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Low-carbohydrate diets (LCD) have been promoted for weight control and type 2 diabetes
(T2D) management, based on an emerging body of evidence, including meta-analyses with
an indication of publication bias. Proposed definitions vary between 50 and 130 g/d, or <10
and <40% of energy from carbohydrate, with no consensus on LCD compositional criteria.
LCD are usually followed with limited consideration for other macronutrients in the overall
diet composition, introducing variance in the constituent foods and in metabolic responses.
For weight management, extensive evidence supports LCD as a valid weight loss treatment,
up to 1–2 years. Solely lowering carbohydrate intake does not, in the medium/long term,
reduce HbA1c for T2D prevention or treatment, as many mechanisms interplay. Under con-
trolled feeding conditions, LCD are not physiologically or clinically superior to diets with
higher carbohydrates for weight-loss, fat loss, energy expenditure or glycaemic outcomes;
indeed, all metabolic improvements require weight loss. Long-term evidence also links the
LCD pattern to increased CVD risks and mortality. LCD can lead to micronutrient
deficiencies and increased LDL-cholesterol, depending on food selection to replace carbohy-
drates. Evidence is limited but promising regarding food choices/sources to replace
high-carbohydrate foods that may alleviate the negative effects of LCD, demanding further
insight into the dietary practice of medium to long term LCD followers. Long-term, high-
quality studies of LCD with different food sources (animal and/or plant origins) are needed,
aiming for clinical endpoints (T2D incidence and remission, cardiovascular events,
mortality). Ensuring micronutrient adequacy by food selection or supplementation should
be considered for people who wish to pursue long-term LCD.

Carbohydrate-restricted diet: Ketogenic diet: Macronutrients: Obesity: Type 2 diabetes

Low-carbohydrate diets (LCD) have been heavily pro-
moted for weight management, and as a possible strategy
for type 2 diabetes (T2D) management and prevention(1–3).
Current and emerging evidence from randomised trials
remains inconclusive regarding the effectiveness of
LCD for health benefits (via weight control or
metabolic control)(4). As with any restrictive diet, the

long-term sustainability of LCD has been questioned,
with additional concerns over safety, by comparison
with current usual western diets or with alternative
dietary recommendations(5–7). This review explores the
current evidence and debates which supports or chal-
lenges the use of LCD for T2D management and
prevention.
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Type 2 diabetes: a disease process of obesity

T2D is primarily a nutritional disease, which used to be
rare in pre-industrial societies, but is now emerging as
one of the most common and damaging chronic diseases.
Its global prevalence has approximately doubled from
1980 to 2014, in line with rising overweight and obes-
ity(8). It causes 1⋅6 million premature deaths annually,
and shortened lives often end with years of pain and mul-
tiple disabilities(9).

The extraordinary association between T2D and ele-
vated BMI (not simply BMI >30 kg/m2) was shown
graphically in the prospective Nurses Health Study.
Compared to BMI <22 kg/m2, women with BMI 23–
23⋅9 kg/m2 had a 3⋅6-time higher relative risk of incident
T2D, rising to about 60 times higher risk in women with
BMI ≥35 kg/m2, levels strongly indicative of a causal
relationship(10,11). Excessive body fat accumulation is a
critical, but reversible factor underlying T2D and meta-
bolic syndrome development. In people who are predis-
posed (for genetic and other reasons), fat accumulates
in ectopic sites including liver and pancreas, which
damages organ functions(12), (Fig. 1). Reversing that pro-
cess by weight loss of at least 3–7 % is a key mechanism
to prevent or delay onset of T2D(13–16), and remission of
established T2D can be achieved by greater loss, >15 %
for greatest success, with an intensive weight manage-
ment programme(17).

Lifestyle modification, through dietary change and
increasing physical activity, to halt or delay the disease-
process which is driven by weight gain and excess body
fat in susceptible individuals, is fundamental for T2D
prevention and management(13). Advice and support
for affected individuals can be very effective(17,18) but is
strongly undermined by effective social marketing driv-
ing greater energy intake, while physical activity con-
tinues to fall in the post-industrial environment(19).
Self-reported food consumption by individuals with over-
weight and obesity can also be misleading, with notable
underreported food energy intake (about 418⋅4 kJ/d) in
adults with BMI >30 kg/m2(20,21). Meanwhile, food dis-
appearance data show consistent positive relationships
between rising obesity, increasing energy intake and con-
sumptions of all food groups and all macronutrients(22–25).

