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We present a theoretical stability analysis for an expanding accretion shock that does
not involve a rarefaction wave behind it. The dispersion equation that determines the
eigenvalues of the problem and the explicit formulae for the corresponding eigenfunction
profiles are presented for an arbitrary equation of state and finite-strength shocks.
For spherically and cylindrically expanding steady shock waves, we demonstrate the
possibility of instability in a literal sense, a power-law growth of shock-front perturbations
with time, in the range of h. < h < 1 + 2M>, where h is the D’yakov-Kontorovich
parameter, A is its critical value corresponding to the onset of the instability and M
is the downstream Mach number. Shock divergence is a stabilizing factor and, therefore,
instability is found for high angular mode numbers. As the parameter / increases from /A,
to 1 + 2M,, the instability power index grows from zero to infinity. This result contrasts
with the classic theory applicable to planar isolated shocks, which predicts spontaneous
acoustic emission associated with constant-amplitude oscillations of the perturbed shock
in the range h. < h < 1 + 2M,. Examples are given for three different equations of state:
ideal gas, van der Waals gas and three-terms constitutive equation for simple metals.
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1. Introduction

The stagnation of a mass hitting an obstacle via an accretion shock wave is a ubiquitous
phenomenon in compressible fluid dynamics, astrophysics, high energy density physics
and inertial confinement fusion. The incoming material passes through a shock front
and rapidly slows down, getting compressed, thermalizing most of its kinetic energy and
adding its mass to the previously accreted dense mass. Supersonic accretion accompanies
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hypervelocity impacts, such as meteoroid impact. It occurs when a white dwarf in a
binary system accumulates infalling mass from its companion star (Hoshi 1973), as well
as in numerous other astrophysical situations. In equation-of-state Hugoniot experiments,
a planar hypervelocity impact occurs when a flyer plate hits a sample (Zel’dovich &
Raizer 2002). In inertial confinement fusion, planar laser-accelerated foils hit stationary
targets to produce x-ray bursts for diagnostic purposes (Grun et al. 1983) or thermonuclear
neutrons (Karasik et al. 2010). When a spherical or cylindrical implosion occurs, the
centre or axis of symmetry plays the role of a rigid obstacle, near which the shocked
mass accretes. Spherically imploding flows are produced in laser fusion (Lindl 1998;
Craxton et al. 2015). Here, the stagnation of a low-density fuel via the accretion shock front
expanding from the centre of an imploded capsule, back into the converging once-shocked
deuterium-tritium plasma, constitutes the first stage of the central hot spot’s compression
and heating. Fast Z pinches (Ryutov, Derzon & Matzen 2000; Giuliani & Commisso 2015)
implode cylindrically to produce keV x-rays or neutrons (Coverdale et al. 2007). It has
been argued (Maron et al. 2013) that most of the x-ray and neutron yields from Z pinches
are generated during the stagnation of magnetically driven, cylindrically imploded mass
via an expanding accretion shock wave.

For planar geometry, the theory of stagnation via an accretion shock wave was pioneered
by Hugoniot shortly after he introduced the concept of a shock wave. He described
how a steady shock wave driven with a constant-velocity piston through a uniform
gas is reflected from a rigid wall (Hugoniot 1889). The solution of this problem for
a general case of a uniform fluid with an arbitrary equation of state (EoS) stagnating
against a rigid wall is a straightforward generalization of Hugoniot’s result, labelled
the piston problem, a particular case of the more general Riemann problem (Kochin
1949; Landau & Lifshitz 1987). The theory is more complicated for spherical and
cylindrical geometries because an imploding fluid cannot stay uniform and steady before
stagnation. The first exact analytical self-similar solution describing the convergence of a
shock wave was obtained independently by Guderley (1942) and Landau & Stanyukovich
(1945). As first noted on p.528 of Stanyukovich (1960) (the Russian edition of this book
appeared in 1955), the converging-shock solution can be continued through the instant
of collapse to the stagnation phase when an accretion shock front expands into the
incident shocked gas. According to Zababakhin & Zababakhin (1988) this unpublished
solution was first obtained by G. M. Gandel’man in 1951. Hunter (1960) obtained a
counterpart of Guderley’s solution describing an isentropic collapse of an empty cavity
in a compressible fluid. His solution includes both convergence and stagnation phases. A
complete mathematical description of solutions of this kind for both converging shocks
and collapsing cavities, for a cylindrical and spherical geometry, is given by Lazarus
(1981).

Sedov discovered a different family of exact self-similar solutions that describe
stagnation via an expanding shock wave, published in the third Russian edition of his book
(Sedov 1993) in 1954 (see Chapter 4, § 7 ‘The problem of an implosion and explosion
at a point’). These solutions feature a constant velocity of the expanding shock and ‘a
final state, behind the reflected shock, of a uniform fluid at rest. These are certainly most
peculiar solutions, but they do not appear to be physically nonsensical’, as formulated
by Lazarus (1981). These solutions did not attract attention until they were rediscovered
by Noh (1983, 1987) for a particular case of ideal-gas EoS and strong accretion shocks.
Due to the simplicity of the Noh problem formulation and the explicit analytic form of its
solution, it became the workhorse of compressible hydrocode verification for over three
decades; see Velikovich, Giuliani & Zalesak (2018) and references therein. Hereafter, this
particular case will be called the classic Noh solution. We will refer to all other self-similar
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solutions with a constant-velocity expanding shock and a uniform stagnated fluid at rest as
generalized Noh solutions.

The present article’s subject is the theoretical and numerical stability analyses of
stagnation via an expanding accretion shock front in spherical and cylindrical geometries.
Such analyses necessarily rely upon the classic theory of stability of isolated shock fronts
formulated by D’yakov (1954) and Kontorovich (1957) (hereafter referred to as DK).
Despite the extensive literature accumulated, the problem is not fully resolved, particularly
when realistic boundary conditions are considered. For a shock wave to be evolutionary,
which is a pre-requisite for its stability (Landau & Lifshitz 1987), the upstream and
downstream Mach numbers in the shock-stationary reference frame must satisfy M > 1
(supersonic upstream) and M, < 1 (subsonic downstream), respectively. Therefore, the
shock front is acoustically coupled with downstream influences. The inclusion of a
supporting mechanism, which is, in fact, a necessary condition for the shock to be steady,
affects the shock behaviour, and ultimately, its stability limits. Either if the shock front
is under-supported (followed by an expansion wave, gradually reducing its strength) or
over-supported (followed by a compression wave, gradually increasing its strength), the
stability analysis applies to the whole flow. It can be unstable in either case, even when
the shock front per se is surely stable. The blast wave (Vishniac 1983; Ktitorov 1984; Ryu
& Vishniac 1987; Grun et al. 1991; Sanz et al. 2016) and the converging shock (Gardner,
Book & Bernstein 1982; Murakami, Sanz & Iwamoto 2015) in an ideal gas are examples.
When we focus on studying the shock front’s stability, it must be steady, which implies a
piston, or the corresponding driving mechanism, maintaining a constant pressure behind
it.

The stability conditions for a steady isolated shock wave can be written in terms of the

DK parameter
— dv. 0
p— P2 Pt <_2) — —u% (ﬂ) , (1.1)
Vi—=Va \dp2 /)y op2 )y

that measures the slope of the Hugoniot curve relative to the Rayleigh—Michelson line on
the {V, p} plane. Here p, p, V = 1/p and u denote the pressure, density, specific volume
and fluid velocity with respect to the shock front, respectively, subscripts 1 and 2 refer
to pre- and post-shock states, and the derivatives are calculated along the Hugoniot curve
with the pre-shock pressure and density fixed. For an isolated steady planar shock front,
the classic stability theory predicts an oscillatory decay of perturbations as r—3/% (+=1/2
in the strong-shock limit), with a constant oscillation frequency, for any wavenumber (see
Roberts (1945) for an ideal-gas EoS and Bates (2004) for an arbitrary EoS), provided that
the parameter / is in the stable range, —1 < h < h., where

1M +R)

= , 1.2
1-M3(1-R) (-2

c

and R = po/p1 is the shock density compression ratio. For an ideal-gas EoS,
h=—1/M? h.=—1/ (2/\/1% — 1), and the stability conditions are always satisfied.
For h. <h < 142M,;, shock perturbations with certain wavevectors oscillate at
constant amplitude, causing spontaneous acoustic emission (SAE) from the shock front
(Kontorovich 1957; Landau & Lifshitz 1987; Clavin & Searby 2016; Fortov 2021).

The first example of a realistic EoS satisfying this condition 4 > h. was discovered
by Bushman (1976) near copper’s liquid—vapour transition. More examples have been
found since for condensed materials near the liquid—vapour transition, including water
(Kuznetsov & Davydova 1988), a fluid approximated by the van der Waals (vdW) EoS
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Figure 1. Distinguished regimes for isolated planar shocks ((a) known results) and expanding accretion
shocks ((b) new findings) along the variable /.

(Bates & Montgomery 2000), and magnesium (Lomonosov et al. 2000; Konyukhov
et al. 2009); for ionizing shock waves in inert gases (Mond & Rutkevich 1994; Mond,
Rutkevich & Toffin 1997); for shock waves dissociating hydrogen molecules (Bates &
Montgomery 1999); for Gbar- and Tbar-pressure range shocks in solid metals, where the
shell ionization affects the shapes of Hugoniot curves (Rutkevich, Zaretsky & Mond 1997,
Das, Bhattacharya & Menon 2011; Wetta, Pain & Heuzé 2018); for shock fronts producing
exothermic reactions, such as detonation (Huete & Vera 2019; Huete et al. 2020). Other
examples include EoS constructed ad-hoc specifically for analytical and numerical studies
of shock instabilities: (Ni, Sugak & Fortov 1986; Konyukhov, Levashov & Likhachev
2020; Kulikovskii et al. 2020). When these conditions are satisfied for an isolated
shock front, as noted in Landau & Lifshitz (1987), § 90 p.338, there is no ‘instability
in a literal sense: the perturbation (ripples), once created on the surface, continues
indefinitely to emit waves without being either damped or amplified.” Absolutely unstable
ranges are h < —1 and h > 1 + 2 M5, for which the exponential growth of shock-front
perturbations is associated with a shock breakup into several simple waves (Kuznetsov
1989; Menikoff & Plohr 1989). These stability limits are sketched in figure 1(a), where
the hatched regions correspond to conditions that render multi-valued (Erpenbeck 1962;
Kuznetsov 1984) or multi-wave (Kuznetsov 1989; Menikoff & Plohr 1989) solutions of
the planar Riemann/piston problem. In contraposition to SAE, it has been recently found
that externally perturbed shocks moving in complex or heterogeneous reactive gases, as
may be dense vapours near the thermodynamic critical point (Alferez & Touber 2017;
Touber & Alferez 2019) or incomplete exothermic mixtures (Cuadra, Huete & Vera 2020),
respectively, may reach a constant oscillation regime in mechanical equilibrium, i.e.with
no sound emission.

