the inherent symmetry of the stress tensor. Rearranging
(3.4c) and (3.4d) we get the normal stress components as a function of the shear stress:

τxx = 2λγ̇
(

1
1 + ξ

)
τxy, (3.5a)

τyy = 2λγ̇
(

ξ

1 + ξ

)
τxy, (3.5b)

then substitution of (3.5a) and (3.5b) into (3.4a) gives an explicit equation for the shear
stress:

τxy = ηpγ̇[
1 − 4(λγ̇ )2

(
1

1 + ξ

) (
ξ

1 + ξ

)] , (3.6)

which is in agreement with the original paper of Astarita (1991). As the Astarita flow
field is steady and homogeneous and we are restricted here to incompressible materials,
the extra stress is divergence-free and therefore does not enter the momentum equation.
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Therefore the extra stress field is completely determined by (3.6) and the first and second
normal-stress differences which here we define as

N1 = τxx − τyy = 2λγ̇
(

1 − ξ

1 + ξ

)
τxy,

N2 = τyy − τzz = 2λγ̇
(

ξ

1 + ξ

)
τxy.

⎫⎪⎪⎬
⎪⎪⎭ (3.7a,b)

In addition, the pressure variation (up to an isotropic constant) can be determined from the
momentum equation in combination with (1.1) and (1.2). In the shear-flow case (ξ = 0)

the pressure field is also homogeneous. For steady simple shear, (3.6) and (3.7) give the
well-known solution:

τxy = ηpγ̇ , τxx = 2λγ̇ τxy = 2ληpγ̇
2, τyy = 0, (3.8a–c)

such that the shear viscosity (defined as in (2.2)) is constant, the first normal-stress
difference (τxx − τyy) goes quadratically with shear rate and the second normal-stress
difference (τyy − τzz) is identically zero. In planar extensional flow (ξ = +1) the stresses
all become singular at λγ̇ = 1:

τxy = ηpγ̇

[1 − (λγ̇ )2]
,

τxx = τyy = λγ̇ τxy.

⎫⎬
⎭ (3.9a,b)

In fact, it is noticeable that for any flow with an extensional component – what Tanner &
Huilgol (1975) characterised as a ‘strong’ flow as already discussed – the stress becomes
singular at a critical strain rate corresponding to

ξ > 0, γ̇cr = 1
2λ

√
(1 + ξ)2

ξ
. (3.10)

Finally, for what Astarita called ‘elliptical’ motions with ξ < 0, which reach the
solid-body limit at ξ = −1, we observe rate thinning of all the stress components and,
as we approach the solid-body limit, we achieve the following asymptotic variation of an
apparent viscosity (defined as in (2.2) which is, of course, only formally valid for simple
shear flow and hence the ‘apparent’ terminology, where ξ + 1 = Δ):

ηγ̇
1 = Δ2ηp

4(λγ̇ )2 ∼ γ̇ −2 → 0. (3.11)

Figure 2(a) plots the variation of such an apparent viscosity as a function of
non-dimensional strain rate (λγ̇ ) – essentially a Weissenberg number in this rheologically
steady flow (Poole 2012) – for simple shearing and two elliptical flows (ξ = −0.5, −0.99)

highlighting the rate-thinning nature of the Oldroyd-B model in the latter cases.
Figure 2(b) shows the variation of the apparent viscosity for all positive ξ cases exhibiting
identical self-similar, singular behaviour when the shear rate is normalised by the critical
strain rate given in (3.10).

Although the Astarita flow for the Oldroyd-B model is completely determined by just
three equations, i.e. (3.6) for the shear stress and (3.7a) and (3.7b) for the normal-stress
differences, this formalism is perhaps not so helpful outside of simple shearing where
the use of such viscometric functions is standard and mainly well understood (Maklad &
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Figure 2. Variation of the stress component τxy divided by the shear rate for the Oldroyd-B model (UCM) in
(a) steady simple shearing and ‘elliptical’ motions approaching solid-body rotation and (b) all ‘strong’ flows
containing finite extensional deformation where the shear rate has now been normalised with the ‘critical’
strain rate (equation (3.10)) at which this stress component goes singular. For this model fluid, G = 1 Pa and
λ= 1 s.

Poole 2021). For example, in elliptical flows in addition to the apparent viscosity being
rate thinning, N1 is positive and N2 is negative, whereas for flows with an extensional
component N1 decreases in importance and N2 increases in importance such that at ξ =
0.5, N1 = N2 (and both are positive) whilst in the pure extension limit N1 = 0 and N2 is
positive. As N1 and N2 are coupled to τxy, all terms go singular at the critical strain rate
(equation (3.10)).

If we wish to construct an apparent viscosity from these stress fields, a seemingly fatal
issue in the use of (3.6) and (3.7) would be that they are apparently frame dependent and,
therefore, a rigid rotation of our axes will give different results. Hence it seems logical
to investigate the use of invariant measures of the stress field with which to construct an
apparent viscosity function. Given that the stress field is symmetric, and τzz is identically
zero, there are only two independent principal invariants, namely

I1 = tr(τ ) = τxx + τyy,

I2 = 1
2((tr(τ ))2 − tr(τ 2)) = τxxτyy − τ 2

xy

}
(3.12a,b)

(one could also use other invariants (I, II) (Bird et al. 1987) but these can be expressed
simply in terms of the principal invariants as I = I1, II = I2

1 − 2I2). Here we are
treating the stress tensor τ as the ‘extra’ stress, i.e. with the pressure handled separately
(alternatively, if we assume the flow is also inertialess, then these homogeneous flows
give rise to an isotropic pressure which we can arbitrarily set to zero). We note also that
I1 is the equivalent to the sum of the eigenvalues whereas I2 is the product of the two
eigenvalues. Expressed in terms of the principal invariants the eigenvalues of the stress

(Ξ ) are Ξ1 = 1/2
[

I1 +
√

I2
1 − 4I2

]
and Ξ2 = 1/2

[
I1 −

√
I2
1 − 4I2

]
.