Role of carbohydrate in the diet

A primary role of carbohydrates is to serve as a main and
preferable source of body energy, contributing toward
approximately half the daily energy intake at population
level(26,27). Carbohydrate-rich foods, consumed regularly
everyday as part of our main diets, are considered staple
foods, including potatoes, rice and whole grains, breads
and pasta. Carbohydrates are also found in fruit, milk,
beans and some starchy vegetables(28). After consump-
tion, foods containing carbohydrates are digested by
the enzymes in the small intestine and absorbed in the
form of glucose molecules. Glucose absorbed into the
blood stream is transported into cells with the help of
insulin, then directly converted to energy or stored as

glycogen(28). Not all carbohydrates are digested in the
small intestine, with undigested constituents passing to
the large intestine (colon); these are classified as dietary
fibre(28). Dietary fibre can be fermented by the resident
bacteria in the large intestine, forming SCFA and also
carry out a functional role through water absorption
and bulking of stools(28). Carbohydrate-rich foods are
also a good source of vitamins and minerals, as they
come from plant sources. In the UK, cereals and cereal
products, vegetables and potatoes and fruits are the
major food groups contributing to vitamins and minerals
intakes, either naturally presented or fortified
(Table 1)(26).

Not all carbohydrates are the same, and types and
quality matter. Eating carbohydrate-rich foods such as
wholegrain, whole-wheat pasta, brown rice, potatoes
with skin, fruit and vegetables is associated with chronic
disease risk reduction, which is partly explained by diet-
ary fibre, found in plant cell walls(29). Fibre can help with
body weight maintenance through the regulation of
energy balance and satiety(30,31). Fibre also impacts on
bowel health, with decreased risk of constipation(29). In
contrast, the consumption of free sugars (table sugar,
fruit juice, honey, sugar-sweetened beverages or sugary
snacks) could result in excess energy intake leading to
overweight and obesity(32).

National nutrition surveys in the UK and USA found
that ultra-processed foods (NOVA classification)
accounted for 65–90% of energy intakes from sugars, and
about 50% of total energy intake(33,34). Ultra-processed
foods often have high fat and salt contents, and include
highly processed refined carbohydrates which are low in
fibre (e.g. white starch)(35). A controlled in-patient meta-
bolic ward randomised controlled trials (RCT) of ad libitum
intake showed thatmore calories were consumedwith a diet
offering ultra-processed foods, compared to unprocessed
foods, resulting in 1 kg weight gain over 2 weeks(36).

What are low-carbohydrate diets?

Prominent media coverage has promoted the idea that
obesity and metabolic diseases derive almost entirely

Fig. 1. (Colour online) Schematic diagram of weight gain and type
2 diabetes (T2D) development.
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from the consumption of sugar, and because all carbohy-
drates are digested as sugars, from any dietary carbohy-
drate. The promotion of LCD, with unlimited fat
(including saturated fats) and protein stems from this
paradigm; for example, the Atkins diet, which limits
intakes of bread, pasta and rice, allows unlimited con-
sumption of animal foods such as red meat and processed
meat, high in SFA(37). While calories from sugar (free
sugar, added sugar) are largely unnecessary, total carbo-
hydrate restriction could also entail avoiding health-
promoting constituents of high-carbohydrate foods
such as whole grains.

Definitions of LCD in the scientific literature vary,
and may reflect either diets low in carbohydrate as per-
centage of energy intake, or low absolute daily con-
sumption (g) of carbohydrate. Commonly used
definitions for human subjects range from intakes
below 20 % to below 45 % of energy, and from below
60 g to below 120 g carbohydrate daily(38–42). Some
authors propose referring to LCD as carbohydrate
below 40 %(43) or 26 %(1) of energy, and to very-LCD
when carbohydrate is under 20 %(43) or under 10 %(1)

of energy, with no consensus to date (Table 2). The
term LCD is commonly applied regardless of other
macronutrient contents in the overall diet compos-
ition, which introduces variance in the constituent
foods being used, and in metabolic responses. For
example, a low-carbohydrate, high saturated fat diet
increased LDL-cholesterol(44), whereas a low-
carbohydrate, low saturated fat, high unsaturated fat
diets showed no change in LDL-cholesterol(45).
Another study of plant-based LCD with low satu-
rated/high unsaturated fat contents also reported a
reduction in LDL-cholesterol(46).