There is no consensus in the literature about the destabilizing effect of a piston on a
steady planar shock front for which the SAE conditions are satisfied. The presence of
a rigid piston supporting a planar shock enables acoustic waves to reverberate between
the shock front and the piston. This effect does not qualitatively change the shock-front
perturbation behaviour in the absolutely stable, —1 < h < h. (Freeman 1955; Zaidel’
1960; Fowles & Swan 1973; Wouchuk & Cavada 2004; Bates 2012, 2015), and unstable,
h < —1landh > 1 4+ 2M>, parameter ranges; but can make a difference in the marginally
stable/SAE range, h, < h < 1 +2M5. As noted in Fowles & Swan (1973), Kuznetsov
(1984), normally incident acoustic waves are amplified upon reflection from the shock
front at 7 > 1. Then the amplitude of a reverberating acoustic wave grows as a power of
time, so the whole hatched area of figure 1(a) becomes unstable. The stability analysis of
the initial-value problem in Wouchuk & Cavada (2004) for h, < h < 1 — 2/\/1% did not
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find any qualitative distinctness in the shock-front perturbation behaviour when a piston is
involved. On the other hand, Bates (2015) found ‘an instability in a literal sense’, a linear
growth of shock perturbations in the whole range h, < h < 1 +2M,.

An accretion shock front is not isolated either; it receives a feedback from the stagnated
fluid, and the stability theory has to take this interaction into account. To analytically
solve the problem in spherical and cylindrical geometries, we need unperturbed exact
one-dimensional (1-D) solutions that describe stagnation and serve as a background
for linear stability analysis. Only the family of generalized Noh solutions meaningfully
satisfies this requirement because shock-front stability is determined both by the EoS of
the shocked material and the shock strength. In the weak- and strong-shock limits, shock
fronts are stable for any EoS. Instability is possible for some non-ideal EoS, always within
a finite range of shock strengths. The family of background stagnation solutions suitable
for a comprehensive analysis should allow for arbitrary choices of both the EoS and the
accretion shock strength. Self-similar solutions describing the stagnation phase after the
shock convergence or the cavity collapse (Guderley 1942; Hunter 1960; Stanyukovich
1960; Lazarus 1981; Zababakhin & Zababakhin 1988; Zel’dovich & Raizer 2002) do
not satisfy this requirement. The class of non-ideal EoS permitting these self-similar
solutions (Anisimov & Kravchenko 1985; Sedov 1993; Roberts & Wu 1996; Wu & Roberts
1996; Axford 2000; Ramsey et al. 2018; Giron, Ramsey & Baty 2020) is narrow, not
including most non-ideal EoS of interest. The family of generalized Noh solutions, on
the other hand, fits the above requirement. They can be constructed for spherical and
cylindrical geometries with an arbitrary EoS (Velikovich & Giuliani 2018) and shock
strength (Velikovich et al. 2018). The stability analysis turns out to be more straightforward
and can be carried out farther than, for example, the Guderley problem permits (Wu &
Roberts 1996; Murakami et al. 2015). For the latter case, the eigenvalue problem has to be
solved numerically. Hence, one can reliably evaluate only the eigenvalue that corresponds
to the most unstable or the least stable eigenmode. Moreover, for the generalized Noh
solutions, it is possible to derive an explicit dispersion equation and calculate the whole
eigenvalues spectrum. For the particular case of the classic Noh problem, such derivation
has been published in Velikovich er al. (2016).

Generalized Noh solutions account for the fundamental features of expanding accretion
flows, the shock divergence and the acoustic feedback from the piston represented by the
centre or axis of symmetry. The accreted mass flow’s stability is not a factor because
the uniform accreted material at rest is neutrally stable for any EoS. In this article we
will demonstrate that the shock-front divergence is a strong stabilizing factor. Ripples
on a stable planar shock front decay with time and they would decay faster if the shock
wave of the same strength, in the same material, were diverging. We will not consider
absolutely unstable shock fronts, which do not represent physically meaningful solutions
to the Riemann problem.

As in Velikovich et al. (2016), the linear small-amplitude stability analysis employed
in this work covers the general case of three-dimensional (3-D) perturbations of the
classic Noh solution for spherical geometry, with small-amplitude distortion of the
expanding shock front proportional to the spherical harmonic, ~ Y;"(6, ¢), and a special
case of two-dimensional (2-D) filamentation perturbations, ~ exp(img), for a cylindrical
geometry. The general case of 3-D perturbations in cylindrical geometry, however, needs
to be studied separately, as the external length scale in the problem when perturbations
are allowed to be ~ exp(img + ikz) introduces an extra layer of complexity, same as
encountered in the planar geometry problem (Bates 2004; Wouchuk & Cavada 2004).
For the above two scale-free cases, our perturbation problem is solved analytically for an
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arbitrary EoS and arbitrary shock strength. It results in an explicit dispersion equation
for the eigenvalues determining the time evolution of the solutions, as well as explicit
formulae for the corresponding eigenfunctions describing the pressure, density, velocity
and vorticity fields in the perturbed stagnant gas. For both spherical and cylindrical cases,
the stagnation via a constant-velocity expanding accretion shock wave turns out to be
stable when low-mode numbers are considered for the three types of EoS presented as
examples: ideal gas, vdW gas and three-term EoS for simple metals such as aluminum and
copper. For analytic studies of the DK instability, the three-term form of the EoS was first
used by Rutkevich ef al. (1997). The distortion amplitude of the expanding shock front
decreases as a power of time, with the decay rate being a function of the shock properties
and perturbation wavenumber. On the other hand, sufficiently large wavenumbers may
lead to an unstable behaviour, and the instability condition reduces to & > h, when the
perturbation wavenumber tends to infinity. The factors specific to expanding shock flow,
such as its divergence and the non-uniformity of the pre-shock profiles, do not affect
the stability criteria in this limit. The difference between this case and the classic case
of isolated planar shock (D’yakov 1954; Kontorovich 1957; Landau & Lifshitz 1987) is
due to the piston-like effect that supports the steady shock and that is represented with
the centre or axis of symmetry. Numerical simulations for relatively low-mode numbers
(stable cases) are performed with an in-house finite-element code to solve the initial-value
problem. It employs a self-adaptive mesh in fully compressible finite elements, implicit
integration in time and fixed-point iteration for the convergence algorithm.

The paper is organized as follows. The problem formulation for both unperturbed
1-D self-similar profiles and perturbation variables is presented in §2, where the
analytical expression for the dispersion relationship is derived. Computation of the
eigenvalues for ideal gas, vdW and simple metals equations of state are provided in § 3,
where the asymptotic limits associated with dominant radial perturbations and dominant
transverse perturbations are also discussed. The post-shock acoustic, entropic and vortical
perturbation fields are also displayed. Numerical simulations for low-mode numbers are
displayed in §4. The conclusions are offered in §5. Appendix A shows the derivation
of the constitutive relationships and fundamental parameters describing the vdW and
three-term equations of state for condensed materials.

2. Problem formulation
2.1. Self-similar perturbation-free flow

Both upstream and downstream flow perturbations are governed by the inviscid Euler
equations

3
1V (pv) =0, @.1)
at

ov 1
V.- Vu+-Vp=0, 2.2)
at 0

ap 2 (9P

- .Vp = — Vo], 2.3

8t+v p=c (8t+v ,o) (2.3)

where p(r, 1), v(r, 1), p(r, t) and c(r, t) stand for the density, velocity, pressure and speed
of sound, respectively, as functions of the Eulerian coordinate r and time . Equations (2.1)
and (2.2) refer to the conservation of mass and momentum, respectively, while (2.3) refers
to the conservation of entropy of the fluid particles. The speed of sound is related to the
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isentropic flow variation to be determined with the aid of the EoS expressing the specific
internal energy as a function of density and pressure £ = E(p, p).
The initial conditions for the Noh problem are

p1(r,t =0) = po, (2.4a)
p1(r,t =0) = po, (2.4b)
vi(r,t =0) = —pe,, (2.4¢)

where pg and pg are the initial density and pressure, vg > 0 is the uniform initial radial
velocity and e, is a unit vector in the positive radial direction. Subscript 1 refers to variable
conditions in the whole domain ahead of the shock front while subscript O indicates the
initial conditions.

The evolution of the upstream flow is derived with use made of the self-similar

coordinate
;

g= L (2.5)
volt
in the system of (2.1)—(2.3) to give

dlnp; dv; (v — Dy

(v1 — &vp) i + r : =0, (2.6)
dv; 1 dp; B
(v1 _SUO)E +E¥ =0, 2.7)
a _ odon
ki (2.8)

as the mass, radial momentum and energy conservation equations, respectively. The
coefficient v represents the geometry, where v = 1 is the planar geometry that renders
a trivial flat-profile behaviour, and v = 2 and v = 3 refer to the cylindrical and spherical
geometries, respectively, which provide a variable flow as a result of the inwards mass
accumulation. Equations (2.6)—(2.8) are supplemented with the equation for the speed of
sound ¢; = ¢(p1, p1), to be determined with (A1), and the boundary conditions v{(§ —
00) = vg, p1(§ = 00) = pg and p1(§ — 00) = pg. When the thermodynamic pressure is
negligible, py < po v%, the upstream profiles are analytic and reduce to a constant-velocity

flow v1(§) = —vg and a variable density flow of the form p(§) = po(1 + £~ 1v=1 Note
that p1(§ — 0) diverges, as occurs for the solution of a more general case provided by
(2.6)—(2.8).

The singularity is resolved by the expanding shock that emerges at t > 0" and puts
the downstream flow at rest, a condition that closes the system. The shock moves at
constant speed vy and always encounters the same properties upstream, thereby rendering
uniform flow variables downstream. Then, the self-similar coordinate at the shock
position is a constant, given by & = vg/vo, that can be determined with the aid of the
Rankine—Hugoniot (RH) equations across the shock, namely

P15(Vs — V15) = PsVs, 2.9)

Pis + p15(vs — v15)? = ps + psv2, (2.10)
1 1

Pl Byt 2oy — 012 = 2 4 By + 202, @.11)
Pls 2 Ps 2

along with the upstream flow variables at the shock position pi1s = p1(&s), p1s = p1(&s)
and vy = v1(&). On condition that internal energy E(p, p) is a known function of
927 A35-7
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Figure 2. Self-similar profiles for an ideal gas, vdW EoS and aluminum in cylindrical v = 2 and spherical
v = 3 geometries.

pressure and density, they comprise three independent equations for pg, ps and vy
(or equivalently &), thereby providing the necessary information to compute the flow
variables in the whole domain 0 < & < oo. Then, if the EoS and the internal energy are
known functions, so is the shock velocity vy, and by extension, so are the mass compression
ratio R = ps/p1s, the post-shock Mach number M» = v;/cy and the shock Mach number
M = (vy — vy1y)/c15, among others.