Taking inspiration from generalised Newtonian fluids, where the second invariant of
D is utilised to determine a magnitude/scalar shear rate, we define an apparent viscosity
based on a stress calculated from I2 as

‖τ‖ =
√

−I2, (3.13)
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Figure 3. Variation of an ‘apparent’ viscosity – defined using (3.14) – with flow-type parameter for the UCM
model in the Astarita flow for (a) a Weissenberg number well below critical conditions (Wi = 0.5) and (b) a
Weissenberg number close to the critical value (WiCR = 1) where the apparent viscosity becomes unbounded in
planar flow (Wi = 0.99). The thinning nature of elliptical motions (ξ < 0) and thickening nature of extensional
motions (ξ > 0) are readily apparent. For this model fluid, G = 1 Pa and λ= 1 s.

which gives an apparent viscosity as

ηap = ‖τ‖
γ̇

. (3.14)

For the UCM, in simple shearing this returns the ‘usual’ constant viscosity (ηap = ηp),
whereas in pure extensional flow the apparent viscosity is now

ηap = ‖τ‖
γ̇

= ηp√
[1 − (λγ̇ )2]

, (3.15)

which is clearly similar (though not identical) to a viscosity based on (3.9a) although the
apparent viscosity defined in (3.14) is now a frame-independent quantity.

Using this measure of apparent viscosity it is possible to show the effect of flow-type
parameter as is done in figure 3. At a Weissenberg number (= λγ̇ ) of 0.5, figure 3(a)
shows that there is an approximately linear growth in the viscosity between the solid-body
limit and the shear-flow limit, followed by a more modest flow-type thickening caused
by extension, such that the planar extensional viscosity is about 20 % higher than the
shear viscosity. In contrast, at a Weissenberg number much closer to the critical value in
planar extension, a much stronger extension thickening is observed with the inclusion of an
extensional component. In Appendix A we show that the response of the Oldroyd-A/LCM
is essentially identical to the UCM (the only difference being the sign of I1). Given
the singular behaviour of the Oldroyd-B/A models that we have demonstrated for any
‘strong’ flow, i.e. ξ > 0, we need to probe models which include finite extensibility before
investigating flow-type dependence across an arbitrary large range of shear rate.

3.1. Relationships between stress invariants
The ability to relate a supposedly purely viscous stress contribution from the second
invariant of the stress tensor (i.e. I2 in (3.13)), coupled with the separation in simple
shearing for the Oldroyd-B model into an ‘elastic’ contribution from I1 (∝ λ ((3.16a)
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when ξ = 0)) and a ‘viscous’ contribution from I2 (∝ηp((3.16b) when ξ = 0)), one might
naively wonder if each invariant could be related to either a ‘viscous’ stress or an ‘elastic’
stress component more generally for other flow types. However, it is possible to show that,
for the Astarita flow,

I1 = 2ληpγ̇
2(1 + ξ)2

(1 + ξ)2 − (2λγ̇ )2ξ
,

I2 = −(ηpγ̇ )2(1 + ξ)2

(1 + ξ)2 − (2λγ̇ )2ξ
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.16a,b)

and therefore the invariants are linearly related via the relationship

I2

I1
= −ηp

2λ
= −G

2
. (3.17)

For steady, homogeneous flow, for the Oldroyd-B model, the stress invariants are
independent of flow type and shear rate and simply related to a material property
(the modulus G). Essentially the same information is ‘encoded’ in either invariant. For
example, often polymeric models are solved in conformation tensor form (Grmela &
Carreau 1987; Hulsen 1990) and in this formulation the trace of the conformation tensor
is often used to represent the amount of stretching (Vaithianathan & Collins 2003; Xi
& Graham 2009; Pereira et al. 2017). The result of (3.17) would say that the second
invariant of the conformation tensor gives exactly the same information, at least in the
two-dimensional, homogeneous and steady flows studied here. Indeed, one could use the
result given in (3.17) to highlight regions in a complex two-dimensional Eulerian steady
flow, e.g. in an abrupt contraction, which are in this sense rheologically ‘unsteady’.

Given the simplicity of (3.17), it seems somewhat surprising that it appears to be new to
the literature. It is straightforward to show that, even for the UCM model, it does not hold
more broadly in other flows; for example in shear start-up although it must asymptote at
long times to (3.17) (i.e. when steady state is reached), at short times I2/I1 = −G. Likewise
in steady uniaxial extensional flow the ratio I2/I1 does not become independent of rate but
is given by

I2

I1
= −G

2

[
1 + 2λε̇
1 + λε̇

]
, (3.18)

i.e. at low rates (3.17) is recovered but at high rates the ratio tends to −G.
To probe the universality, or otherwise, of this relationship in steady, homogeneous,

planar flow we can use the results of Lagnado et al. (1985) who used an ‘Oldroyd-type’
constitutive equation which, in the limit of no solvent viscosity and using our notation, is
given by