In addition, there are many different commercial ver-
sions of the LCD, such as the Atkins diet, Zone diet or
the South Beach diet(47,48). The most popular have
been based on the Atkins diet, with 17 million copies
of Dr Atkins New Diet Revolution sold, and heavy pro-
motion in the media and on the internet(37,49,50). This
diet suggests two phases. The induction phase limits
intake of carbohydrate to no more than 20 g, with liberal
intake of fat and protein including red meat, butter and
vegetable oils and exclusion of bread, pasta, grains,
fruit, other starchy vegetables and dairy products except
cheese, cream and butter. Supplementary multivitamins
and fibre are recommended. In the second phase, once
a desirable weight has been achieved, daily carbohydrate
intake can be increased to the level that can maintain
weight(37).

Hypothesis about low-carbohydrate diets and obesity and
type 2 diabetes

Common features among obesity, T2D and metabolic
syndrome are hyperinsulinemia and insulin resistance.
Instead of excessive total energy intake causing weight
gain, insulin resistance and hyperinsulinemia, a
carbohydrate-insulin model of obesity hypothesises that
carbohydrate intake, including refined starchy foodsTa
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and sugars causes postprandial hyperinsulinemia, pro-
motes lipogenesis leading to a decreased level of meta-
bolic fuels (glucose and lipids), and leads to weight
gain through increased hunger and less energy expend-
iture(51). By this carbohydrate-insulin model, LCD
could reduce postprandial insulin secretion, promote fat
loss and decrease risks of chronic diseases(51).

Weight loss with either LCD or low-fat diet (LFD)
showed an improvement in insulin resistance,measured by
an intravenous glucose tolerance test or euglycaemic–
hyperinsulinemic clamp(52,53). In contrast, non-weight
loss, controlled feeding, short-term studies of very-low
carbohydrate, high fat (high saturated fat) diets in
healthy young men showed worsened insulin sensitivity,
measured by oral glucose tolerance(54), intravenous glu-
cose tolerance test(55) and euglycaemic–hyperinsulinemic
clamps(56,57). Conversely, short-term studies in healthy
postmenopausal women with overweight and obesity(58),
and men with T2D(59) showed no difference in insulin
sensitivity by an euglycaemic–hyperinsulinemic clamp
between LCD and LFD, this might be explained by the
unsaturated fatty acids used to replace carbohydrate(60).

The evidence of LCD on β-cell function is limited.
One short-term crossover RCT of LCD v. normal diet
showed a reduction in the first-phase insulin response
after 3-d very low-carbohydrate, high-fat diet in healthy
young men(54). In animal studies, long-term ketogenic
diets in mice showed an increased insulin resistance, did
not prevent β-cell mass decline(61) and even showed a
reduction in β-cell mass, including smaller size of
islets(62). Although LCD could reduce postprandial glu-
cose and postprandial insulin response, without weight
loss, the limited evidence fails to support that LCD
could reverse pathophysiology of hyperglycaemia in
obesity and T2D.

Opportunities for the use of low-carbohydrate diets for
diabetes prevention in individuals with overweight and

obesity, who are at high risk of type 2 diabetes

Weight management, either weight loss or weight main-
tenance, plays the biggest role in T2D prevention in indi-
viduals with overweight and obesity. Several large
diabetes prevention trials have shown a clear benefit on
T2D risk reduction principally by modest weight loss

mainly by lowering fat intake (<30 % energy). Other life-
style modifications have more modest values(13–16). While
weight loss by LFD has been largely incorporated in dia-
betes prevention trials, RCT of LCD for weight loss do
not have long enough follow-up to evaluate incident
T2D and were not designed to study incident T2D as a
primary outcome. As weight loss is an essential mechan-
ism for T2D risk reduction, this section also discusses the
role of LCD in weight loss.