For example, self-similar profiles are displayed in figure 2 for v = 2 (cylindrical) and
v = 3 (spherical) for three different equations of state that include: ideal gas(a), vdW gas
(b) and three-terms equation for aluminum (c), whose constitutive details are provided
in Appendix A. Note that the mathematical description for the EoS and the internal
energy is not restricted to the reduced Mie—Griineisen form E(p, p) = pf(p), where f(p)
is an arbitrary positive function of density, which is a pre-requisite to construct classic
self-similar solutions for blast-wave, impulsive-loading, converging-shock and classic Noh
problems (Anisimov & Kravchenko 1985; Sedov 1993; Roberts & Wu 1996; Axford 2000;
Giron et al. 2020). For example, Roberts & Wu (1996) used a reduced form of the vdW
EoS to meet the reduced Mie—Griineisen form and, therefore, find a self-similar solution
for the spherical implosion problems, and Ramsey, Boyd & Burnett (2017) demonstrated
that there is no classic Noh solution for spherical and cylindrical geometry with an EoS
for which the internal energy is not simply proportional to the pressure. Nevertheless, the
generalized Noh problem admits any form of EoS (Velikovich & Giuliani 2018).

2.2. Linear perturbation analysis

For a spherical geometry, the perturbed shock-front position is written in terms of spherical
harmonics, i.e.

t Ol,m
rs(ea (p’ t) = Ust 1 + € Z Cl,m (_) Y]m(ev (p) k) (212)
I,m fo
927 A35-8
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Pyt 8p(r, 1)
pytép(r, 0
su(r, 1)

o Lower density, lower pressure
and higher velocity than in the
unperturbed pre-shock state @

N \Non-perturbed shock

Figure 3. Sketch of the cylindrical perturbed shock moving through the non-uniform upstream flow.
Representation for the cylindrical geometry with m = 10.

where vy and vgt correspond to the unperturbed shock velocity and radial position of the
shock, respectively. The variables 6 € [0, t] and ¢ € [0, 27] correspond to the polar and
azimuthal angles, respectively. The term proportional to the small-amplitude parameter
€ < lincludes Y;"(0, ¢) = P}"'(cos 0) exp(img), where Py is the associated (generalized)
Legendre function and [ and m < [ correspond to the polar and azimuthal integer mode
numbers, and the corresponding complex amplitude ¢;,,. The lack of scales dictates
the power-law dependence (#/19)°, where fy is an arbitrary temporal parameter used to
provide dimensional consistency and o7,, = 0 = og + io7 is the complex dimensionless
eigenvalue.

The stability analysis is done similarly for cylindrically expanding shocks, with the
spherical harmonics in (2.12) replaced by the exponential functions, exp(img), and the
double sum over / and m replaced with a single sum over m from O to infinity. Only
the 2-D filamentation perturbations of this form (no axial non-uniformity) are scale free,
thereby enabling separation of variables in our perturbation equations for a cylindrical
geometry (see sketch in figure 3). Regardless of the configuration, spherical or cylindrical,
the stability analysis is done for one Fourier—Legendre mode at a time, so we omit the
mode-number subscript 0, = o for simplicity. The oscillation frequency will be dictated
by the value of o7 while the real part will determine if the shock is stable (og < 0) or
unstable (og > 0).

Likewise, the perturbed density, pressure and radial velocity functions are written as

_ %0 p@B.e.n.1)—p, 1\’
p=F = f ¢ Z —) GY®, ¢), (2.13)
Ps Ps IL.m 1o
__Sp _p@.e.n.t)—p £\’
p=—5= =€y (=) POY"®. 9, (2.14)
IOSCS /OSCS L.m t()
8 67 ’ 9t t 7
5, = 2 _ v®.e.m 0 _ 3 (-) VYo, ¢), (2.15)
Cs Cy Im )

where G(n), P(n) and V(n) are the corresponding eigenfunctions that depend on
the self-similar variable conveniently constructed with the speed of sound in the
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compressed gas

,
n=—= Mzé. (2.16)
cst &s
The components of transverse velocity perturbations §v; = dvges + Svye, are gathered
together with the transverse divergence function

S rVi-év1(0,9,n,1) ZEZ(%) DY, ¢). (2.17)

Cs

l,m

that involves the eigenfunction D(n).
The inclusion of the perturbed variables (2.13)—(2.17) into the Euler equations
(2.1)-(2.3) yields

d &V -1V D
(G_n_)GJF_JruJF_:o, 2.18)
dn dn n n
d dp
dn dn
d B P
G‘Wg)D—N+”—D—=Q (2.20)
n n
d
(a - n—) (G —P) =0, 2.21)
dn

now a system of ordinary differential equations that only involve geometrical parameters
v and j. In writing the conservation of transverse momentum (2.20) we have made use
of the identity rZViﬁ = —j(j + v — 2)p. Note that the main mode number j > 0 is used
to unify the notation for both cylindrical and spherical geometries. The former is given
by v =2 and j = m and the latter is represented by v = 3 and j = [. This can be done
since rZVi' = —I(/ + 1)p in spherical geometry, thereby indicating that the perturbation
growth does not depend on the azimuthal mode number m, but on the polar mode number
[=j.
Simple manipulation of (2.18)—(2.21) yields

d’pP v—17dP jG+v—2)
2 oo _ - _ JV T _
(1 l)an 2[77(0 D+ 2 }dn+[o(o D+ 7 }P—O,
(2.22)

as the ordinary differential equation that describes the acoustic eigenfunction. The general
solution can be written as a linear combination of two Gauss hypergeometric functions
oF 1, but imposing the solution to be regular at the centre for any time, at n = 0, leaves

L T N

2 [ 2 7]+§;n

where C,. is the acoustic amplitude to be determined with the aid of the boundary
conditions at the shock. Density perturbations eigenfunction

j—o j+l—0o v 2)

P(n) = Cacr]jZFl (

(2.24)

+5i0

Gw=%w+%wﬂ<2, Tt

is obtained by direct integration of (2.21). The first term on the right-hand side includes the
constant C,, and it corresponds to the entropic contribution of the density perturbations.
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The eigenfunction for the velocity perturbations is also split into curl-free acoustic and
divergence-free rotational contributions. The former is obtained by calculating the sonic
velocity potential v = V¢,

¢ o+1
b=ecin) (—) (Y] (O, 9), (2.25)
Io
l,m
that, in terms of the corresponding eigenfunction, obeys
do
na +(c+1)D =P(n), (2.26)
which gives
77 - acj _ 1 P 2 1 2 k] 2 7_] 2 ’ n .

upon integration and setting the arbitrary constant to be zero. Note the denominator
j— 1 — o in the term accompanying the hypergeometric function, which states that the
acoustic contribution becomes singular for ¢ = j — 1, which is real and positive.

The rotational contribution is obtained from the divergence-free condition that
states that the amplitude of the radial-rotational velocity perturbations must be j(j +
v—2)/(c +v—1) times the transverse-rotational velocity amplitude. In sum, the
eigenfunction of the radial velocity field includes the rotational and acoustic contributions
in the form

.. P j—o j+l—0o . v
V() = CrojG+v —2)1° + Cact?/ 1[2F1< 5 5 §J+§;772>
o+1 j—o j—1l—0o . v ,
—HF , ; — , 2.28
+j—1—02 1( 5 > J+2 n (2.28)

while that corresponding to the transverse divergence eigenfunction reads as

D(n) = —Cr jGi+v—=2)(c +v—Dn’

i—1JG+v—2) j—o j—=1—0 . v ,
— . — HF , ; - . 2.29
acl T1 i 5 JjH 5 (2.29)

They include the constant C,, in the rotational contribution along with the term
Jj( + v — 2) multiplying the function 1. It dictates that the case j = 0 renders no vortical
perturbation downstream as the shock shape remains cylindrical/spherical regardless of its
perturbed position. The three complex constants, C,., C;,, and C,,, along with the complex
eigenvalue o are determined with use made of the linearized RH equations at the shock
position n = vg/cg = Mo.

The linearized mass, radial momentum and energy conservation equations across the
shock (the latest expressed through the perturbation of the RH curve) are

R—-1 (SUS — als - DS

I R, — = _ — 2.30
R o, Pls R Ps + M, ( )
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ps pl& - 2 _
— +Rp 2015 + —— — Ps, 2.31
M% R Pls — £V1s M, Ps ( )
- h — M% - 1 2 -
respectively, where /4 is the DK parameter defined in (1.1) and
h 19 0
h=— o Ds , (2.33)
Mi=11cqoos| o Pislp p,

accounts for the influence in the post-shock values due to the non-uniform pre-shock
variables. For an ideal-gas EoS, they read as

1 — M3 -1
h=——s and h = (v = D(Mj . ). (2.34a,b)
M7 (y + DMy
while the corresponding expressions for a vdW gas and a three-terms EoS for metals are

provided in Appendix A.

As sketched in figure 3, the perturbed shock front encounters upstream variances
along the radial coordinate as a consequence of the converging flow mass accumulation,
which results in non-uniform density, pressure and velocity fields. The amplitudes of
these perturbations depend on the local shock distortion range, which can be normalized
with unity mode amplitude ¢;,, = 1 for any given values of / and/or m (Fourier mode).
Since §ry = ry — vst ~ €yt is given in (2.12), the local velocity perturbation by the shock
distortion reads as

Sy 1 arg -

—=———=€cl+1 Y70, ¢), (2.35)
Vs vs Ot 1o

and the corresponding upstream dimensionless perturbations, related by the isentropic

compression of the order of €, are

L P w-npMR=D (O o 3
¢ — ———— = —0v = —€\V — —_— .
Pls Rz Pls R 1s R(M% _ 1) @
where pi5 = 8p1/p1s, V15 = 8v1/vs, and pis = 8p1/(p1sv2).
In terms of the eigenfunctions, linear combination of (2.30)—(2.32), along with the
substitution of the compressed gas perturbation functions (2.13)—(2.15) and the upstream
perturbation by the shock distortion (2.35) and (2.36) renders

R, _20+v)=Ru=-h+h)

s = , 2.37
MR- 1) 1+h 2.37)
R _ 2h(o +v) =R — D(h—h)
R_1% 7~ 1+h ’ (2:38)
R (=m0 +v)+Rv—1D(h—h)
My(R — 1)V5 N 1+h ’ 2.39)

for the values of pressure, density and velocity eigenfunctions at the shock (identified
with the subscript s), respectively. Unlike the 1-D problem, the distorted shock
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involves an additional unknown related to the transverse perturbations. Then, the fourth
boundary condition at the shock completes upon integration of the transverse momentum
conservation equation that reduces to

1
Mr(R—1)

in terms of the eigenfunction Dy. Equations (2.37)-(2.40) provide four boundary
conditions to be employed in determining the complex values of Cy., Cy, Cyp and o, with
use made of (2.23)—(2.29). Note that they reduce to (20)—(23) in Velikovich et al. (2016)
for an ideal gas in the strong-shock limit M > 1, whose governing parameters read as
R=h'=M;>~1=(@@+1D/(y —1)and h =0.

