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Abstract

This paper presents a two-step formulation for the dynamic analysis of generalised planar
linkages. First, a rigid body is replaced by a dynamically equivalent constrained system
of particles and Newton’s second law is used to study the motion of the particles without
introducing any rotational coordinates. The translational motion of the constrained particles
represents the general motion of the rigid body both translationally and rotationally. The
simplicity and the absence of any rotational coordinates from the final form of the equations
of motion are considered the main advantages of this formulation. A velocity transformation
is then used to transform the equations of motion to a reduced set in terms of selected
relative joint variables. For an open-chain, this process automatically eliminates all of the
non-working constraint forces and leads to efficient integration of the equations of motion.
For a closed-chain, suitable joints should be cut and some cut-joint constraint equations
should be included. An example of a closed-chain is used to demonstrate the generality
and efficiency of the proposed method.

1. Introduction

In recent years, there have been many attempts to develop efficient methods for gen-
erating the equations of motion for multibody systems [8—11). These methods can be
divided into two main approaches depending on the type of coordinates chosen. In the
first approach, the equations of motion are formulated using relative joint coordinates
[2,7,12]. For an open-chain al] the generalised coordinates are independent, while for
a closed-chain a minimum number of dependent coordinates should be defined. This
leads to an efficient solution and integration of the equations of motion. However,
in many applications, this approach leads to a relatively complex recursive formula-
tion based on the loop closure equations and it is also difficult to incorporate general
constraints and forcing functions.
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The second approach uses the absolute coordinates that describe the location and
orientation of the bodies in the system with respect to an inertial reference frame
[4,6]. In this approach each body has identical coordinate representation and the
constraint equations are easily formulated for each joint. A main disadvantage of this
method is the large number of mixed differential and algebraic equations which leads
to inefficient solution and integration of the equations of motion. Another approach
for multibody dynamics modelling uses both coordinate types [3, 5]. The equations of
motion are first formulated in terms of the absolute coordinates and then transformed
to relative joint coordinates through the use of a velocity transformation matrix.

In this study, the rectangular Cartesian coordinates of an equivalent constrained
system of particles are used to define the position of the system initially. The mass
associated with each particle is determined as a function of the inertia characteristics
of each body. The differential equations of motion are derived by applying Newton’s
second law to study the translational motion of the particles without introducing any
rotational coordinates. The equations of motion are then transformed to a reduced set
in terms of a selected set of relative joint variables using a velocity transformation
matrix which allows efficient solution and integration of the equations of motion
without loss of generality. The dynamic analysis of a closed-chain is chosen to
demonstrate the efficiency and generality of the formulation.

2. Construction of the equivalent system of particles

A rigid body and its dynamically equivalent system of particles should have the
same mass, the same position of centre of mass and the same moment of inertia about
an axis perpendicular to its plane which results in four conditions for the planar case.
It should be noted that the equivalence is fulfilled without any approximations. Since
these physical quantities (mass, centre of mass, polar moment of inertia) are the only
constitutive properties that control the motion of both systems (the rigid body and
its dynamical equivalent system of particles), then the construction of the equivalent
system of particles can be done using the four conditions only once at the beginning
of the motion. The choice of three particles with nine unknowns (three masses + six
coordinates) satisfies the four conditions but it has the disadvantage that it does not
give the freedom to choose all the particles in important places for mechanisms. The
choice of four particles gives a unique solution for the four conditions in four unknown
masses. At the same time it has the advantage that it allows freedom in choosing the
locations of all particles in important places for mechanisms. The representation of
the rigid body by equivalent particles and the freedom in locating these particles has
an interesting application in flexible multibody systems when a deformable body is
connected to a rigid body described by a set of particles. Then one or more particles
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FIGURE 1. The rigid body with its equivalent system of three particles.