The idea of LCD for weight loss first attracted public
interest with the letter of William Banting published in
1863 describing his successful personal weight loss of
46 lbs (about 20 kg), from 202 lbs to 156 lbs over a
12-month period, by cutting bread, potato, pastry,
milk, sugar and a majority of fruit(63). Several anecdotal
reports of similar success have been discussed in the
media(64–66), highlighting that the successful weight loss
stories with LCD could be subject to survival bias,
with the experience of those who tried and failed not being
reported. LCD can achieve a mean weight loss of 7 kg
approximately over 6–24 months, up to 10% of baseline
body weight in non-controlled studies(67–70). LCD, how-
ever, certainly work for some, as highlighted in the
DIETFITS study that participants who assigned to the
LCD group lost a maximum of 30 kg body weight, while
some participants gained up to 10 kg body weight(42).

Randomised controlled trials and meta-analyses evidence
of low-carbohydrate diets for weight loss

Several RCT and meta-analyses have been conducted to
examine the effects of LCD for weight loss, compared to
LFD(71–73). The conclusion has repeatedly been that
there may be marginally greater weight loss in the
short term (approximately the 2 kg expected from the
depletion of glycogen and its associated water), but no
consistent superiority of LCD over the longer term(4).
At 6 months (Fig. 2a), meta-analyses reported that
weight loss from LCD was greater than LFD by 0⋅7 to
4 kg, but this difference dropped to 0⋅5 to 1 kg at 12
months, Fig. 2b(4,40,41,47,71,74).

Factors contributing to inconsistent findings among
published meta-analyses of low-carbohydrate diets and

low-fat diets for weight loss

Our recent systematic review of published meta-analyses(4)

explores these inconsistent findings regarding the effect-
iveness of LCD and LFD for weight loss, partly
explained by large differences in methodology.
Definitions of what constitutes LCD varied among
meta-analyses, ranging from 20 g/d to <45% energy
from carbohydrate. The more extreme carbohydrate
restriction (20–60 g/d or 10–20% energy) resulted in
greater weight loss compared to LFD(4). With unre-
stricted energy LCD, participants typically consumed
30% less total energy than baseline, resulting in a greater
weight loss over 3–6 months(72,73,75). The weight loss is
then attenuated over time (12 months or more), probably
via the loss of adherence, as commonly occurs in weight
loss trials in free-living participants who tend to return to

Table 2. Proposed definitions of low-carbohydrate diets (LCD)

Categories Frigolet(43) Feinman(1) Examples

Very low-carbohydrate
(ketogenic) diet

<20% E or
<20–50 g/
d

<10% of
the 8368
kJ/d diet or
20–50 g/d

Atkins diet
(Induction
phase)

LCD 20–40% E <26% E or
<130 g/d

Zone diet

Moderate-carbohydrate
diet

– 26–45% E

High-carbohydrate diet – >45% E

E, energy.
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their previous diet and lifestyle in the obesogenic
environment(76,77).

Quality and bias among published meta-analyses of
low-carbohydrate diets and low-fat diets for weight loss

We also assessed the quality of each published meta-
analyses using AMSTAR 2 criteria(78). Contrasting
with the wide popularisation and mediatisation of LCD,
only two meta-analyses were ‘high quality’ (n 2/10) and
they reported no weight loss difference compared to
LFD, while half (n 5/10) were of ‘critically low quality’
but reported LCD superiority over LFD for weight
loss, up to 4 kg difference(4). Of particular interest,
meta-analyses favouring LCD but of low quality also
had higher citations (ρ=−0⋅9, P= 0⋅037), suggesting
that public and scientific communities might be respond-
ing most to findings generated through poor method-
ology(4). Despite featuring at the top of the evidence
hierarchy, meta-analyses remain open to biases.

Predictors of weight loss: macronutrients and/or diet
adherence – findings from controlled feeding studies and

free-living participants

LCD have been promoted on the basis that they theoret-
ically reduce more body fat than LFD, via lessened
stimulation of postprandial insulin secretion, leading to
lessened inhibition of lipolysis. This hypothesis is, to
date, not supported by a meta-analysis of controlled
feeding studies comparing the effect of isoenergetic
LCD v. LFD, with equal protein(79). A strength of
the controlled feeding studies is of the by-passing of
adherence as a confounder. The pooled results showed
that LFD yielded a 108⋅764 kJ/d greater difference in
energy expenditure, and a 16 g/d greater loss in body
fat change, compared to LCD with equal protein(79).
However, these differences are small and could not
infer the clinical impact of the effect of dietary fat and
carbohydrate on body weight loss, when energy intake
is equally held between the two diets. Consistent findings
were also seen in weight loss trials in free-living partici-
pants. A meta-analysis of LCD v. isoenergetic LFD(74)