By equating the eigenfunctions (2.23), (2.24), (2.28) and (2.29) evaluated at n = M
with the shock boundary conditions (2.37)—(2.40), respectively, the dispersion relationship
that determines the eigenvalue o is found, namely

Dy =jG+v—2), (2.40)

{@+v=DIRW—=1) =0 —v]I+Rj(+v =2} +hF
+[2(0c +v) =R — D1 +h)l(o + v +j— DF,=0, (2.41)

where the functions F f: and F'|, defined conjointly as

j—o jxl—0o . v
Fﬁ:m( PR ;]+§;772=M%>, (2.42)

refer to the Gauss hypergeometric functions evaluated at the shock front.

The dispersion equation (2.41) is a spherical/cylindrical counterpart of the DK
dispersion equation for an isolated planar shock, (90.10) of Landau & Lifshitz (1987).
In planar geometry it is impossible to derive a dispersion equation that takes a piston into
account. This is why the shock-front stability analysis had either to be done heuristically
(Fowles & Swan 1973; Kuznetsov 1984) or use much more complicated mathematics to
solve the initial-value problem (Wouchuk & Cavada 2004; Bates 2015). By contrast, our
dispersion equation (2.41) accounts for the piston-like represented by the centre or axis
of symmetry. For a given geometric parameter v and four shock parameters, M», R, h
and A1, the expanding shock front is unstable if for any angular mode number j there is
an eigenvalue with o > 0. Note that all the parameters entering (2.41) are real and the
left-hand side of this equation is an analytic function of the complex parameter o, thereby
providing pairs of physically equivalent complex-conjugate eigenvalues, of which we only
show those with non-negative oy.

The dispersion relationship (2.41) does not admit an analytical solution except for some
limiting cases. For example, benefiting from the simplification of the hypergeometric
function for the lowest mode j = 0 in spherical geometry v = 3,

( +M2)0+3/2:Fl/2 - _M2)0+3/2:|:1/2

FG=0v=3 20 +3/2F 1/2)M, ’ (249
the dispersion relationship can be written in explicit form
(6 +2)2R — (o + )1+ h) (27T - 1)
+2(0 + D(o +3) =R+ hD)(Z T = D(1 — M) =0, (2.44)
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provided that 0 # —2 and o # —1, since writing (2.44) involves the multiplication of the
two terms by (o + 2)(o + 1). Equation (2.44), which includes the Doppler shift factor

1L+ M,

ST M

> 1, (2.45)

associated with the coupling with the centre of symmetry, provides the values of ¢ for a
purely radial perturbation of the shock front: it assumes that the shock is slightly displaced
from its corresponding equilibrium position given by the base-flow theory presented
before.

For an ideal-gas EoS, the four parameters that describe the shock properties in the
dispersion relationship (2.41) can be reduced to two: typically the shock Mach number
M and the adiabatic index y, although the former can be substituted by any other
jump property. Then, with use made of (A 9) and (2.34a,b), the corresponding dispersion
relationship for a finite-strength shock reads as

{04+v=D[(y+ DM@ +2v—1—y —oy) —2(c + V)]
i+ v =2 + DM = MTHFE+1 — v +3v + 40 + vy
—2Mi(@ +v—oy =)o +v+j— DF, =0, (2.46)

which only depends on M and y for a given perturbation mode number j and geometry
parameter v. This expression can be further reduced in the strong-shock limit, M; > 1, to
yield (29) in Velikovich et al. (2016). In the weak-shock limit, M| — 1 <« 1, the function
h + 1 approaches zero thereby cancelling out the term proportional to # + 1 in (2.41), or

the term proportional to (1 — /\/ll_z) in (2.46), when o remains finite. However, high-order
modes still contribute so long as 02(M/ — 1) ~ 1 or higher.

3. Results
3.1. The eigenvalues

The dispersion equation (2.41) renders an infinite number of eigenmodes for each
perturbation mode number j. They are numbered by n=1,2,..., in the order of
increasing oy; n is called the radial mode number. The distinction between the radial n
and transverse j mode numbers can be used to study some distinguished limits of the
eigenvalues pool, such as the limits n >> j and j > n addressed below. While the former
corresponds to radial acoustic perturbations, the latter is representative of planar shocks,
where transverse perturbations dominate.

High-order modes n >> j can be also treated analytically with use made of the quadratic
transformation of the Gauss hypergeometric in the corresponding high-frequency limit to
give

rej+v-1 [ 1+ M, ]f+(”“)/2
I'j+w-—1/2] [2Ma(j — o)
x [(—)FT 4+ g7 P EF2 4 0G/|o)) 3.1)

Fi = (1+ M)
n>j

for the two hypergeometric functions defined in (2.42), where I” is the gamma function
and % is the Doppler shift factor defined in (2.45). Upon substitution in (2.41), the
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corresponding dispersion relationship for high-order modes reads as
(14 2Ms — B (=)¥ 4 (1 —2My — g0~ =D/2 =, (3.2)

provided that only the dominant contribution 0(c?) is retained in (2.41). The polesin (3.2)
satisfy

() v—1  In|Z
N — 3 3-3
R 2 T g, (-3
() _ 2mn
~ ——+40(1), 3.3b
o) lm%+ ey (3.3b)
for the real and imaginary components, respectively. Here
2 —14+nh
_2My -1+ (3.4)

TTOMy+1—h

stands for the reflection coefficient for an acoustic wave normally incident on the shock
front from behind (we refer to Rutkevich & Mond (1992) for its extension to fast
magnetoacoustic waves hitting the shock). For 1 < i < 1 + 2M», we have Z; > 1, so
acoustic waves are amplified upon reflection from the shock front, indicating instability
for planar geometry, in agreement with Fowles & Swan (1973), Kuznetsov (1984).

When the radial mode number is sufficiently large, the value of or approaches that
predicted in (3.3a) and the frequency increase between two successive radial mode
numbers becomes constant with the value predicted in (3.3b). In this limit n >> j, acoustic
waves reverberate almost normally to the shock front, as illustrated below in figures 10
and 11. The relevant length scale, ~ v,t/n, is much smaller than those associated with the
pre-shock non-uniformity and the angular mode number, ~ vst and ~ v,t/j, respectively,
which explains why parameters /; and j do not enter (3.3a) and (3.3b). Although (2.41)
does not apply to planar geometry, v = 1, the asymptotic formulae (3.3a) and (3.3b)
are valid in this case, too. They describe an acoustic wave reverberating between the
shock front and the piston at the speed of sound, ¢y, whereas the shock front moves
away from the piston at velocity v,. Its back-and-forth cycles increase in duration as
powers of the Doppler shift factor: 1, Zst1, Z?ty,..., cf. figure 3 of Fowles & Swan
(1973). Assuming the reflection coefficient from the piston to be unity, in planar geometry
each cycle multiplies the acoustic wave’s amplitude by the shock reflection coefficient:
1, %, %32 .... The amplitude thus varies as a complex power of time, the real part of the
power index for v = 1 being given by the second term on the right-hand side of (3.3a). The
first term, negative for v = 2 and 3, describes the attenuation of diverging acoustic waves,
as explained in Velikovich et al. (2016). The stabilizing effect of divergence is obviously
stronger for spherical expansion.

Figure 4 shows the eigenvalues for v = 2 (boxes) and v = 3 (circles), for shocks with
R = 3 with low-mode numbers j = 0, 1, 2 and 3 in three different EoS (ideal gas for air,
vdW and aluminum). In these conditions, none of the cases considered renders unstable
oscillations, although the shock moving in a vdW EoS with the conditions that render
SAE in planar shocks (y = 31/30,a; = 1/2 and B; = 1/9), see Bates & Montgomery
(2000), has the largest value of og with o7 #= 0. This complex eigenvalue, which seems to
correspond to the lowest n and the largest j, is the dominant contribution to the decaying
oscillations of the perturbed shock.

When n > j, the poles align along the asymptotic values predicted in (3.3a), represented
with a vertical grey dashed lines in figure 4. Although none of the examples yields
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Figure 4. Eigenvalues for v = 2 (boxes) and v = 3 (circles), for shocks with R = 3 with low-mode numbers
Jj=0,1,2 and 3 in three different EoS (ideal gas for air, vdW and aluminum).

instability, it is interesting to evaluate the condition on the DK parameter % that gives

algn»j ) > 0, namely

9-b/2 _4
h>hm:1+2/\/l2s(U_T, (3.5)
Ds +1
which can be applied to v = 1,2 and 3. As 4 increases from the value in (3.5) to h =
1 4+ 2 M (the value that makes singular the reflection coefficient %), the corresponding
power index og given by (3.3a) increases from zero to infinity. However, the instability
threshold for cylindrical and spherical shocks when n >> j occurs before because £, < 1 +
2M,. Note, however, that it gives sufficient rather than necessary instability conditions.
The modes with large n >> j are not necessarily the most unstable. The instability is quite
possible when the right-hand side of (3.3a) is negative. For example, for a vdW EoS, poles
with low radial mode number in figure 4 lie on the right of the vertical asymptotic line,
and the largest value corresponds to the largest perturbation mode number j = 3.

In order to evaluate if the increase of the transverse mode number j may eventually lead
to instability, the eigenvalues are now computed for large j > n in figure 5 for the same
EoS (ideal gas for air, vdW and aluminum) and shock conditions as those used in figure 4.
In particular, the eigenvalues for j = 15, 50, 150 and 300 are plotted in the complex plane,
with the vertical axis being normalized with respect to the angular mode number, o;/j, to
show all spectra on the same scale. For each j, figure 5 shows several complex eigenvalues
corresponding to low radial mode numbers n = 1 to 8. As j increases, the poles align along
the horizontal asymptotic value

lim 2 = /M2 -1, (3.6)

J—>oo ]
either on the negative half-plane or < 0 (for the ideal gas and the aluminum EoS)
or, eventually, on the positive half-plane or > 0 (for the vdW EoS). The value in
(3.6) is readily obtained by knowing that the shock front is effectively planar in the
short-wavelength limit j — oo. Then, the oscillation frequency w; of shock-front ripples
is related to the transverse wavenumber k by w; = kcg(1 — ./\/l%) 1/2 (Zaidel’ 1960).
Substituting wy = o7/t and k = j/(vst) for the frequency and wavenumber, respectively,
gives the value (3.6), represented in grey dashed lines in figure 5.