of the rigid body can coincide with one or more nodes of the deformable body in
order to describe the kinematical joint between the two bodies. This is a much simpler
process than when the rigid body is described by a set of translational and rotational
coordinates. Choosing more than four particles will have the same advantage as the
choice of four particles but with the introduction of extra free unknowns that must be
arbitrarily chosen. Also, since more particles have been used, this will lead to more
complicated equations of motion. Therefore the choice of four particles seems to be
the most suitable. In this case, as shown in Figure 1, four particles are chosen to
represent the rigid body in order to obtain a linear system of four equations in four
unknown masses. Then the coordinates of the four particles become free variables
and can be arbitrarily chosen to achieve additional requirements. Three particles, 1,
2 and 3, are located arbitrarily, while the remaining fourth particle is conveniently
located at the mid-point of the line joining particles 1 and 3. By this arrangement, the
four conditions are written as:

4
m= Zm,-, . (2.1a)
i=1

4
mrg = Z‘m,.r, and (2.1b)
i=1
4
Jeg + Jon = D mu(n? + ED), 2.1¢)

i=1

where m is the mass of the rigid body, g is the position vector of the centre of mass of
the rigid body, Ji; and J,,, are the moments of inertia of the rigid body with respect to
the body-attached coordinate frame, m; is the mass of particle i and r; is the position
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vector of particle i with respect to the body attached coordinate frame. The 4 x 4
linear system given by (2.1) can be put in the following matrix form:

1 1 1 1 my m

& & & & my | még

m n m N4 my| mng
n+E 0+ & 7)§+§32 n2+ &1 Lms Jee + iy

It should be noted that, in the case of a planarrigid rod, particle 2 can be conveniently
chosen to coincide with particle 4.

If the rigid body is connected to other bodies in a serial chain by revolute joints,
then the primary particles 1, 2 and 3 may be conveniently located at the centres
of these joints. Two adjacent rigid bodies contribute to the mass concentrated at the
joint connecting them. This process reduces the total number of particles replacing the
whole system and leads to the automatic elimination of the constraint forces associated
with the revolute joints connecting the bodies.

In general, in the case of spatial motion, a minimum number of four constrained
particles, not all of which lie in the same plane, can be used to replace the rigid body.
The equality of the mass, the position of the centre of mass and the six independent
components of the inertia tensor result in.ten conditions. To avoid the solution of
nonlinear algebraic equations due to the quadratic nature of the inertia components,
one may follow the same criteria suggested here and choose ten particles to obtain
10 x 10 linear algebraic equations in the unknown masses of the equivalent particles.
Four primary particles are chosen arbitrarily, while the other six secondary particles
can be conveniently located at the mid- points between the primary particles. This
brings together the advantage of solving a linear system and the freedom in choosing
the locations of the primary particles.

3. Distribution of forces and couples

Figure 2 shows a rigid body in planar motion with its equivalent system of primary
particles. The positions of the three particles are given with respect to a body-attached
coordinate frame. The rigid body is acted upon by an external force where the
magnitude, direction and the location of its point of influence P with respect to the
body coordinate frame are all known. The resulting forces and their moments about
any arbitrary point should sum to the original force and its moment about the same
point respectively. These conditions are expressed as

3 3
dSofi=f. D Sinfi=STAf, G.D
i=1 i=l
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FIGURE 2. The planar rigid body with external force applied.

where f; is the force acting on particle #, f is the external applied force, S; is the
position vector of particle i with respect to the body-attached coordinate frame, and
SP is the position vector of the attachment point of the external force with respect
to the body-attached coordinate frame. Distributing the external force over the three
particles yields

f,-=ot,-f, i=1,...,3, (32)

where a; is the distribution parameter that determines the magnitude of the force
affecting particle i. Solving (3.1) and (3.2) for «a; gives

1 1 1 oy 1
& & &| || =&
m m m a3 fP

In the case of a rigid rod only two parameters are required. In this case the local
coordinate frame can be located with one axis coinciding with the line joining the two
particles and the resulting linear system takes the form

[sl Elz] [2] B [el"] '

Also the applied force couple is replaced analytically by an equivalent system of
forces distributed over the particles. In the case of a rigid body, the applied force
couple is replaced by a system of three forces affecting the lines joining the particles.
The resultant of the forces should vanish and the summation of their moments should
be the same as the sum of the moment of the external applied couple. For the case
of a rigid rod, the applied force is replaced by two forces affecting the particles. The
magnitude of the force is determined as f = m./d, where m_ is the magnitude of the
couple and 4 is the distance between the two particles.
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4. Equations of motion of a rigid body