reported little difference in body weight loss between
the two diets at 3–6 months (mean difference −0⋅74 kg;
95 % CI −1⋅49, 0⋅01) and 1–2 years (mean difference
−0⋅48 kg; 95 % CI −1⋅44, 0⋅49). This highlights that cal-
oric restriction and adherence to the programme are
superior for weight loss than macronutrients
composition.

Macronutrients, appetite and weight control

Given that controlled metabolic studies find no difference
in weight loss with low or high carbohydrate diets(79), the
small short-term weight-loss advantage of LCD over
high-carbohydrate energy-restricted diets in free-living
people may be due to greater ease, willingness or enthu-
siasm to restrict high-carbohydrate foods. High carbohy-
drate foods are also somewhat easier to identify(80,81), as
much fat in foods is hidden (e.g. in cakes, biscuits,
muffin, pizza, cereal bars)(82), and this approach is cur-
rently heavily promoted via the mainstream and social
media. In principle, restricting fat (37⋅656 kJ/g) should
be more effective than restricting carbohydrate (16⋅736
kJ/g). It is however possible that the higher protein intake
from Atkins-style LCD could suppress appetite(83–86).

A further oft-cited possibility is that the ketosis that
develops with more extreme carbohydrate restriction,
suppresses appetite(86,87). When body fat or dietary fat
is oxidised, with weight loss or with a very-HFD, the
fat oxidation products (ketone bodies) accumulate in
the blood stream (e.g. β-hydroxybutyrate, 0⋅3–0⋅8mM

on LCD v. about 0⋅1 mM on typical diets with 50 %
energy carbohydrate)(88,89). Ketone body production is
a biochemically necessary accompaniment of weight
loss, and appetite usually increases with energy restric-
tion and starvation(90,91), as a powerful survival mechan-
ism. Very limited evidence has examined the specific
effect of raising ketone bodies to be able to confirm or
refute this theory, which is highly relevant to the sustain-
ability of carbohydrate restriction and appetite control.
Stubbs et al.(92) recently published a crossover RCT of
exogenous ketone (via a ketone ester drink) compared
to a dextrose drink. Ketone ester ingestion markedly

Fig. 2. Mean differences in weight loss between low-carbohydrate diet (LCD) v. low-fat diet (LFD) at
6 months (a) and 12 months (b) of each meta-analysis (adapted from Churuangsuk et al. (4)).
Horizontal axis indicates mean differences in weight loss (kg) between LCD and LFD. The minus
value indicates that LCD is more effective for weight loss than LFD.
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increased the blood β-hydroxybutyrate level from 0⋅2 to
3⋅3mM after 60 min, and suppressed reported hunger
and desire to eat (both measured by visual analogue
scales) by 50 % compared to a dextrose drink, 1⋅5 to 4
h postprandially(92).

There is current interest in the evidence that some car-
bohydrates, functioning as dietary fibre, can suppress
appetite and weight gain by releasing SCFA, which
stimulate glucagon-like peptide-1 (GLP-1) release from
the large intestine, through the action of gut microbes(93).
Dietary inulin-propionate ester is metabolised by gut
microbes to deliver propionate to the large intestine(94,95).
Propionate acutely stimulates GLP-1 production result-
ing in appetite suppression and decreased energy
intake(93). However, the effect on GLP-1 release is not
well sustained over time, while the effect on appetite sup-
pression is maintained(93), suggesting that other mechan-
isms unrelated to GLP-1 may operate(96). Other physical
effects of dietary fibre (e.g. viscosity, gel formation) could
also play a role in appetite suppression(97). Although the
underlying mechanism of dietary fibre and appetite sup-
pression is not fully confirmed, the collective evidence
would support the use of high-fibre diets for weight con-
trol(93–95,97,98). Fig. 3 illustrates the levels of ketones, pro-
pionate and satiety in relation to carbohydrate and
dietary fibre intakes.