Two distinguished scenarios are observed in figure 5. For the ideal gas and the aluminum
three-terms EoS, the shape of the poles plotted on the {or, o7/j} plane is very similar, with
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Figure 5. Eigenvalues for v = 2 (boxes) and v = 3 (circles), for shocks with R = 3 with low-mode numbers
Jj = 15,50, 150 and 300 in three different EoS (ideal gas for air, vdW and aluminum).

all the eigenvalues being on the negative half-plane or < 0, i.e.stable conditions. There
exist, however, differences in the dominant poles as j increases. The short-wavelength
limit is better analysed in figure 6 that shows the value of og vs mode number j for
low radial mode numbers with the same conditions as those in figures 5(a) and 5(c) : a
shock with R = 3 moving through an ideal gas with y = 7/5(a) and aluminum modelled
with the three-terms EoS (b). For air, it is found that the dominant contribution is the

high-mode radial eigenvalue, that renders algn»J) = —2.9578 in cylindrical geometry, a
value that shifts —0.5 units in the spherical case. For j > n, the maximum value for
or approaches ~ —4.27 for v = 2 (—0.5 units for v = 3). It indicates that, regardless of
the value of j, radial perturbations decay slower and thus they dominate in the long-time

regime. Computations for aluminum, displayed in figure 6(b) show that eigenvalues with

low radial mode number dominate with respect to high radial mode number alg">>j ). Unlike
the unstable case of vdW displayed in figure 5(b), the dominant low-n eigenmode does not

correspond to the lowest n = 1, but it rather shifts up in one unity when increasing the

mode number j. For example, o*lg"»j) = —3.48442 for cylindrical geometry (—0.5 units

in spherical geometry) but the alternating dominant mode number approaches ~ —3.45
(—0.5 units for v = 3) when j > n, which is slightly larger than that predicted for n > j.
That makes the radial mode number n a relevant parameter in describing the perturbations
decay rate even for short transverse wavelengths, so that j >> n is not strictly applicable.
Regardless of the case, the decay rate is not a universal power law, as occurs for planar
isolated shocks, but it depends on the shock properties, flow geometry v and perturbation
mode number j.

For the case of the vdW EoS, figure 5(b) displays a very different pattern. Computations
made for y = 31/30, @1 = 1/2, 81 = 1/9 and R = 3, conditions that are known to exhibit
SAE in planar isolated shocks (Bates & Montgomery 2000), reveal that the increase
of the mode number j gives higher values of og, with the lowest radial mode n = 1
being the largest for each value of j. If j is sufficiently large, the leading pole may
cross the stability threshold og = 0, which is found to occur for j = 300 in cylindrical
geometry (leading box), but it does not happen in spherical geometry (leading circle).
Numerical evaluation of these two cases places the onset of instability at j = 258 for
v =2 and j = 364 for v = 3. The study of the stability limits is extended in the next
subsection.
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Figure 6. Decay power law og < 0 vs mode number j for n = 1-8 in cylindrical (orange) and spherical (blue)
geometries. Shock with R = 3 moving in an ideal gas with y = 7/5 (a) and cold aluminum (b).
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3.2. The stability limits

For a given set of the shock parameters, spherical or cylindrical geometry, and any given
finite value of j, we find a distinct value of the parameter / that determines the shock ripple
behaviour, Ay, corresponding to og = 0. At h = hy, the oscillating and growing shock
ripples maintain a constant amplitude relative to the shock radius. Above this threshold, at
h > hg, the shock ripple amplitude grows faster than the shock front expands, indicating
instability. Then, downstream pressure and density perturbations, which scale with the
shock distortion rate, grow both absolutely and relatively.

Usually, the most unstable eigenvalue has the lowest radial mode number n. The
instability threshold corresponds to a purely imaginary eigenvalue: og = 0 and o = is,
where s is real and positive. To determine its location, we solve (2.41) for & and substitute
o = is into the result, arriving at

2Gs+v) — R —-1DA+h)]Gs+v+j—1) E

M = GV DRO—D — s v+ RiG L v D F}

(3.7)

o=is

For an arbitrary value of s, the right-hand side of (3.7) is complex, implying that
o =1is is not a physically meaningful eigenvalue because 4 must be real. However, for
given values of My, R, hy, v and j, the equation Im[iz(s)] = 0 for (3.7) has an infinite
number of solutions sV, s@ ..., s that are actual eigenvalues. They correspond to
conditions when the eigenmodes with radial numbers n = 1, 2, ... cross the lines og = 0
as h increases. Substituting them into (3.7) we find the corresponding real values of
h=hW r@ K™ associated with neutral oscillations. The lowest of these values
found in the range between —1 and 4, defined in (3.5) is the instability threshold denoted
by hgy (Mo, M, hy, v, )).
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Figure 7. Real and imaginary parts of h for Jj=4 (a) and j =300 (b) as a function of the frequency s for
v=2,R =3, My =0.7261 and h; = 0.0271. The red line corresponds to the actual value 1 = —0.51444 for
a vdW gas in these conditions.

This is better illustrated in figure 7, where the real and imaginary parts of h are plotted
as a function of the frequency s for j = 4 (a) and j = 300 (b), with the conditions used in
figure 5(b) for a cylindrical shock moving in a vdW gas with y = 31/30, @1 = 1/2 and
B1 = 1/9. Shock jump properties are R = 3, M»> = 0.7261 and h; = 0.0271. Although
h is taken as an independent parameter in figure 7, the corresponding value at these
conditions, i = —0.51444, is represented by the red line. The lowest value of h™ | that is
found to be AV, is the one defining the stability threshold 4. In figure 7(a) it is observed
that AV is larger than the actual value of & = —0.51444, h < hy, which implies that the
shock is stable for j = 4 in these conditions. On the other hand, figure 7(b) shows the
same parameters for j = 300 and D is found to be lower than —0.51444 (then h > hy)
that translates into unstable oscillations in agreement with figure 4(b). Note, however, that

there exist more solutions for Im[A] = 0 (see grey circles in the left panel of figure 7)

A

that are associated with a negative slope of the curve Im[/]. However, since they render
a family of solutions with higher values of Re[/] than that represented with blue circles,
they are not meaningful in what refers to the search of the stability threshold.

To compare the value of hg with the critical value for SAE given by (1.2), h.(M3, R),
we plot in figure 8 the difference hy (My, R, hy, v, J) — he(My, R) for a vdW gas (a) and
for an ideal gas (b) as a function of the mode number j. Shock conditions are determined
by R = 3, that renders M»> = 0.72611, h = —0.5144 h; = 0.027076 for a vdW gas with
y =31/30,; = 1/2 and B1 = 1/9 (a), and M, = 0.542326, h = —0.2 h; = 0.1333 for
an ideal gas with y =7/5 (b). The actual value of h — h., (0.025337 for a vdW EoS
and —0.08889 for air) is represented by red lines. The circles denote the condition Ay —
he = h — h, which only occurs for the vdW gas at j = 258 and j = 364 for cylindrical
and spherical geometries, respectively. For an ideal gas, the condition Ay — h. = h — h,
is never met, thereby indicating stability for any mode number j. For low and moderate
angular mode numbers, the difference hy — h, is significant, manifesting the stabilizing
effect of expansion. But as j increases into the high-mode range, Ay — h. tends to zero.
The inset plotted therein demonstrates that they approach %, at j — o0 as a negative power

927 A35-19


https://doi.org/10.1017/jfm.2021.781

https://doi.org/10.1017/jfm.2021.781 Published online by Cambridge University Press

C. Huete and others

(a) (b) Ideal gas
hst - hv hst - hc
04 04 ~ 25
f -3.0
5 3.5
03! 03| < 40
45 = £ 45
45 5.0 55 6.0 65 45 5.0 55 6.0 65
02}
02+
0.1}
0.1+
0
20 50 100 200 500
0 h—h,
-0.1

Figure 8. Functions hy — h, for a vdW gas with y = 31/30, «; = 1/2 and B; = 1/9 (a) and an ideal gas with
y = 7/5 (b) as a function of the mode number j for R = 3. The red line corresponds to the actual value i — h,
in these conditions.

of the mode number, j~%%. The demonstration of the limit

hm hSl’(MZa Rv hla V7j) = hC(MZa R)’ (38)
J—> 00

is straightforward if we apply (3.6) in the limit j — oo to (3.7). On one side, the ratio of
the Gauss hypergeometric functions in the short-wavelength limit approaches a constant

complex value, namely
=1—M3+iMy /1 — M3, (3.9)
o=ijy| My -1

that does not depend on v. On the other side, the factor multiplying the ratio of the Gauss
hypergeometric functions gives

2(1 = M3 —iMy, /1 — M3) a10)

1+ M3(R—-1)

in the short-wavelength limit j — oo, which does not depend on v nor 4 either. Then, the
product of (3.9) by (3.10) minus unity gives A, as specified in (3.8).

Eigenmodes with high angular mode number j — oo and low radial mode number n
are the most unstable. For these modes, acoustic waves reverberating behind the shock
front are nearly parallel to it as illustrated below in figures 10 and 11, in contrast with
the high-n modes described by (3.3a) and (3.3b). In the short-wavelength limit j — oo,
the unperturbed shock front is almost planar, and the stabilizing effect of its spherical or
cylindrical expansion vanishes. Similarly, the large-scale non-uniformity of the pre-shock
flow is no longer relevant. This is why the expanding shock-front instability threshold tends
to the planar-geometry critical SAE value (1.2). However, in contrast with the classic case
of isolated planar shock, here we have ‘instability in a literal sense’ (Landau & Lifshitz
1987), all perturbation amplitudes exhibiting an oscillatory power-law growth with time,
as illustrated in figure 1(b).

For the following vdW EoS parameters y = 31/30,«; = 1/2 and B; = 1/9, the DK
instability condition & > h, is met within an interval of shock strengths corresponding to
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Figure 9. (a) Plots of og = 0 isocurves for cylindrical (blue) and spherical (brown) geometries. Gas properties
of a vdW EoS with y =31/30, a1 = 1/2 and g1 = 1/9. (b,c) Evolution of the perturbed shock radius and
shock velocity for R = 3 and v = 2 and two different mode numbers j = 150 and j = 300 corresponding to
or = —0.565908 (diamond symbol) and og = 0.196671 (star symbol), respectively.

density compressions 2.2586 < R < 3.1482. As demonstrated in figure 8, this ensures
instability of expanding shock waves for sufficiently high angular mode numbers j.
Figure 9 shows the stability limits 7 = h, for spherical and cylindrical shocks. There exists
a minimum value of j = j,;i,, below which the shock is stable for any shock compression
ratio R. For cylindrical and spherical geometries, we find j,,;, = 148 and 213, which occur
at R ~ 2.8. Figure 9 also presents the evolution of the perturbed shock radius (grey line)
and shock distortion rate (black line) as a function of the dimensionless time t/7g for
R =3 and v = 2 and two different mode numbers: j = 150 and j = 300, which render
or = —0.565908 (diamond symbol) and or = 0.196671 (star symbol), respectively.

Note that the condition og = —1 distinguishes the case where the shock ripples oscillate
at a constant amplitude, which gradually becomes smaller compared with the shock
radius, then for —1 < og < 0 (diamond symbol case), the amplitude of the shock grows

absolutely because §ry ~ 1° +1 yet it decays relatively since &rs/(vst) ~ t°. For og =
0.196671 > 0 (star symbol case), both relative and absolute shock ripple oscillations grow
with time. Likewise, any case with og < —1 will render relative and absolute decay of the
shock oscillations.