The rigid body shown in Figure 1 is replaced with a dynamically equivalent con-
strained system of three particles. The equations of motion of the resulting system
of particles are derived by applying Newton’s second law to study the translational
motion of the four particles. For the primary particles

mri+c=f, i=1...,3 (4.1a)

For the secondary particle
myrs+ ¢y =0, (4.1b)
where m; is the mass of particle i, 7; is the acceleration vector of particle i, f; is

the resultant of the external forces acting on particle i, and f; is the resultant of the
constraint forces acting on particle i{. The geometric constraint equations take the

form
(n—r)"(n—n)-di,=0, (4.2a)
(n—r)(n—r)—di,;=0, (4.2b)
(n=r) (n-r)—-d;, =0, (4.2¢)
rs —(n+n)/2=0, 4.2d)

where d, ; is the distance between particles i and j . Equations (4.2a)—(4.2c) are written
to fix the distance between particles 1 and 2, 1 and 3, and 2 and 3 while (4.2d) locates
particle 4 centrally between particles 1 and 3. By expressing the constraint forces in
terms of Lagrange multipliers and using (4.2d) to eliminate the accelerations of the
secondary particle 4, the equations of motion can be written in the following final

form:

M —gT1[7]_ [ Cws

¢, O ATy | '
where ¥ = [/, 7], 7[]" is the unknown acceleration vector of the particles, f =
)T, £, fi'17 is the vector of external forces distributed over the primary particles, ¢,
is the 3 x 6 Jacobian matrix derived by taking the partial derivatives of the constraint
equations (4.2a)(4.2c) with respect to the Cartesian coordinates r;, i = 1,...,3,
A = [Ay, Az, A3]7 are the Lagrange multipliers associated with the constraint equations

(4.2a)~(4.2c) where the constraint forces associated with these constraints can be
expressed as C = ¢7 A, y is the right-hand side of the acceleration equations derived
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by taking the time derivatives of the constraint equations (4.2a)—(4.2c) and M is the
6 x 6 symmetric mass matrix given by .

M, 0 0 0 myd 0

0 M‘ 0 0 0 M4/4
M = 0 0 0 m; 0 0
myf4 0O 0 0 M 0

L 0 my4 0 0 0 M

Here M, = m, + my/4 and M3 = m; + m, /4.

Equation (4.3) represents a system of nine differential-algebraic equations that
can be solved for the unknown accelerations of the three primary particles and the
Lagrange multipliers. Similar procedures can be followed to obtain the equations of
motion of a rigid rod where particles 1 and 2 are located at both ends of the rod while
the third particle is located at the mid-point between the two particles. The constraint
equations between the particles are given by

(n—=r)T(n—rn)—d, =0,

rn—(n+n)2=0,

(4.42)
(4.4b)

and by utilising (4.4b) to eliminate the acceleration of particle 3, we obtain the
equations of motion in the form given by (4.3) where 7 = [#], 7]]” is the unknown
acceleration vector of the particles, f = [fT, f,/]17 is the vector of external forces
distributed over the particles, ¢,, r = 1, 2, is the 1 x 4 Jacobian matrix of the distance
constraint (4.4a), A = A, is the Lagrange muitiplier associated with the constraint
equation (4.4a), y is the right-hand side of (4.4a), and M is the 4 x 4 symmetric sparse
mass matrix given by

M] 0 M3/4 0
0 M, 0 m/s

myfd O My O

0 m/4 0 M,

M=

Here My = m, + m3/4 and M, = m, + m;/4.

5. Equations of motion of a system of rigid bodies

A mechanical system is a collection of individual rigid bodies interconnected by
kinematical joints and/or force elements. If there are no kinematical joints in the
system, it is called a system of unconstrained bodies. If there are one or more
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kinematical joints in the system, it is referred to as a system of constrained bodies.
In the case of an unconstrained system, the rigid bodies do not share any common
particles. Then the overall mass matrix is constructed by assembling the different
mass matrices for the individual bodies in the system without overlapping. The final
form of the equations of motion is given by

M —D®T[ 7 g
[D(g) 0 ][;‘(g)]=[y<g)]' G.1

where M is the overall mass matrix, 7 represents the acceleration vectors of the
primary particles, D® is the Jacobian matrix of the geometric constraints between the
particles, A® are the Lagrange multipliers associated with the geometric constraints
between the particles, g is the resultant vector of external forces acting on the primary
particles, y‘® is the right-hand side of the acceleration equations of the geometric
constraints, and (g) is a superscript which stands for geometric constraints.