Opportunities for the use of low-carbohydrate diets as a
treatment strategy for patients with type 2 diabetes

Controlling blood glucose within a desirable range, eval-
uated via measurement of HbA1c, is a primary aim for
T2D management(99,100). LCD have been postulated to
have physiological benefits over higher carbohydrate
diets for HbA1c reduction. A lower postprandial glucose
excursion would be expected after LCD, compared to
higher carbohydrate diets if they present greater gly-
caemic index or glycaemic loads(66,101). A reduced post-
prandial excursion should lead to a better overall
glucose control and lower HbA1c. Recent clinical guide-
lines recommend individualised nutrition therapy for
people with T2D, and allow flexibility of carbohydrate
intake to suit personal preferences and metabolic
goals(99,100). However, the role of LCD in T2D remains

unclear and often yield mixed results(102–104). This is
likely to be influenced by the level of energy restriction,
and protein/fat composition of the diets.

Randomised controlled trials and meta-analyses evidence
of low-carbohydrate diets for blood glucose control

Meta-analyses of LCD in patients with T2D have
shown little greater reductions in HbA1c compared to
higher-carbohydrate diets, by 0⋅17 to 0⋅34 % over a
short-term period up to 6 months with evidence grades
ranging from very-low to moderate certainty(102–104).
Notably, results from RCT with <6 months duration
showed that a lower carbohydrate intake was associated
with a greater extent HbA1c reduction (r −0⋅8,
P< 0⋅01)(104), this could be explained by a greater weight
loss following LCD within 6 months duration(4,102,103).
However, there is no difference in HbA1c reduction
between the two diets at 12 months or longer(102–104).
The definitions of LCD in those meta-analyses were
<45% energy from carbohydrates, which departs from
more conservative definitions. More importantly, the dif-
ference in HbA1c reduction between the two diets is of
unclear clinical importance, with a majority of RCT
included in those meta-analyses with high risk of
bias(102,103).

Randomised controlled trials evidence for type 2 diabetes
remission

There have been debates on the definitions of remission
of T2D(105,106). While there is no consensus on the remis-
sion criteria, it is obvious that blood sugar, both HbA1c
and fasting blood glucose, should be below the diagnostic
threshold for diagnosis of T2D. To date, there is no RCT
to study the effect of LCD on T2D remission, and clin-
ical trials aiming at T2D remission outcome were also
limited with an unclear report on the remission rate
and criteria(69,88). A single-arm longitudinal study of a
Low-Carb Program in patients with T2D reported a
1-year result that 26 % of patients (n 195/743) had
HbA1c below 6⋅5%, with either metformin or no pre-
scribed diabetes medication(69). Another non-RCT
(Virta Health study) also reported that 25⋅5 % (n 52/
204) participants in the LCD group (carbohydrate <30
g/d, with behavioural therapy and frequent follow-up)
had HbA1c below 6⋅5% without prescribed diabetes
medication at 1 year of intervention(88).

Weight loss masking the effect of low-carbohydrate diets
on blood glucose improvement and type 2 diabetes

remission

HbA1c reduction and T2D remission following LCD
have been largely confounded by weight loss(69,88,102–
104,107), leaving considerable doubt over the benefit for
HbA1c which can be attributed to carbohydrate quantity
per se. Most evidence featuring in meta-analyses compar-
ing the impact of LCD and LFD on HbA1c was weight
loss trials(69,88,102–104). Similarly, the Virta Health study
showed a reduction in HbA1c, from 7⋅6 to 6⋅3%, along
with a mean weight loss of 14 kg in patients with T2D(88).

Fig. 3. (Colour online) Proposed relationships between
carbohydrates (CHO), dietary fibre, ketones and propionate levels
and satiety. E, energy.
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Evidence of LCD in non-weight loss trials is limited. A
crossover RCT of a low-carbohydrate, high-protein
(LCHP) diet (30 % energy carbohydrate, 30 % energy
protein) v. an isoenergetic conventional diabetes diet
(50 % energy carbohydrate, 17 % energy protein)
reported a greater reduction in HbA1c in the LCHP
group (−0⋅6 (SD 0⋅1) %) compared to the conventional
diabetes group (−0⋅1 (SD 0⋅1) %; P<0⋅001)(108). This
study, however, is limited by a small sample size (n 28),
short duration (6 weeks for each diet) and no washout
period, which could not exclude carryover effect. More
importantly, greater weight loss was reported in the
LCHP group (−1⋅4 kg) than the conventional diabetes
group (−0⋅8 kg; P = 0⋅07)(108). Another crossover RCT
of LCHP diet v. LFD (n 8; 5 weeks) also showed a
greater reduction in HbA1c following LCHP, but it is
noted that there was a 2 kg weight loss during the
5-week study duration regardless of diet(109). The greater
HbA1c reduction following LCHP could be attributed to
the insulinotropic effect of high protein intake(110–113).
The results, therefore, needs to be confirmed by larger
and longer duration RCTs.