3.3. The post-shock perturbation field
Once the eigenvalues are determined, the post-shock flow field can be defined with use
made of the eigenfunctions in (2.23), (2.24), (2.28) and (2.29). For example, the amplitude
associated with the acoustic eigenfunction is obtained with the aid of (2.37) in the equality
P(n = Mjy) = P to give
R—120c+v)—R—-DA+h) 1

Coc = . .
“TRM I+ Fi

(3.11)

927 A35-21


https://doi.org/10.1017/jfm.2021.781

https://doi.org/10.1017/jfm.2021.781 Published online by Cambridge University Press

C. Huete and others

Re[p(rry VRl ] [vdw EoS y=3130 R=3 ]
| . I _ _
- -1n ~1/9
210 05 0 0.5 o V72 %o Po
(@) (b)
. )
(<109 Re[ (/v f,)]

Rel5,(1/1y)]

(x10%) Re[p(r/vty)]

n=

(c)

SN
410 Re[p(#/1,)] @)

Figure 10. Analytic pressure field for dominantly radial perturbations n >> j and dominantly transverse
perturbations j >> n for a shock wave moving in a vdW gas.

According to (2.23), the eigenfunction for the acoustic contributions, P(n) for pressure,
is finite everywhere and it can be used to represent the pressure field behind the shock.
Figure 10(a) shows the spatial distribution of the acoustic field in two distinct cases. In
panel (a) the perturbations for low-mode number j = 4 and relatively high radial number
n = 20 are represented, while an opposite case is displayed in panel (c), corresponding to
Jj =20and n = 1. Differences are clear: the former is dominated by radial disturbances and
the latter by lateral perturbations. Note that this picture does not change qualitatively with
time as it represents a standing sonic wave whose spatial distribution changes collectively
to satisfy the corresponding pressure value at the shock front. This is better analysed
on the right-hand side of figure 10, where the pressure field is represented along the
radial coordinate r/(vstp) at different times ¢t = f9/2, t = ty and t = 2ty. The grey curve
corresponds to the history of pressure perturbations at the shock position r = vt for ¢ = 0.
The associated pressure field downstream is stretched along the radial axis, with no change
in the number of peaks and valleys, while the amplitude is accordingly modified by the
value at the shock.

The corresponding amplitudes for the entropic and rotational contributions to the
density and velocity eigenfunctions can be derived with use made of G(n = M») = G
and V(n = M>) = V; or, equivalently, D(n = Mj) = D;, with the values at the shock
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being (2.38), (2.39) and (2.40), respectively. We arrive at
R —12(0 +v)(h+ M3 — R — D[h+ M3;— (1 - M)

Con=— , 3.12
MIR 1+h (3.12)
and
R—1 2 — Ry —DA+h) Fy,
oo _ v -RE-DALFL]
(c +v—1HM] RA+mG—1-0)  Fj
respectively.

Entropic and rotational perturbations do not propagate through the shocked gas, they
are localized in the fluid particles in absence of diffusive effects. Their contribution,
proportional to (1 t/f)? , exclusively depends on the dimensionless radial position 7/ (vstg)
and the polar 6 and azimuthal ¢ coordinates. For example, the entropic contribution of
density perturbations reads as

st0

o
— r ;
P (r,0,9) =€ E {1,m< ; ) CenY]" (0, ), (3.14)
I,m

where both the factor C,, and the eigenvalue o are, in fact, functions of / and m. Likewise,
the rotational contribution of the velocity field is

o

-_— [y r
50(r, 0, 9) =€y Gmi(i+v—2) (v to) Cro Y0, 9), (3.15)

IL,m $
B0, 0) =€ Gmlo +v—1) ( ’ ) Cro - explimg), (3.16)

Im Vsl de
0.9 =€) amo+v—1) (- " ™ 6, ) (3.17)
() » Yy ,m ‘US[O ro sin@ ! ’ ’ .

I,m

where P}" = P}"(cos 6) stands for the associated Legendre polynomial.
Associated with the rotational contribution is the dimensionless vorticity field
1 vy’ 185;" N A
- rsinf dg r a6 rtan6
~ -ro POl =70
—wtg= | | = L oy oY Y (3.18)
- rsinf d¢ ar r
Lave advy’ vy
r 06 ar r

that can be expressed in separated variables as

1]

3 AN 2,(mY]", 2¢(n) o 7", £24( )dPIln (img) (3.19)
@=c€|— , —Y", —— exp(ime) |, .
0 AUIRS] o(n sing ! Y| a9 plmgp

where £2,(n), £2¢(n) and §2,(n) are the corresponding eigenfunctions. It is immediate to
see that £2, = 0, since the shock conserves the vorticity component that points normal to
the shock front, and £2y(n) = —2,(n) = Cmn"_l(j —o —1)(j+ o +v — 1) because of
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Figure 11. Analytical vorticity and entropic density field for j = 4 and n = 20 (upper sector) and j = 20 and
n = 1 (lower sector). Shock properties are similar to those employed in figure 10.

the symmetry of the perturbations. Then, as occurred with the entropic and the rotational
velocity fields, the vorticity function

0
ool im
- r . . - m
w(r,e,go):eZcz,m( ) Coli—0 =D(i+o+v—1| sinfd |y, ¢),
om Usto 1 dpPy
P do

(3.20)

depends on the reduced radial position r/(vstp) and polar and azimuthal angles 6 and ¢.
Note that the factor that appears in the azimuthal component Y} (6, ¢)/P]" reduces to the
non-singular function exp(img), as in (3.19).

The shock perturbations amplitude diverges at the origin in stable conditions (o <
0), and so does the magnitude of the vorticity and the entropy perturbations that are
proportional to the shock perturbation amplitude. The divergence is due to the singular
nature of our perturbation problem at the time origin ¢ = 0T, when the radius of the
shock is zero. The small-amplitude assumption, on which the theory is based, requires
the shock displacement amplitude 67, to be much smaller than the shock radius r;, but this
requirement clearly cannot be satisfied at the initial instant.

A sample of vorticity and entropic density perturbations is displayed in figure 11 for the
same cases as in figure 10 that correspond to dominant radial (upper panels) and transverse
(lower panels) perturbations. On the left-hand side, the polar vorticity field is plotted as
a function of r/r for j = 4 and n = 20 (a) and for j = 20 and n = 1 (¢). The sectors on
the right side, (b) and (d), show the entropic density disturbances in similar conditions.
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To deal with the divergent characteristic of the perturbation field, the colour scale has
been purposely saturated and the zone corresponding to r» < 0.05r; has been omitted.
For the cylindrical case, only the polar component of the vorticity @y, associated with
the orthogonal contributions of the rotational velocity field v;” and v, is non-zero. The
vortical-entropic structures provide information of the shock perturbation amplitude at a
given radial position. Note that the maxima/minima of the vorticity field are shifted with
respect to those in the entropic density field. That is, vorticity peaks are aligned with the
shock positions where the transverse velocity is generated, i.e.where the shock is oblique
to the radial propagation directions. On the other hand, entropic peaks are aligned with the
maxima/minima of the shock ripple, where the shock front deviation rates are higher.

4. Numerical simulations

The evolution of the 2-D problem may be subject to nonlinear effects that may play a
non-negligible role in the perturbation dynamics, even for non-diverging conditions. To
gain understanding in the post-shock evolution, a cylindrical expanding accretion shock is
numerically integrated to describe the development of specific processes that have been
theoretically discussed above.

To this end, the fully compressible dimensionless conservation equations for mass,
momentum and energy are solved,

55
P o 5.Vi4+pV-=0, (4.1)
aT

v 1 5BT 1

R svi=-v[-L — — Aapp? | + =V - 7, (4.2)

dt 2 1 — Bop PRe

aT - -1 9

T 5.y %r=D [—p+ﬁ-Vp}

it (I +ao)(1 = po) Lot

- DT —p -
S O LI U1 el O R (43)
1—Bop  (1+ap)(l—pBo) pRePr

with A = po/ (,ooc(Q)) and B = RTy/ c(z), including «g and By to incorporate either vdW or
ideal gas (g = Bo = 0) EoS. The dimensionless flow variables defined here are referred
to upstream far-field values, 5 = p/po, T = T /Ty, ¥ = v/co. Space—temporal variables, ¥
and 7, are normalized such that a sound wave travels a unit distance L in a unit time 7.
In addition, non-ideal flow effects have been retained with 7’ the dimensionless viscous
stress tensor, and where the Reynolds Re = ppcoL/n and Prandtl Pr = ¢, /k numbers
are kept constant and equal to Re = 2000 and Pr = 1 in the analysis. In their definition,
we find the dynamic viscosity i, the specific heat at constant pressure ¢, and the thermal
conductivity «.

The set of equations must be complemented with boundary conditions for upstream
density and temperature, p = T= 1, and ¥ = —Mye, the incoming flow Mach number,
to be imposed at the far field. In particular, a domain of radius 7 = r/L = 15 has been
selected to avoid information to reach the boundary and be reflected back into the region of
interest in times of the order of the evolution time of the perturbed shock. Furthermore, the
initial-value problem begins with use made of the solution determined by the self-similar
problem (2.6)—(2.11), to avoid the initial singularity at » = # = 0. The numerical analysis
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Figure 12. Dimensionless velocity magnitude log-field and density field with triangular mesh for
Mo=15,j=15,7, =0.1,7 =0.095, y = 31/30, ap = 0.055, By = 0.015.

of the perturbation is conducted by imposing a radial variation of the shock position 7 at
T = 0, in the form

Tsl=0 _ | _ ¢, singio). (4.4)

T

where 7, is determined by the 1-D self-similar solution to the cylindrical shock radius
short after the initial singularity and €, is a small number O(10~"). Then, the shock front
is delayed in certain angles, receiving larger pre-shock values of pressure and density given
by the self-similar solution, and advanced in others with lower conditions in front of it.

A 2-D in-house finite-element code has been developed with Freefem™™ using a
triangular adaptive mesh of minimum element size of 5 x 107% (see figure 12), which
is progressively refined to adequately define the gradients of the flow as the shock front
advances along the radial direction. This feature allows us to describe not only the jump
conditions at the shock, but also the acoustic-induced compression that can be noticed
through a finer mesh in the right panel of the figure. The integration in time is given by a
stable implicit Euler scheme, use made of fixed-point iteration of the linearized equations
for time convergence.