In the case of a constrained system, two or more adjacent bodies usually share one
or more particles. The mass matrices corresponding to these bodies are overlapped.
The overall mass matrix is constructed by assembling the individual mass matrices and
adding the contributions of the common particles. Additional kinematical constraints
exist due to the kinematical joints. The final form of the equations of motion for a
general constrained system is given by

[ 101 62

Here D is the Jacobian matrix of the constraints between the particles, A are the
Lagrange multipliers associated with the constraints between the primary particles,
and y is the right-hand side of the acceleration equations of the constraints.

6. Equations of motion in the joint coordinates

Derivation of the equations of motion in terms of the equivalent system of particles
is simple and straightforward. The main disadvantage of this formulation is the
assignment of a large number of dependent generalised coordinates which results in
a large number of coupled differential-algebraic equations. The numerical solution
and integration of this mixed set of equations are computationally inefficient. The
equations of motion, written initially in terms of the Cartesian coordinates of the
particles, are transformed to a reduced set of equations in terms of a selected set of
relative joint variables. This transformation is done using a velocity transformation
matrix which relates the Cartesian velocities of the particles to the relative joint
velocities and allows an efficient solution and integration of the equations of motion.
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6.1. Equations of motion for an open loop system For a multibody system with
open loops the equations of motion in terms of the Cartesian coordinates of the particles
as given by (5.2), are transformed to a minimal set of differential equations equal to
the number of degrees of freedom of the system. In the process of transformation, the
position of a body is defined with respect to its adjacent reference body by relative
angles or distances. Therefore the vector of joint coordinates is determined by the type
of the kinematical joints. The vectors of joint coordinates, velocities and accelerations
are respectively defined by

9=[9|s-‘-79n]T1 é=[élv'~-’én]T7 é.=[éls---’§n]r’

where n is the number of degrees of freedom of the system. The Cartesian velocities
of the particles are related to the joint velocities through

g = Bé, (6.1)

where the matrix B is the velocity transformation matrix which is a function of the
Cartesian coordinates of the particles and it depends on the topology of the system as
well as the type of the kinematical joints connecting the adjacent bodies. The time
derivative of (6.1) gives the acceleration transformation as

§ = Bd + Bé. (6.2)

Substituting the Cartesian accelerations from (6.2) in the first relation of (5.2) and
premultiplying by the matrix BT yields

B™MB6 — BTD"A = BT(g — M B9). 6.3)

The second term in (6.3) vanishes and the final form of the equations of motion in
terms of the relative joint variables, if all the joint variables are independent, is given as

Mé =7, (6.4)

where M = BTM B and f = BT(g — M B6). Solving the symmetric linear system
of (6.4) yields the unknown joint accelerations. The estimated joint accelerations are
integrated, given the initial joint coordinates and velocities, to determine the updated
values of the joint coordinates and velocities.

6.2. Equations of motion for a closed loop system For multibody systems con-
taining closed kinematical loops, additional constraint equations are introduced due to
cut-joints. Each closed loop is cut at one of the kinematical joints in order to produce
a reduced open loop system. For this reduced system, joint variables are defined for
every open loop. The resulting equations of motion in this case are a coupled set of
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differential-algebraic equations. Let the cut-joint constraint equations for the closed
kinematical loop be expressed as

Y@ =0. (6.5)
The first and second time derivatives of the constraints are given by

¥ =C6 =0, (6.6)
12} =Cl = 0, 6.7)

where C is the Jacobian matrix of the cut-joint constraints. The constraint forces
associated with the cut-joint constraints are expressed in terms of Lagrange multipliers
and introduced into the equations of motion for an open loop system, (6.4), to give

[Az _cf T] [i] - [—féé] ' (6.8)

where v is the vector of Lagrange multipliers associated with the cut-joint constraints.
Equations (6.5)—(6.8) represent the equations of motion for a multibody system when
the number of selected joint coordinates is greater than the number of degrees of
freedom of the system.