Randomised controlled trials evidence for vascular and
renal function in type 2 diabetes

Long-term RCT evidence on the safety of LCD is lim-
ited. One RCT comparing very low-carbohydrate, low-
saturated fat diet v. low-fat, low-saturated fat diets in
patients with T2D and no pre-existing kidney disease
reported that no difference was found in vascular func-
tion determined by flow mediated dilatation that might
be explained by these two diets had a similar level of
SFA(114). Regarding renal function, a meta-analysis of
nine RCT of LCD and LFD for weight loss showed
that a mean change in an estimated glomerular filtration
rate following LCD was little greater than LFD by 0⋅13
ml/min per 1⋅73 m2, with duration up to 1–2 years(115).

Dietary recommendations for patients with type 2
diabetes

While there is no ideal amount of carbohydrates for
patients with T2D, a guideline emphasises reduction of
refined carbohydrates and added sugars, and focus on
carbohydrates from vegetables, legumes, fruit, dairy
(milk and yoghurt) and whole grains, in order to achieve
healthful eating patterns with a variety of nutrient-dense
foods(99). If patients prefer LCD, this approach should be
only used for a short-term, up to 3–4 months, due to lim-
ited evidence on long-term benefits and harms of
LCD(99).

Challenges associated with the use of low-carbohydrate
diets

Low-carbohydrate diets and micronutrients

While weight is often the main outcome, nutritional
quality of all diets should be a key primary concern.
As key characteristic of LCD, avoidance of whole
grains, fruit and starchy vegetables could reduce

vitamins, minerals as well as plant bioactives (which
play a role in the modulation of glycative stress(116,117),
relevant to T2D pathophysiology). The negative impact
of LCD on micronutrients has often been neglected.
Our systematic review(118) found seven RCT(73,119–124),
two non-controlled trials(125,126) and one cross-sectional
study(127) reporting rather consistent reductions in thia-
mine (vitamin B1), folate, vitamin C, magnesium, cal-
cium, iron and iodine intakes(118). Although there is no
definitive guidance for supplementation during LCD,
only one study provided supplementation to partici-
pants(126). Most of the studies included did not report
on supplements used in their studies(118). It is therefore
difficult to assess whether inadequate micronutrient
intakes have been topped-up by supplementation(118).

This could have clinical consequences. For example,
severe thiamine deficiency and beriberi are well-
recognised with prolonged extreme LCD(128,129).
Inadequate intakes of folate and iodine in women of
child-bearing age could increase the risk of poor fetal
outcomes(130). Gardner et al. showed that individuals
on the Atkins diet had lower intake of thiamine and mag-
nesium over 8 weeks(120). Unfortunately, there have been
case reports of thiamine deficiency from following a
LCD. Bilateral optic neuropathy was reported in two
patients who followed a prolonged
carbohydrate-restricted diet(128). Another case of
Wernicke’s encephalopathy and cardiac beriberi was
reported in a patient with obesity who restricted breads
and pasta from his diet(129).

Low-carbohydrate diets and LDL-cholesterol

Lipid disturbance is commonly seen in individuals with
overweight and obesity, including those with T2D, who
are at high risk of atherosclerotic CVD (ASCVD).
High TAG and low HDL-cholesterol are risk factors of
ASCVD, while high LDL-cholesterol is a main culprit
of ASCVD, depositing in an arterial wall, initiating
plaque formation and progression of ASCVD(131,132).
There has long been a concern about increasing
LDL-cholesterol following LCD, albeit balanced by
decreasing the TAG level(4).