Keeping in mind the previous analysis, the conditions providing neutrally stable modes
with vdW EoS found for planar configurations by Bates & Montgomery (2000) are
selected as test simulations in the cylindrical problem. Specifically, a highly compressible
flow is considered with y = 31/30, Mg = 1.485, ap = 0.055 and Sy = 0.015. Moreover,
the initial perturbation is set with 7, =0.1,j =5 and €, = 0.1. The evolving flow is
shown in figure 13 for consecutive times, depicting pressure p, entropy S/c, = (y —
D log(1/5 — Bo) — log(T), vorticity @ = V A  and density / fields. The ranges of values
displayed in the colourbars are kept constant for all the time snapshots shown. Firstly,
it can be noticed that the expected stable front is reproduced, forming a circular shock
that leaves behind a nearly stagnant flow. Pressure and density variations can be noted
to be slightly higher in front of the shock at the initial delayed perturbation compared
with the advanced cusps. Therefore, a post-shock increase in pressure and density is
shown to form an acoustic wave that bounces back and forth primarily affecting the
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Figure 13. Temporal evolution of dimensionless pressure (a), entropy (b), vorticity (c¢) and density (d) for
Mo =15,j=5,7, =0.1,y =31/30, ap = 0.055, o = 0.015. Colourbar ranges are kept constant for all
the time snapshots shown.

inner region. Furthermore, the entropy scar produced behind the shock is also tracked,
leaving the initial post-shock region unaffected although progressively deformed via
the small non-zero velocity field produced by the small deviations of the front from
the purely symmetric solution. Note that the initial-value problem formulation begins
with uniform flow downstream, which contrasts with the conservation of transverse
velocity across the perturbed shock. In turn, velocity gradients produced by the front
misalignment are responsible for the arising of vorticity given the initial perturbation
conditions. Nevertheless, the vorticity and entropy fields are slowly homogenized through
numerical viscous dissipation. It is also observed that viscous dissipation, whose impact
is proportional to the rate of change of velocity with distance, is particularly meaningful
across the shock thereby incorporating an additional stabilizing factor.

The present 2-D problem conforms a relatively simple configuration to enable vorticity
tracking. Taking the curl of the momentum equation yields an expression of the form

0® . N N 1 N 1 _,
—4+0v-Vo=—-&V-0—-V | |AVpD+VA|l=V-T]), 4.5)
at 2 P
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Figure 14. Production and dissipation terms of kinematic vorticity and velocity field with flow streamlines at
different times. Colourbar ranges are kept constant for all the time snapshots shown.

where @ = @e; is the vorticity field that points perpendicular to the plane. It is readily seen
that kinematic vorticity can be either produced or destroyed by means of the three terms
on the right-hand side of (4.5). First, compression of a rotating mass enhances vorticity
locally as expressed by the term @, = —wV - v, and diminishes for an expanding volume.
Second, the baroclinic torque wp = —(V A Vp) - e; produced by misaligned gradients
of density and pressure is also a known mechanism of vorticity production. Finally,
vorticity can be dissipated by means of viscous effects, @y = V A (§~'V « ¥') - e, which
dominate the given balance and imposes the square-root decay in time. Figure 14 shows
the different terms postprocessed over computational data, where the characteristic terms
of baroclinic and compression production, @; and g?)c, can be found to be an order of
magnitude smaller than the viscous dissipation term @y in the stagnant flow. However, the
large variable gradients across the shock and numerical errors discourage deeper reasoning
on the large values of the previous terms found at the shock. Note that the linear inviscid
limit in (4.5) gives dw/(dt) = 0, as shown in figure 11.

Although the initial-rippled-shock configuration is very helpful to describe the vorticity
production and the evolution of the perturbed shock at the initial stage, it is not the
best option to compare with the self-similar solution derived before. This is because
the coupling acoustic time needed to form a pressure standing wave as in figure 10
may be computationally very long, that is, much higher than the effective time to
mitigate the amplitude of the perturbations. Alternatively, we can make use of the exact
acoustic perturbation profiles derived before as the initial condition for the pressure field
downstream. However, this choice assumes that the Noh solution is scale free for the
perturbation eigenmodes to be the only ones that exist. Then, to formulate the initial-value
problem that corresponds to a particular cylindrical eigenmode (m, n), a non-uniform
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pressure field given by the first-order solution n = 1 of (2.14) behind a perfectly circular
shock is used as a non-equilibrium condition that triggers the unsteady evolution of the
flow variables.

This computational set-up will provide a simpler comparison tool that can be used, for
example, to measure the evolution of the root-mean-square (r.m.s.) pressure perturbations
in the shocked gas. In consonance with the pressure field defined in (2.14), it reads as

1 27 Iy 2¢ t a Mo
Drms () = — p2(r, Hrdrdp = —| Cye | — P2 dn,
Byms (1) nr%fo fo VP 0rarap = 5 Cu (m) /O () dn

(4.6)
which is found to behave akin to the pressure perturbations at the shock: it decays ~
t~°R cos [o7In(t/ty) + ¢ol, where ¢g is a constant, and it oscillates with a frequency that
decays with time with a rate o7/t

To compute the equivalent r.m.s. pressure in the numerical simulations, we define

> Sipi — ps)’
s

where p; is the dimensionless pressure behind the shock provided by the perturbation-free
solution, p; is the pressure corresponding to the computational cell i and S; is the associated
cell area that changes in space and time, because of the self-adaptive mesh. The summation
is done over the elements placed behind the expanding shock front.

Computations are now carried out for the same shock and gas properties as in figure 13
(Mo = 1485,y = 31/30, ag = 0.055 and By = 0.015), but imposing a non-uniform
pressure field given by the first-order solution n = 1 of (2.14) behind the circular shock,
now with a radius ten times smaller, 74, = 0.01. The evolution of Inp,, is computed
vs Int in figure 15 for the following perturbation mode numbers: j = 2, 5, 10 and 20.
Results are qualitatively similar to those simulated in Velikovich et al. (2016) with a
Cartesian grid, with the advantage that the self-adaptive mesh does not impose any
preference direction or forced mode perturbation. The initial unbalance of the pressure
perturbations with the perfectly circular shock induces a transient evolution in the pressure
field, whose decay rate depends on the shock properties and the type of perturbation
employed. The pressure field then tends to homogenize with the resulting reduction of
the pressure perturbation amplitude until numerical viscous processes enter into play,
which ultimately render a pressure decay of ~ r~!/2 that dominates for sufficiently large
time. In between the transient and viscous stages we observe a higher decay rate, which
better approximates those theoretically predicted by the first-order eigenmode, displayed
in colour dashed lines in figure 15. However, this intermediate stage is not sufficiently long
to properly validate the decay rate predicted by intermediate asymptotic techniques.

For example, the amplification ratios of the frequency peaks when we move from j = 2
to 5, from j =5 to 10, and from j = 10 to 20, are 2.04, 1.6 and 1.8, respectively. For
similar cases, theory predicts o;(j = 5)/o;(j = 2) = 2.399, 0;(j = 10)/o;(j = 5) = 1.864
and o;(j = 20)/o7(j = 10) = 1.887, respectively, values that would correspond to ¢/1y ~ 1
as the frequency of the oscillations is a decaying function of time as commented before. It
must be also noted that the frequency analysis, carried out with the numerical results,
comprises the initial transient evolution, which unavoidably incorporates additional
frequencies associated to the length of the initial shock radius. Besides, the computational
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Figure 15. Evolution of the r.m.s. pressure p,,,s for Mo = 1.5, 75, = 0.01, for a vdW EoS with
y = 31/30, ap = 0.055, Bo = 0.015, and for j = 2, 5, 10 and 20.

grid involves an additional frequency spectrum, related to the numerical dissipation, that
peaks at much higher frequencies than those displayed in the inset of figure 15.

The numerical implementation of the stability analysis is even harder to test, since
instability is found to occur at high-mode numbers and this impedes the formulation of the
linear initial-value problem for short acoustic times (short radius). Note that it took decades
from the first identification of the unstable range for planar shocks by Bushman (1976),
which is far less demanding, to its numerical verification by Bates & Montgomery (2000).
Further high-fidelity simulations must follow to capture non-dissipative high-frequency
oscillations at the shock along with multidimensional acoustic perturbations in a wide
range of scales. This evidences that our analytical results constitute a challenging
verification test for gas dynamics numerical codes that must describe the development
of high-mode perturbation from initially small amplitudes in a fluid with a non-ideal EoS.

5. Conclusions

The stability analysis for an expanding accretion shock has been carried out for an arbitrary
shock strength and EoS that is not necessarily restricted to the reduced Mie—Griineisen
form. Results are particularized for three different EoS that include: ideal gas, vdW
gas and three-terms constitutive equation for simple metals. The eigenvalues pool is
computed and analytically evaluated in the distinguished limits of radial high-order modes
n >> j and short transverse wavelength limit j > n, the latter being an approximation of
the planar shock wave configuration. The dominant pole that determines the long-time
evolution is analysed in both stable and unstable configurations. The post-shock flow is
also analytically evaluated for the acoustic, entropic and rotational perturbation fields,
along with the vorticity production by the oscillating expanding shock.
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Numerical computations with a self-adaptive mesh are conducted for relatively
low-mode numbers j to gain understanding in the nonlinear evolution of downstream
variables within the initial transient stage. Different vorticity reduction mechanisms are
identified, which cannot be analysed with the inviscid linear theory. Numerical evaluation
of the r.m.s. of pressure disturbances downstream are in qualitative agreement with
theoretical predictions, particularly in what concerns the frequency of the oscillations and
the dependence of the decay rate with the shock properties. Simulations, however, are
found to be highly limited by the stabilizing factor of numerical dissipation, particularly
across the shock. It would be interesting to find out if a different numerical scheme can
reduce sufficiently this effect so that the dynamics of the physical eigenmode could be
resolved and, ultimately, describe the unstable case associated to high-mode numbers.
This question remains open for future studies.

We have demonstrated that the DK instability of expanding steady shock waves drives
a power-law growth of shock ripples and other flow variables’ perturbations in the range
he < h <14 2M, that deemed marginally stable in the classic theory (D’yakov 1954;
Kontorovich 1957; Landau & Lifshitz 1987). The factors specific to expanding shock flow,
such as its divergence and the non-uniformity of the pre-shock profiles, do not affect
the stability criteria. The difference between this case and the classic case of isolated
planar shock (D’yakov 1954; Kontorovich 1957; Landau & Lifshitz 1987) is due to the
piston supporting the steady shock and represented with the centre or axis of symmetry in
cylindrical and spherical geometries.

Our conclusions regarding the stability of expanding accretion shocks are generally
consistent with those of Bates (2015) for piston-driven planar shocks, who predicted a
linear growth of shock perturbations for the whole range h. < h < 1 + 2M5. However,
the growth described in Bates (2015) is linear with time, whereas our (2.41) indicates that
power indices higher than unity are possible, particularly for 4 approaching 1 4 2M>,
when the non-resonant amplification of acoustic waves reflected from the shock front
becomes large. The DK instability power indices found for spherical and cylindrical
geometries vary from zero to infinity, depending on the parameter / and the angular mode
number j. Although most of our results are not directly applicable to the stability analysis
of a piston-driven planar shock wave, we have demonstrated that this problem has to be
revisited.
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Appendix A. Equations of state for a vdW gas and simple metals
The stability analysis performed in the main-body text is found to depend on four
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independent parameters that include the mass compression ratio across the shock R =
0s/ P1s, the post-shock Mach number M, = vg/cy, the DK parameter associated with
post-shock conditions 4 and the parameter 4 that accounts for the influences of pre-shock
perturbations into the post-shock conditions. In this section the governing parameters are
derived for different equations of state. The analysis assumes that pressure and internal
energy can be written in the form p = p(p, T) and E = E(p, p), respectively, thereby
allowing the speed of sound, c, be expressed as

ap dp| OFE
& =cp p)=8—p‘ e (A1)
ply  OE| p2  dply JE
T |, T |,

A.l. Van der Waals EoS

The vdW EoS provides a more accurate description of real fluid behaviour than the ideal
gas law. It takes into account the effect associated with non-contact interaction between
particles and the finite volume they occupy. In this case, pressure and internal energy reads
as

R, T R, T
p=pg —ap®> and E=—%
1—bp y —1

where R, is the gas constant, y is the adiabatic index. The parameters a and b have positive
values and are specific to each gas. With respect to the ideal gas EoS, the term involving the
constant a corrects for intermolecular attraction, while b represents the volume occupied
by the gas particles. The speed of sound and the internal energy are written as a function
of pressure and density

—ap, (A2a,b)

2 2 _
zzy(p+pa)_2ap and E=(p+pa)(1 bp)
p(l —bp) ply — 1)

with use made of (A1). It is readily seen that the (A 2) shifts to the ideal gas model when
a and b approach zero, namely p = pR,T and E = R,T/(y — 1). Simple manipulation of
(A1) provides ¢? = YR,T = yp/p as the square of the speed of sound.