τ + λ
[
δτ

δt
− β(D · τ + τ · D)

]
= 2ηpD, (3.19)

where
δτ

δt
= Dτ

Dt
− W · τ + τ · W (3.20)

is a co-rotational (Jaumann) derivative (Bird et al. 1987). The β parameter acts like a ‘slip’
parameter such that when β = 1 the derivative operator is upper convected, when β =−1 it
is lower convected (although Lagnado et al. (1985) actually limit β to the range 0 ≤β ≤ 1)
and when β = 0 it is co-rotational. The model of Lagnado et al. shares similarities with the
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model due to Johnson & Segalman (1977). The relationship between the stress invariants
for the Lagnado et al. (1985) results can be shown to be

I2

I1
= −ηp

2λ
= − G

2β
, (3.21)

which agrees with our results for the UCM when β = 1 (and for the Oldroyd-A model
in Appendix A when β = −1). These results show that although non-affine deformation
(‘slip’) does have an impact on the relationship between the stress invariants, via the nature
of the convected derivative used in the β parameter, there still exists a very simple linear
relationship between them, independent of applied shear rate or flow type. We note, in the
co-rotational limit (β = 0), there is no such relationship, however.

As we have already made use of the plane stress transformation rules (see § 2), that show
a plane stress field can be converted from extensional to shear by a simple rigid rotation
of the axes, perhaps it is not so surprising that the ratio of stress invariants is independent
of flow type in a planar flow. However, if we accept this as being true for all models, we
need only determine the relationship between invariants in planar extensional flow (using
the ‘classical’ definition given in (2.5)). In this way, we have the benefit that the ratio of
the invariants becomes simply

I2

I1
= τx′x′τy′y′

τx′x′ + τy′y′
. (3.22)

For example, for the UCM model we can easily show for planar extensional flow that

τx′x′ − 2λε̇x′x′τx′x′ = 2ηpε̇x′x′, (3.23a)

τy′y′ + 2λε̇x′x′τy′y′ = −2ηpε̇x′x′, (3.23b)

and then
I2

I1
= −ηp

2λ
= −G

2
, (3.24)

i.e. in exact agreement with (3.17).
Moving now to more complex models which can capture shear thinning and bounded

extensional viscosity, e.g. for the sPTT model (Phan-Thien & Tanner 1977), given by

fsτ + λ ∇
τ = 2ηpD, (3.25)

where

fs = 1 + λε
ηP

tr(τ ), (3.26)

where tr(τ ) is defined in (3.12a). For classical planar extension for the sPTT model, we
have

fsτx′x′ − 2λε̇x′x′τx′x′ = 2ηpε̇x′x′, (3.27a)

fsτy′y′ + 2λε̇x′x′τy′y′ = −2ηpε̇x′x′ . (3.27b)

Multiplying (3.27a) by τy′y′ , (3.27b) by τx′x′ and then taking the difference between the
resulting equations, we can eliminate fs and arrive at

4λε̇x′x′τy′y′τx′x′ = −2ηpε̇x′x′(τy′y′ + τx′x′). (3.28)
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Therefore,

τy′y′τx′x′ = −G
2

(τy′y′ + τx′x′), (3.29)

which is exactly the same result as (3.17) (i.e. I2/I1 = −G/2) once again (given (3.22)).
Given the equivalence between the sPTT and FENE-P models (Cruz et al. 2005; Davoodi
et al. 2022) in steady homogeneous flows, this simple result also holds for that model.

Finally, we consider the Giesekus (1982) model, defined as

τ + λ ∇
τ + αλ

ηp
τ 2 = 2ηpD, (3.30)

where α is the so-called mobility parameter, which must remain less than 0.5 for the
stress to remain monotonic in steady simple shearing. For classical planar extension for
the Giesekus model, we have

τx′x′ − 2λε̇x′x′τx′x′ + αλ

ηp
τ 2

x′x′ = 2ηpε̇x′x′, (3.31a)

τy′y′ + 2λε̇x′x′τy′y′ + αλ

ηp
τ 2

y′y′ = −2ηpε̇x′x′ . (3.31b)

These two quadratic equations can be solved to show that in the limit λε̇x′x′ � 1 then
I2

I1
→ − G

2(1 − α)
, (3.32)

whilst for λε̇x′x′ 
 1 this becomes
I2

I1
→ −G. (3.33)

Having shown the very simple linear relationships which relate the two stress invariants
for a range of models, we now show what the complete stress field looks like for the
sPTT/FENE-P and Giesekus models.

4. Simplified Phan-Thien and Tanner model (linear form) response

Combining the velocity gradient (and its transpose) of the Astarita flow, (3.3), with the
sPTT constitutive equation, (3.25) and (3.26), gives rise to the following equations for the
stress components (note τzz = 0 and τyx = τxy):

fsτxy − λγ̇ (1/(1 + ξ))τyy − λγ̇ (ξ/(1 + ξ))τxx = ηpγ̇ , (4.1a)

fsτxx = 2λγ̇ τxy(1/(1 + ξ)), (4.1b)

fsτyy = 2λγ̇ τxy(ξ/(1 + ξ)). (4.1c)

Dividing (4.1c) by (4.1b) gives
τyy = ξτxx. (4.2)

Substitution of (4.2) and (4.1b) into (4.1a) then gives the following cubic for τxx:

(1 + ξ)3

2λγ̇

(
λε

ηp

)2

τ 3
xx + (1 + ξ)2

2λγ̇

(
λε

ηp

)
τ 2

xx +
[
(1 + ξ)

2λγ̇
− 2λ ˙γ ξ

(1 + ξ)

]
τxx − ηpγ̇ = 0.