It should be noted that in this formulation, the kinematical constraints due to
some common types of kinematical joints (for example, revolute or spherical joints)
can be automatically eliminated by properly locating the equivalent particles. The
remaining kinematical constraints along with the geometric constraints are, in general,
either linear or quadratic in the Cartesian coordinates of the particles. Therefore
the coefficients of their Jacobian matrix are constants or linear in the rectangular
Cartesian coordinates. In the formulation based on the relative coordinates, however,
the constraint equations are derived based on loop closure equations which have the
disadvantage that they do not directly determine the positions of the links and points of
interest which makes the establishment of the dynamic problem more difficult. Also,
the resulting constraint equations are highly nonlinear and contain complex circular
functions. The absence of these circular functions in the point coordinate formulation
leads to faster convergence and better accuracy. Furthermore, preprocessing the
mechanism by topological graph theory is not necessary, as would be the case with
loop constraints.

Also, in comparison with the absolute coordinate formulation, the manual work
of the local axes attachment and local coordinate evaluation as well as the use of the
rotational variables and the rotation matrices in the absolute coordinate formulation
are not required in the point coordinate formulation. This leads to fully computerised
analysis and accounts for a reduction in the computational time and memory storage.
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In addition to that, the constraint equations take much simpler forms as compared
with the absolute coordinates. Furthermore, the use of absolute coordinates may
cause numerical problems if differences of large values of the absolute coordinates
are used, for example, for the calculation of spring or damper forces or constraint
residuals.

The elimination of the rotational coordinates, in the presented formulation, leads to
possible savings in computation time when this procedure is compared against the ab-
solute or relative coordinate formulation. It has been determined that numerical com-
putations associated with rotational transformation matrices and their corresponding
coordinate transformations between reference frames is time consuming and, there-
fore, if these computations are avoided more efficient codes may be developed. The
elimination of rotational coordinates can also be found to be very beneficial in design
sensitivity analysis of multibody systems. In most procedures for design sensitivity
analysis, leading to an optimal design process, the derivatives of certain functions
with respect to a set of design parameters are required. Analytical evaluation of these
derivatives are much simpler if the rotational coordinates are not present and if we
only deal with translational coordinates.

Some practical applications of multibody dynamics require one or more bodies in
the system to be described as deformable in order to obtain a more realistic dynamic
response. Deformable bodies are normally modelled by the finite element technique.
Assume that the deformable body is connected to a rigid body described by a set of
particles. Then one or more particles of the rigid body can coincide with one or more
nodes of the deformable body in order to describe the kinematical joint between the
two bodies. This is a much simpler process than when the rigid body is described by
a set of translational and rotational coordinates. In general, the point coordinates have
additional advantages over the other systems of coordinates since they are the most
suitable coordinates for graphics routines and for animation programs.

6.3. Integration of the equations of motion The differential equations of motion
for an open-chain, (6.4), or for a closed-chain, (6.8), represent a set of nonlinear
ordinary differential equations with time as an independent variable. The system can
be put in the standard form y = f (y, ¢}, where y and y are the vectors that contain
the relative joint coordinates, velocities and accelerations as

[ o<l

The numerical solution of the equations of motion requires a numerical integration
process that determines the elements of y at every time step. The function f is
evaluated by solving the equations of motion for the unknown joint accelerations.
This numerical process is summarised as follows:
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(1) Initially, the joint coordinates and velocities are known, that is, yo = [67, 6717.

(2) Using the vector yo = [6], éor 17, the Cartesian coordinates and velocities and
hence the matrices B, B, C and € can be constructed.

(3) With knowledge of the known constant mass matrix M and the force vector f,
the equations of motion for an open-chain, (6.4), or a closed-chain, (6.8), can be
derived.

(4) Solve the equations of motion for§ and v using the Gaussian elimination tech-
nique adopted for symmetric matrices.

(5) Construct the y vector and return the contents to the integration algorithm.

(6) Repeat the previous steps at every time step.

Gear’s method [1] for the numerical integration of differential-algebraic equations
is used to overcome the instability problem resulting during the modelling process of
constrained mechanical systems. Use of both Cartesian and joint coordinates produces
an efficient set of equations without loss of generality.