In contrast to considering an ideal gas EoS, which provides a fully determined upstream
flow and shock jump conditions in terms of y and Mg = vg/co only, considering a vdW
gas calls for two additional dimensionless parameters, namely oy = apg /po and By = bpo.
For example, the initial speed of sound, needed in the definition of the initial Mach number,

is
1 2

c(%:@( +a0_ﬂ>_ (A4)
po \1—Bo 14

To compute the shock jump conditions, the dimensionless constants are conveniently
reduced with pre-shock conditions, i.e.r; = a,olzs /p1s and B1 = bp1s, which are employed
to write the RH curve as

ap, (A3a,b)

_ Ry +1-2Bi(er +1) =201y = 2)] = (v = 1) +201R*(y — 2+ fiR)

P G+ —R(y —1+28)

(AS)
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Figure 16. Functions M, My, h and h; as a function of the shock compression factor R for y = 31/30 and
different values of o} and B;.

The dependence of post-shock flow with the shock strength can be obtained with the aid
of the Rayleigh—Michelson relationships

P=1+pnM1-R", (A6)

obtained from direct combination of mass and momentum conservation equations, where
the definition of the effective sonic constant is introduced,

2
P1sC 14+ o
Yis= —18 =y — 2. (A7)
Pls 1 - ,31

It allows writing the pressure jump and the mass-compression ratio as a function of
M, a1, B1 and y. Likewise, the post-shock Mach number is given by

My = My yis(1 — B1R)
2T R yP+aiR?) — 201 R2(1— BiR)

It is readily seen that for «; = B1 = 0, the sonic constant becomes yi; = y, which
ultimately renders

_Ry+1D—=(y -1

y+D-Ry—-1’

(A8)

(y + DM

B ,  (y—DHMi+2
2+ (y — hM?’

2 ZVM% —y+1
(A9a—c)

for the RH equation, mass compression ratio and post-shock Mach number, for an ideal
EoS.
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The functions 4 and &y, defined in (1.1) and (2.33), respectively, are expressed in terms
of dimensionless parameters

M faP\7!
IR ALTN (i I Al
h=-1gs <8R> (A10)
and
M2 AP\ '[P P P
h=— "1 (= R = Do — — B— — i, P|. (Al
1= (M%—l) <8R> [ aRJr()/L )61180[1 B1 o) )/1‘7’} (A1l)

respectively, with use made of the RH equation (AS5). Note that &y = 81 = 0 yields the
corresponding values for an ideal gas provided in (2.34a,b).

Knowing that the functions that govern the eigenvalues in (2.41) are R, M», h and
hy, figure 16 displays their relationship for y = 31/30 and different values of «; and B;.
The upstream Mach number M is also computed. The choice of y = 31/30 is based
on the fact that isolated planar shocks may render SAE for oy = 1/2 and 81 = 1/9. The
blue-dashed line shows the asymptotic maximum compression ratio for gases with o1 = 0,
i.e.by taking into account the space occupied by molecules only.

A.2. Three-term EoS for simple metals

To describe the shock compression in condensed materials, the three-term EoS is
employed. The model, which corresponds to that described in Chapter XI, §6, of
Zel’dovich & Raizer (2002) and used as an example in Velikovich & Giuliani (2018),
provides a reasonably accurate description in the pressure range up to several Mbar.
The pressure and specific internal energy are presented as sums of three well-defined
contributions,

p(p,T) =pc(p) +pi(p,T) + pe(p, T), (A12)
E(p,T) =E.(p) + E(T)+Ec(p, T), (A13)

where the cold, or elastic, terms, p. and E., are related to the forces of interaction between
the atoms of the material at 7 = 0, and therefore they depend only on the material density
p. The thermal ion (lattice) terms, p; and Ej, as well as the thermal electron terms, p, and
E., are functions of both density and temperature.

For the cold metal, we use Molodets’ analytical approximation (Molodets 1995) for the
density dependence of the Griineisen coefficient

P2, 2
3 ap — Poa

where pg, is the density extrapolated to zero temperature and pressure and a is a
dimensionless constitutive parameter that must not be confused with the dimensional
parameter in the vdW EoS (A 2).

With the aid of the Landau-Slater formula (Landau & Stanyukovich 1945; Slater 1955)

and the definition of cold energy p. = p*dE,/dp,

(Al14)

3Koa (1 4 53 3.2/3 2 ~1/3 a3 1 g3 1y
Pc(Z)Z(a_1)4 (g 27 =2a’777 —6a"z 7 +az —z7 P —za
1
+2a° +6a° —a+ 7) . (A15)
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poa [gem™]  po[gem™]  T'(p = poa) a Koa [GPa] By [ergs gK—?]
Al 2.789414 2.73 1.798175 2.767552 91.133 500
Cu 9.075238 8.93 2.421139 2.139944 146.16 110

Table 1. Equation-of-state constants for Al and Cu and parameters according to Molodets (1995) and
Al’tshuler et al. (1960a) for aluminum and copper.

3K, 3 7a* — 7043 — 210a* + 35a — 5
E.(2) = 0a (—a4z2/3 —6a’77'3 4+ -1

poata — H* \ 10 35 ¢
3 o3 35a* +280a° — 105a% + 40a — 7

9 2_—4/3 3 ~7/3 -
+ 2a Z 7az + 70z 70

’

(A16)

where Ky, is the adiabatic bulk modulus extrapolated to zero temperature and pressure and
Z = p/poq is the normalized density.
For the ion lattice (thermal) contributions to the pressure and internal energy,

3 3
pi(z, T) = poa—2I"()kpT, E|(T) = —kgT, (Al7a,b)
my mg

where m, is the atom mass and kg is the Boltzmann constant.
The electron contributions are

Pe(z. T) = 10z PT?,  Ec(z, T) = Loz T2, (A18a,b)

where By is determined by the number of free electrons per unit mass of the material at
T =0 and p = pg,. In deriving (A 18), the electronic Griineisen coefficient was taken to
be 2/3 such that the density and temperature dependence would exactly correspond to a
free electron gas at a temperature well below the Fermi energy.

The formulation calls for the definition of the speed of sound that takes the form

o2 = Vmg _ chc+ylpl+yepeg’ (A19)
Y Dc +pi+ De P

where the term accompanying the factor p/p is the mean effective value of the adiabatic
index y;,(z, T). The corresponding values of y,, y; and y, associated with cold, lattice and
electronic contributions are, respectively,

_ Kog (az—1)* _dlnr
Ve s e a—1%053 T g

To compute the RH curve, the energy conservation equation is conveniently rewritten as

11
H=ES—E1S—(———)M=O, (A21)
s Zs)  2po0a

where H is defined as the Hugoniot and the subscripts 1s and s denote the variables right
ahead of and behind the shock, respectively. The shock Mach number is

12
M = |: zs(ps — P1s) j| ’ (A22)

+T+1 and y,=5/3. (A20a—c)

215(zs — le)pOac%s
that can be used to write R = z;/z15 as a function of the shock strength M.
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Figure 17. Experimental data on post post-shock speeds of sound in Al (a) and Cu (b) compared with
approximations (A14)—(A19). Experimental data correspond to Al’tshuler ez al. (1960b) (circles), McQueen,
Fritz & Morris (1984) (triangles) and Hayes, Hixson & McQueen (2000) (diamonds).

Likewise, the post-shock Mach number is M7 = ¢, M1 /(csR). It must be emphasized
that the accuracy of all components of the three-term EoS model can be improved if
needed. Instead of the two-parameter model (A16) by Molodets (1995), to describe the
cold pressure dependence on the density compression, one can use a more elaborate
approximation, such as the seven-parameter model used by Kormer et al. (1962). The
Landau-Slater formula relating the cold pressure and the Griineisen coefficient relies
upon certain assumptions about the compressed condensed material — specifically that the
Poisson ratio does not change with compression. This approximation works well for some
materials, such as Al and Cu, but not others, such as UO;; see the discussion by Kraus
& Shabalin (2016). A better fit than I, = 2/3 for the electron Griineisen coefficient can
be found, such as I', = 1/2 recommended by Al’tshuler et al. (1960a) for moderate shock
compressions. Moreover, the three-term EoS (A12) and (A13) is itself a model rather than
a result of a first-principle derivation, and it becomes inadequate at high shock pressures.

Our purpose here is to demonstrate a stability analysis for an EoS free of any of the
previously formulated constraints rather than advance an accurate analytical EoS model.
This is why we have used, as an example, a simple EoS defined by (A14)-(A19) with the
constitutive values shown in table 1. Figure 17 illustrates that at moderate shock strengths,
this approximation provides a reasonable agreement with experimental data for a relevant
parameter of our analysis, the post-shock speed of sound.

The parameter that computes the RH slope reads as

st g1,
Zs(zs — 215) [ 9z 0Ty \0H /0T,

with use made of the Hugoniot function in (A21). The parameter that relates the upstream
non-uniformities with the post-shock state is computed with the aid of (2.33),

oM 9ps <3P1s _, Cz) OH /3Ty, (3p1s>“ _ 0H/dzis
' M = Dpoact, 0T [ \ozi - T o 0T, o oH/IT, |’

(A24)

where the derivatives over the pre-shock and post-shock pressure functions, pis and py,
respectively, apply on the EoS (A12) particularized to these conditions. The derivatives
over the Hugoniot curve are performed on the function (A21).
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Figure 18. Functions M, M», h and h; as a function of the shock compression factor R for aluminum
(solid) and copper (dashed) at z; = 1 (red) and z; = 2 (blue) at pre-shock cold conditions 71 = 0. Ideal gas
relationships with y = 5/3 are plotted in green.

Figure 18 shows the upstream Mach number M, the downstream Mach number M,
and the stability related parameters 4 and /; as functions of the shock compression R for
expanding shocks in Al and Cu, at pre-shock temperature 77, = 0, and two values of the
normalized pre-shock density, z1. The associated parameters for an ideal gas with y = 5/3
are also plotted for the sake of comparison.
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