(4.3)

To solve (4.3), Cardano’s formula can be used when ξ ≤ 0; however, for cases containing
some extension (i.e. ξ > 0) this method no longer works and we may use the trigonometric
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solution for cubic equations which works for nearly all extensibility values in this regime
(Zwillinger 2012). We also solved (4.3) numerically to confirm the correctness of the
solutions obtained. In any of these methods, once τxx is known for a given value of
Weissenberg number and flow type, then (4.2) gives τyy and then (4.1a) gives τxy.

Figure 4 shows the results for the sPTT model for ε = 0.01. Figures 4(a) and 4(b)
provide results for the shear viscosity determined via τxy (equation (2.2)) and ‖τ‖
(equation (3.13)), respectively. As N2 = 0 for the sPTT in steady simple shearing, these
two results are identical (and we confirmed that this viscosity is identical to the existing
results in shear flow; e.g. Carew, Townsend & Webster 1993). Figures 4(c) and 4(d) show
the results for the ‘viscosity’ so determined using the same two measures but for elliptical
motions tending to solid-body rotation (i.e. ξ = −0.99). We note these are not identical
but rate thinning is clear in each case. In figure 4(e) we plot the viscosity in extensional
flow ξ = 1 determined via I2 and we see the behaviour is not as expected: the ‘viscosity’
goes through a maximum and then thins rather than asymptoting to a constant as the
simplified linear model is known to do (Tanner 2000; Davoodi et al. 2022). To recover
such behaviour we can use a viscosity based on a modified form of the Frobenius norm of
the stress (‖τ‖F ≡

√
0.5tr(τ 2)):

‖τ‖F = [ 1
2(τ 2

xx + τ 2
yy + 2τ 2

xy)]
1/2, (4.4a)

‖τ‖F = [ 1
2(I2

1 − 2I2)]1/2 =
√

1
2 II. (4.4b)

We now do recover the ‘usual’ planar extensional viscosity (taking the missing factor of
four we have already discussed in the context of the Newtonian Trouton ratio). Figure 4( f ),
however, shows how a viscosity determined from the Frobenius norm for 0 ≤ ξ ≤ 1 fails
to give the known shear viscosity response in the shear limit (ξ = 0).

The solution to this problem of consistently defining a general viscosity for all flow types
in two-dimensional, steady and homogeneous flows, valid for all models, is to abandon
measures based on stress invariants and move to an eigenbasis based on D (i.e. a coordinate
system based on the principal axes of the rate of deformation tensor). Recognising that in
a simple shear flow the x and y axes are always rotated 45° with respect to the eigenvectors
of D (as shown in figure 1, where the principal axes align with the ‘outlet’ and ‘inlet’
streamlines of the pure extension flow along x =±y shown in figure 1c), we propose that
a viscosity can be associated with the deviatoric stress component (i.e. τxy) defined in
this frame. So in an arbitrary two-dimensional steady and homogeneous flow, first we
determine the eigenvectors of D and set up a coordinate system aligned with these; we
then rigidly rotate this coordinate system by 45° and determine the stress components in
this frame and associate a viscosity with the τxy stress component (this idea is equivalent
to the Basic Reference Frame of Kolář (2007)). Somewhat conveniently for the current
problem, these axes correspond exactly to the x and y axes of the Astarita flow field. (We
note that, although this eigenbasis viscosity seems consistently defined for any steady,
two-dimensional and homogeneous flow, its extension to more general flows, outside of
this restricted class, will require further investigation.) Alternatively, one might consider
using the eigenvalues of the stress to determine a frame-invariant ‘viscosity’: the so-called
cross-viscosity in planar extensional flow (Petrie 1990) can be related to the negative real
eigenvalue of τ for example. Figure 5(a) shows this eigenbasis viscosity for the sPTT
model for 0 ≤ ξ ≤ 1 where we find, indeed, this gives exactly the expected response in
the two known limits of steady simple shearing and planar extensional flow. Figure 5(a)
also shows how only a very small degree of extensional flow (i.e. ξ ∼ 0.01) is required to
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Figure 4. Variations of various apparent viscosity measures with Weissenberg number (Wi) for the sPTT
model (ε = 0.01) based on (a) the shear stress component for simple shearing, (b) the negative square root of
the second invariant of the stress tensor (equation (3.14)) for simple shearing, (c) the shear stress component
for elliptical motions tending to solid-body rotation, (d) the negative square root of the second invariant of
the stress tensor (equation (3.14)) for elliptical motions tending to solid-body rotation, (e) the Frobenius norm
(equation (4.4)) and the negative square root of the second invariant of the stress tensor for planar extension and
( f ) variation of the Frobenius norm with Wi for various flow types ranging from shear to increasing extension.
For this model fluid, G = 1 Pa and λ= 1 s.

completely remove the observed rate thinning of the sPTT model, at least at this value of
the extensibility parameter.