7. Dynamic analysis of a closed-chain

The planar three degree-of-freedom platform-type manipulator shown in Figure 3 is
chosen as an example of a closed-chain. The end-effector platform of the manipulator
is constrained by three serial link trains, each of which possesses three revolute joints
which form two independent closed loops. Table 1 presents the mass and the mass
distribution over the links of the manipulator. Each rigid link is replaced by an

TABLE 1. Description of rigid bodies

Body Mass (kg) | Inertia Jg; + J,, (kg m?)
Rigid rods 1.0 0.333333
platform 3.0 1.0

equivalent system of two primary particles located at both ends and an intermediate
secondary particle. The rigid platform is replaced by a system of three primary
particles located at joints connecting them to the other links and a secondary particle
at the middle of any pair of them. Locating the particles belonging to adjacent bodies
together at the connection joints reduces the total number of particles replacing the
whole system and leads to the automatic elimination of the kinematical constraints
at these joints. As shown in Figure 3, an overall equivalent system of nine primary
particles is constructed and a resuitant 16 x 16 sparse symmetric mass matrix is
constructed. Since two closed loops exist, two joints should be cut. Cutting the
revolute joints at points 7 and 9 produces two open-chains. Then the vector of joint
coordinates and the corresponding vectors of joint velocities and accelerations are,
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FIGURE 3. The manipulator with the equivalent particles.

FIGURE 4. The trajectory of the platform.
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respectively, defined by

0= [911 92,] ’ 93.21 94,31 05,4, 96.3! 97,6]7"

9 = [91 ’ éZ,l y é3,21 é4.3’ é5.4v 96,3’ 0.7.6]T,

é = [91 ’ é‘2,1 1 93,21 é.4,31 éS,‘h 9.6.3! é.7,6]7"

where 6,is the inclination angle of body 1 with the horizontal, and 6; ; is the relative
angle between bodies j and i. The velocity transformation equation has the form

(] [knr s
r knr, kAR, 4 !
Fa kArg kArg, kArs éz"
Fs| _VkArsy kArsy; karss é“
Fel ~ | kArey kAare, kAares kAargg é“
P kAar,, kAr, kArs kArs kArg 95"‘
Fs kArsy kArs; kArss kArgs Loﬁ"

(7o | kAt kAry kArs kArs kArg| s

Two cut-joint constraint equations are written to prevent the motion of particles 7 and 9,
in vector formas r, — ¢; = 0 and ry — ¢; = 0, where ¢; and ¢, are known constant
vectors. The corresponding velocity and acceleration equations take, respectively, the
formi7—i9 =0and'f7 —;:9 =0.

The 4 x 5§ matrix C, defined in (6.6), can be put in the following closed form:

k/\r“ k/\r7'2 k/\r7'3 k/\r7_4 k/\r7_6
C= .
o kA Iy kA re> kA ros kA o s kA rog

The resulting equations of motions, as given by (6.8), represent an 11x 11 symmetric
linear system that can be solved for the unknown joint accelerations and reaction forces
at the cut joints. The motion of the system is started from the rest position under the
action of gravity forces as well as an external force of magnitude 10N applied at the
centre of the end-effector in the horizontal direction. Figure 4 presents the trajectory of
the platform and indicates the oscillating behaviour controlled by the gravitational and
constraint forces. Verification of the results is done by comparison with the absolute
coordinate formulation [4].

8. Conclusion

In this paper a two-step formulation for the dynamic analysis of generalised planar
linkages is developed. Initially a rigid body is replaced by a dynamically equivalent
constrained system of particles and the equations of motion are formulated using

https://doi.org/10.1017/51446181100009688 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100009688

[15] Dynamic analysis of generalised planar linkages 589

only Newton’s second law in terms of the Cartesian coordinates of the particles.
The simplicity and the absence of any rotational coordinates and the corresponding
transformation matrices from the final form of the equations of motion are considered
the main advantages of this formulation. Then the equations of motion are transformed
to a reduced set using relative joint coordinates. This leads to an efficient solution and
integration of the equations of motion. The formulation is then applied to carry out
the dynamic analysis of a closed-chain. The simulation demonstrates the generality
and efficiency of the formulation.
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