Figure 5(b) shows the dependence of the results on the extensibility parameter (ε).
Firstly, we note that at low Weissenberg number, for all flow types, fs → 1, and then (4.1a),
(4.1c) and (4.1d) reduce to (3.4a), (3.4c) and (3.4d) such that the model behaves like the
UCM. This is also the case for so-called elliptical motions (i.e. ξ < 0) even at higher rates
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Figure 5. Variation of an eigenbasis viscosity with Weissenberg number for various flow-type parameter
values from shear to pure extension for (a) the sPTT model with ε = 0.01 and (b) the sPTT model for various
values of ε (�, ε = 0.001; 
, ε = 0.01; ◦, ε = 0.1) and ξ (black, ξ = −0.5; black dashed, ξ = −0.1; red,
ξ = 0; green, ξCR (equation (4.8)); purple, ξ = 0.5; blue, ξ = 1.0), (c) Giesekus model with α = 0.01 and (d)
GNFFTy model with ε = 0.01 and various values of ξ . For these model fluids, G = 1 Pa and λ= 1 s.

and the sPTT model is practically identical to the UCM model for these types of flow
(we note small differences start to appear at larger values of ε as we get closer to the
shear limit). This equivalence between the UCM and sPTT models stems from the fact
that in elliptical motions the viscosity is rate thinning and therefore at higher Weissenberg
numbers the stresses are getting smaller and therefore the higher-order τxx terms in (4.3)
become negligibly small and then τxx becomes

τxx = ηpγ̇[
(1 + ξ)

2λγ̇
− 2λ ˙γ ξ

(1 + ξ)

] = 2(ηpγ̇ )(λγ̇ )(1 + ξ)

(1 + ξ)2 − 4(λγ̇ )2ξ
, (4.5)

which is exactly the response of the UCM (combining (3.5a) and (3.6)). As figure 5(b)
shows, this equivalence between the two models holds up to approximately ξ = −0.1;
even here some small differences are apparent for the ε = 0.1 case. Figure 5(b) shows
that for shear flows extensibility effects the onset shear rate for shear thinning. As is well
known, rescaling the non-dimensional shear rate by

√
ε to give

√
εWi (Cruz et al. 2005)

results in a universal response in shear, and we confirmed the current results also exhibit
this behaviour. We note that this rescaling does not provide universal responses outside
of the shear-flow limit for other flow types. As we have already discussed, only a small
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degree of positive ξ is required to remove the rate thinning in the sPTT model. The value
of ξ required to return a constant viscosity is dependent on ε. The relationship between ε

and this critical ξCR can be determined analytically as this will occur when the Oldroyd-B
stress response is recovered, i.e.

τxx = 2λγ̇
(1 + ξ)

τxy = 2(λγ̇ )(ηpγ̇ )

(1 + ξ)
. (4.6)

Substitution of (4.6) into (4.3) and simplifying leads to the following quadratic expression
for ε:

2(λγ̇ )2ε2 + ε − 2ξCR

(1 + ξCR)2 = 0. (4.7)

Therefore, the relationship between ε and ξCR to obtain an approximately constant
viscosity for all shear rates can be determined by solving (4.7) in the limit λγ̇ → 0 to
give

ε = 2ξCR

(1 + ξCR)2 . (4.8)

Data are included in figure 5(b) for various ε and ξCR values from (4.8), which demonstrate
that a constant viscosity is, indeed, returned. Finally for cases where the viscosity exhibits
rate thickening, i.e. ξ ≥ ξCR, the planar extensional viscosity response is seen to dominate
in this limit and the viscosity at high rates/Wi is given by

ηξ>ξCR = 2ξηp

ε(1 + ξ)2 , (4.9)

such that in the planar extensional flow limit we recover the well-known result η = ηEX =
ηp/2ε (or η = ηEX = 4ηp/2ε = 2ηp/ε in the ‘usual’ definition of the planar extensional
viscosity, i.e. ηEX = (τx′x′ − τy′y′)/ε̇x′x′).

5. Giesekus model response

Finally, combining the Astarita velocity gradient terms, (3.3), with the Giesekus model,
(3.30), gives rise to the following equations for the non-zero stress components:

τxy − λγ̇ (1/(1 + ξ))τyy − λγ̇ (ξ/(1 + ξ))τxx + (αλ/ηp)τxy(τxx + τyy) = ηpγ̇ , (5.1a)

τxx − λγ̇ (1/(1 + ξ))τxy − λγ̇ τxy(1/(1 + ξ)) + (αλ/ηp)(τ
2
xx + τ 2

xy) = 0, (5.1b)

τyy − λγ̇ (ξ/(1 + ξ))τxy − λγ̇ τxy(ξ/(1 + ξ)) + (αλ/ηp)(τ
2
yy + τ 2

xy) = 0. (5.1c)

To solve these equations, an iterative approach can be used where an initial estimate of τxy
can be obtained from the UCM solution (equation (3.6)), and then (5.1b) and (5.1c) can be
rearranged into quadratic equations for τxx and τyy, respectively:

(αλ/ηp)τ
2
xx + τxx + τxy(αλτxy/ηp − 2λγ̇ /(1 + ξ)) = 0, (5.2a)

(αλ/ηp)τ
2
yy + τyy + τxy(αλτxy/ηp − 2λ ˙γ ξ/(1 + ξ)) = 0. (5.2b)

Each of these quadratic equations can then be trivially solved, and then τxy calculated from
(5.1a). This process may be repeated until τxy converges to a set tolerance.
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In figure 5(c) we show the eigenbasis viscosity for the Giesekus model in shear and
strong flows for a low value of α (0.01) such that the infinite rate planar extensional
viscosity is matched to that of the sPTT model with ε = 0.01, which we have already
discussed (i.e. ηEX → ηp/2ε for the sPTT model and ηEX → ηp/2α for the Giesekus
model at high rates). Although the planar extensional viscosity response across all
deformation rates of the sPTT and Giesekus models is not strictly identical (as shown in
Appendix B), for all practical purposes, for small values of ε they are essentially the same
(Larson (1987) has commented previously on cases where the sPTT and Giesekus models
are approximately equal). This means that the results for strong flows are also practically
identical between the sPTT (figure 5a) and the Giesekus (figure 5c) models when the
nonlinear parameter is matched, i.e. α = ε, and differences only become apparent in the
shear-flow limit where the viscosity variation decreases more strongly with shear rate
for the Giesekus model than for the sPTT model. For elliptical flow types tending to
solid-body rotation, once again the response of the Giesekus model is basically UCM-like
as the stresses remain small and therefore the higher-order terms in the Giesekus model
are negligible. What is quite remarkable is the similarity of the eigenbasis viscosity
variation for all of the models investigated, across various flow types. Having illustrated
this near-universal behaviour we now propose an empirical model which captures such
flow-type dependence but is otherwise inelastic.

6. Inelastic scalar viscosity function incorporating flow type – the GNFFTy model

Taking inspiration from the results in the previous sections and, in particular, the results
for the sPTT/FENE-P model, we here propose a generalised Newtonian fluid model
incorporating flow type (the GNFFTy model, pronounced ‘nifty’) which is a function of
both the magnitude of the rate of deformation/strain tensor γ̇ and the flow-type parameter
ξ . To faithfully follow the sPTT response, we use ‘ε’ as the nonlinear parameter and the
model is defined as follows. For ξ < 0,

η(γ̇ , ξ) = ηnN(γ̇ )

1 − 4(λγ̇ )2ξ

(1 + ξ)2

+ ηs, (6.1a)

where ηs is the ‘solvent’ viscosity and ηnN is the ‘non-Newtonian’ contribution to the
viscosity which follows a Carreau-type model (with the exponent selected to match the
degree of shear thinning inherent in the sPTT model):

ηnN(γ̇ ) = η0

[1 + (
√

ελγ̇ )
2]

1/3 , (6.1b)

where η0 is the ‘non-Newtonian’ contribution to the viscosity in the limit of vanishing
deformation rate. For shear and extension, i.e. ξ ≥ 0,

η(γ̇ , ξ) = ηnN(γ̇ ) + ηs + 2ξηnN

ε(1 + ξ)2 tanh((
√

ελγ̇ )2). (6.1c)

Equations (6.1a)–(6.1c) give a shear-thinning response in steady simple shear, i.e. (6.1a)
simplifies to (6.1b) (and also (6.1a) and (6.1c) are identical in this limit), essentially the
response of the UCM in elliptical motions (i.e. ξ < 0) and, in ‘strong flows’, the model
captures the strong dependence of the sPTT model to flow type and agrees with the
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viscosity values at high Weissenberg numbers (i.e. with (4.9)). Illustrative results for the
GNFFTy model, for ε = 0.01, are given in figure 5(d) where the similarity to the sPTT
(figure 5a) and the Giesekus (figure 5c) model results is clear.

In order to fit experimental data to the GNFFTy model for a particular fluid, shear
viscosity data provide the zero shear viscosity (η0 = ηs + ηnN), the ‘relaxation time’ (λ) –
actually as this model is inelastic there is no relaxation and this should just be viewed as an
inverse shear rate for the onset of shear thinning – and the solvent viscosity (ηs). Although
the exponent has been set at 1/3 to give agreement with the sPTT model, this could
also be a free parameter if desired. Finally, the nonlinear ε parameter can be determined
from the planar extensional viscosity plateau at high rates using the OSCER device, for
example (Haward et al. 2012). The flow-type dependence then built into the GNFFTy
model qualitatively reproduces the responses of the sPTT/FENE-P model discussed in
§ 5.

If the GNFFTy model is to be used in a complex flow, then some consideration needs to
be given as to how to determine the flow-type parameter ξ . If the flow under consideration
is two-dimensional and incompressible then ξ can be determined directly using (1.9), i.e.
what is required is the magnitude of D and W̄ . If the vorticity W is used in (1.9) (instead
of the relative vorticity W̄ of Astarita (1979)) then, outside of steady homogeneous
flows, ξ is not strictly objective (Poole 2023). However, the use of the usual vorticity
W in determining ξ could also be justifiable in complex flows given the fact that (6.1) is
already a model (and W is much easier to determine than W̄ which requires determining
rotation rates of eigenvectors). Outside of two-dimensional incompressible flows, then the
persistence of straining tensor of Thompson and co-workers (Mompean et al. 2003) should
be used to determine ξ using the normalisation described in Cunha et al. (2023).

7. Extending the GNFFTy model to include normal-stress differences

Although the prediction of normal-stress differences in steady simple shear flow are
usually associated with elastic effects (Barnes et al. 1989), inelastic models, such as
those based on the persistence of straining tensor idea of Thompson, de Souza Mendes
& Naccache (1999), Thompson & de Souza Mendes (2011) and Poole (2023), have been
shown to be able to predict them. As the Astarita flow field is steady and homogeneous
and we are restricted here to incompressible materials, and so the extra stress field is
completely determined by a viscosity function and the first and second normal-stress
differences. Having defined an eigenbasis viscosity function, and a reference frame for
this viscosity being associated with the τxy stress in this frame, we can then also propose
an extended form of the GNFFTy model which gives the normal-stress differences as
a function of the flow-type parameter (in this reference frame). As there is a simple
relationship between τxx and τyy for the FENE-P/sPTT models (i.e. τyy = ξτxx ((4.2)))
and τxx depends on τxy, we can then combine this relationship with the result described in
§ 3.1, regarding the extra stress invariants, to obtain

I2

I1
= τxxτyy − τ 2

xy

τxx + τyy
= ξτ 2

xx − τ 2
xy

τxx + ξτxx
= ξτ 2

xx − τ 2
xy

τxx(1 + ξ)
= −G

2
, (7.1)

and therefore

ξτ 2
xx + G

2
(1 + ξ)τxx − τ 2

xy = 0. (7.2)
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Figure 6. Variation of eigenbasis normal-stress differences, normalised by the shear stress, with Weissenberg
number for various flow-type parameter values from simple shear to pure extension for (a) N1 for the sPTT
model with ε = 0.01 (solid line) and GNFFTy model (dashed line) using (7.3)–(7.5) (note that N1 = 0 for
ξ = 1.0 for both models) and (b) N2 for the sPTT model with ε = 0.01 (solid line) and GNFFTy model (dashed
line) using (7.3)–(7.5) (note that N2 = 0 for ξ = 0 for both models).

As (7.2) is simply a quadratic where τxy can be determined from (6.1) (i.e. τxy = γ̇ η(γ̇ , ξ)),
then (7.2) can be easily solved to give τxx for ξ /= 0:

τxx =
−G

2
(1 + ξ) +

√
G2

4
(1 + ξ)2 + 4ξ γ̇ 2(η(γ̇ , ξ))2

2ξ
, (7.3)

whereas for ξ = 0:

τxx = 2τ 2
xy

G
= 2γ̇ 2(η(γ̇ , ξ))2

G
, (7.4)

and hence the first and second normal-stress differences:

N1 = τxx − τyy = τxx − ξτxx = τxx(1 − ξ), (7.5a)

N2 = τyy − τzz = τyy = ξτxx. (7.5b)

Comparisons of the exact first and second normal-stress differences obtained for the sPTT
model with this inelastic model formulation are given in figures 6(a) and 6(b) where it can
be seen that the GNFFTy model predictions, as they are essentially based on how well τxy is
captured, are generally in very good agreement. The only exception is for non-dimensional
shear rates in the range 0.5–5 where the viscosity predictions also differ somewhat, and
the variation for N1 for simple shear at high rates where the simplification of using the
Carreau model for the shear viscosity (equation (4.8b)) is most in evidence. Nevertheless,
the ability of the GNFFTy model to capture the asymptotic variation at high and low rates
and the correct scaling with the nonlinear ε parameter of the sPTT model are clear.

As this formulation of the GNFFTy model is based on the sPTT/FENE-P models which
both give a zero second normal-stress difference in simple shearing, there may be benefit
too in also proposing a Giesekus-like model but, in this case, a different functional form
for the viscosity (and hence τxy) from (6.1b) would be required, and then the normal-stress
components could be determined directly from solving the quadratic equations already
presented as (5.2a) and (5.2b). In this version of the model, τyy becomes decoupled from
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τxx and N1 and N2 are N1 = τxx − τyy and N2 = τyy, respectively. Outside of steady simple
shearing, the predictions for this model – not shown here for conciseness – are essentially
identical to the currently proposed GNFFTy, given the similarity in the viscosities between
the sPTT (figure 5a) and the Giesekus (figure 5c) models for ‘strong’ flows. Such a model
might prove interesting in being able to model phenomena due to a non-vanishing second
normal-stress difference in shear, such as the well-known secondary flows observed in
non-axisymmetric duct flows (see e.g. Maklad & Poole 2021).

8. Conclusions

The steady, homogeneous, two-dimensional flow field of Astarita (1991) where the ‘flow
type’ may be altered using a scalar parameter, ξ was probed. When this flow-type
parameter is zero, the flow field is simple shearing, when it is +1 it is planar extension
and solid-body rotation is observed when ξ is set to −1. Astarita’s flow field has the
interesting feature that the rate of deformation tensor (D) for the flow is independent
of the flow-type parameter. We investigated the response of commonly used viscoelastic
constitutive models to the flow, including the UCM (Oldroyd-B) model, the linear form
of the sPTT model and the Giesekus model. As the flow is steady and homogeneous, the
sPTT model results also give the FENE-P model solutions via a simple transformation of
parameters (Cruz et al. 2005; Davoodi et al. 2022).

We have shown that for most of these models – the Giesekus model being the exception
– the first and second invariants of the resulting stress tensor are linearly related, and for
models based on the upper convected derivative, this link is simply via a material property,
namely the modulus, i.e. the ratio of the polymeric viscosity to the relaxation time.

By defining a frame-invariant coordinate system with respect to the eigenvectors of
D, we associate a viscosity for each of the flows to a deviatoric stress and show how
this quantity varies with the flow-type parameter. For elliptical motions (i.e. ξ < 0) rate
thinning is always observed and all models give essentially the UCM response. For ‘strong’
flows, i.e. ξ > 0, thickening occurs and only a small element of extension, dependent on
the value of the nonlinear parameters in the various models, is required to remove any
shear thinning inherent in the model, e.g. as occurs in steady simple shearing for the sPTT,
FENE-P and Giesekus models.

Finally, we used the functional form of the viscosity response of these models to
determine how a scalar ‘viscosity’ function – the GNFFTy model – may be rigorously
constructed which includes flow-type dependence. The performance of this model in
comparison with fully viscoelastic models in complex flows now needs to be tested,
starting with two-dimensional incompressible flows where (1.9) can be used to determine
the flow-type parameter in a straightforward manner. One could envisage a number of
possible ways to implement the model with the simplest being just to use a numerical
method already developed for a standard GNF but to replace the GNF viscosity function
with (6.1a)–(6.1c). An alternative approach may be to develop a new numerical method
where a local coordinate system could be determined based on the eigenbasis ideas
proposed to determine τxy and the first and second normal-stress differences in this frame
((7.5a) and (7.5b)) and then these components are rotated back into a global (Cartesian
say) coordinate system and the momentum equations solved. This latter approach, in
addition to capturing viscous flow-type dependence, is also capable of modelling effects
due to normal-stress differences. Given the success of previous inelastic models in being
able to capture some features of viscoelasticity in complex flows – such as the approach
of Debbaut & Crochet (1988) who used the third invariant of the rate of deformation
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tensor to bring in sensitivity to flow type in axisymmetric flows – it is possible that the
GNFFTy model may well be capable of predicting enhanced pressure drop in contraction
and other flows, plus vortex enhancement. Ultimately, the utility of the model can only be
ascertained by comparison with experimental data for various complex fluids.
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Appendix A. Oldroyd-A/LCM model

Although less well studied than the UCM (Hinch & Harlen 2021; Maklad & Poole 2021),
the so-called LCM model (Oldroyd 1950) provides an opposite limit to the UCM model to
test the sensitivity to the Astarita flow field to the type of convected derivative used:

τ + λ

τ = 2ηpD, (A1)

where ηp is the polymeric viscosity, λ is the relaxation time and the operator acting on the
second term represents Oldroyd’s lower convected (‘covariant’) derivative:



τ = Dτ

Dt
+ (∇u) · τ + (τ · (∇u)T). (A2)

Combining this derivative operator with the definitions of the velocity gradient and its
transpose ((3.3a) and (3.3b)) together with the constitutive equation (A1) this gives rise to
the following five equations for the various stress components:

τxy + λγ̇ (1/(1 + ξ))τyy + λγ̇ (ξ/(1 + ξ))τxx = ηpγ̇ , (A3a)

τyx + λγ̇ (ξ/(1 + ξ))τxx + λγ̇ (1/(1 + ξ))τyy = ηpγ̇ , (A3b)

τxx + λγ̇ (ξ/(1 + ξ))τxy + λγ̇ τxy(ξ/(1 + ξ)) = 0, (A3c)

τyy + λγ̇ (1/(1 + ξ))τxy + λγ̇ τxy(1/(1 + ξ)) = 0, (A3d)

τzz = 0. (A3e)

From (A3a) and (A3b), we see the inherent symmetry of the stress tensor. Rearranging
(A3c) and (A3d) we get the normal-stress components as a function of the shear stress:

τxx = −2λγ̇
(

ξ

1 + ξ

)
τxy, (A4a)

τyy = −2λγ̇
(

1
1 + ξ

)
τxy. (A4b)

Then substitution of (A4a) and (A4b) into (A3a) gives an explicit equation for the shear
stress:

τxy = ηpγ̇[
1 − 4(λγ̇ )2

(
1

1 + ξ

)(
ξ

1 + ξ

)] , (A5)
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which is identical to (3.6) for the Oldroyd-B equation. The extra stress field is completely
determined by (A5) and the first and second normal-stress differences:

N1 = 2λγ̇
(

1 − ξ

1 + ξ

)
τxy,

N2 = −2λγ̇
(

1
1 + ξ

)
τxy.

⎫⎪⎪⎬
⎪⎪⎭ (A6a,b)

We conclude that the Oldroyd-A model results are identical to those of the Oldroyd-B
except that the trace of the Oldroyd-A stress (= −2λγ̇ τxy) is equal to the negative of the
trace of the Oldroyd-B stress (= +2λγ̇ τxy), i.e.

I2

I1
= ηp

2λ
= G

2
, (A7)

in agreement with the results of Lagnado et al. (1985) for β = −1.

Appendix B. Comparison of sPTT and Giesekus models in classical planar
extensional flow

For the sPTT model in classical planar extensional flow the equations that need to be
solved for the two normal stresses are

ελ

ηp
τ 2

x′x′ + [1 − 2λε̇x′x′]τx′x′ + ελ

ηp
τx′x′τy′y′ − 2ηpε̇x′x′ = 0, (B1)

ελ

ηp
τ 2

y′y′ + [1 + 2λε̇x′x′]τy′y′ + ελ

ηp
τx′x′τy′y′ + 2ηpε̇x′x′ = 0. (B2)

These can be compared directly with the equivalent equations for the Giesekus model:

αλ

ηp
τ 2

x′x′ + [1 − 2λε̇x′x′]τx′x′ − 2ηpε̇x′x′ = 0, (B3)

αλ

ηp
τ 2

y′y′ + [1 + 2λε̇x′x′]τy′y′ + 2ηpε̇x′x′ = 0, (B4)

i.e. the equations differ by only the underlined terms in (B1) and (B2) which are
proportional to the product of ετy′y′ , where ε is typically much smaller than 1 and
τy′y′ � τx′x′ . Thus, except for large values of ε, the solutions of the equations for both
models are, for all practical purposes, identical.
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