Evidence from weight loss trials showed that LCD
increased LDL-cholesterol to a greater extent compared
to LFD (by 0⋅1 to 0⋅4 mM, or 4 to 16 mg/dl) over 6 to
24 months intervention(38–41,71,133). The lower carbohy-
drate component in the diet may be associated with a
greater increment in the LDL-cholesterol level, as seen
in a cohort of patients with T2D following ketogenic
diets (<30 g/d of carbohydrate) that LDL-cholesterol
increased by 10 % after 1 year of the diet(88). In non-
weight loss studies(44,89,134), low-carbohydrate, high-fat,
high saturated fat diets (18–25% energy saturated fat)
for 3–4 weeks, showed 17–21% increment in
LDL-cholesterol from baseline, including increments in
small and medium LDL participles(44,89).

Most importantly, there were two case reports of acute
coronary syndrome in patients following the Atkins diet.
A 51-year-old man, healthy, physically active, no previ-
ous heart disease, diabetes, hypertension or
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dyslipidaemia developed a marked change in
LDL-cholesterol, from 2⋅2mM (85 mg/dl) at 6 months
prior to the Atkins diet to 4 mM (154 mg/dl) at 1 month
after the diet, BMI 21⋅8 kg/m2, despite a 3 kg weight
loss. The patient remained on this diet until 29 months
later when he experienced exertional chest pain, and his
cardiac catheterisation demonstrated a severe stenosis
of the left anterior descending artery(135). Another case
report was a 41-year-old man, who had no ASCVD
risks and no family history of premature coronary artery
disease. His BMI was 19⋅5 kg/m2. The patient adhered to
the Atkins diet for 6 years with repeated cycles each year.
His blood lipids, apoliprotein A and homocysteine levels
were within normal limits. He presented with acute chest
pain in which the investigation showed an acute myocar-
dial infarction(136).

Low-carbohydrate diets and ketoacidosis

Ketosis is associated with, and largely causes, dangerous
acidosis (ketoacidosis) in poorly treated insulin-deficient
type 1 diabetes. Apart from micronutrient inadequacies
and increased LDL-cholesterol, ketosis usually develops
in individuals following LCD(88). Although there is no
severe ketoacidosis reported in clinical trials, there is a
case report of ketoacidosis in a non-diabetic lactating
woman following a ketogenic diet with <20 g/d carbohy-
drate. The patient developed nausea and vomiting after
10 d of the diet. Serum pH was 7⋅2 indicating acidosis,
with blood ketones of 7⋅1mM (reference <0⋅5 mM). The
authors hypothesised that lactation could aggravate or
trigger ketoacidosis: during lactation, women require
increased energy intake to meet the high demand of sub-
strate to produce milk. Fat, whether stored or dietary, is
the primary resource of energy during a ketogenic diet,
and thus responsible for ketoacidosis(137).

Long-term epidemiological evidence on low-carbohydrate
diets, type 2 diabetes, cardiovascular risks and mortality

Intervention studies comparing LCD and LFD have
shown little or no difference on weight change over 1–2
years, but do not have long enough follow-up to study
the clinical outcomes such as incident T2D, CVD and
mortality or long-term safety.

Low-carbohydrate diets, HbA1c level and incident type 2
diabetes

Our cross-sectional analysis in people without known
diabetes in the National Diet and Nutrition Survey in
the UK showed that, although few people (n 8 or 0⋅24
% of the overall sample) met the conservative definition
of LCD (<26% energy), both lower carbohydrate intake
(per 5 % energy band) and LCD pattern (according to
LCD adherence score), were associated with higher
HbA1c (+0⋅16mmol/mol, P= 0⋅012, per 5 % energy
decrease in carbohydrate; +0⋅10 mmol/mol, P = 0⋅001,
per 2-point increase in LCD adherence score)(138). The
National Diet and Nutrition Survey used food diaries
for the estimation of dietary intakes, which are more

accurate and less reliant on memories compared to the
FFQ. While the study design does not inform cause and
effect, the findings are to some extent in line with longitu-
dinal studies(139,140). This evidence indicates that it is
unlikely that consuming lower carbohydrate content per
se could lower the HbA1c level. Other mechanisms (e.g.
oxidative stress, peripheral insulin resistance) could con-
tribute to HbA1c elevation, as high oxidative stress can
enhance protein glycation without hyperglycaemia(141).

When looking at incident T2D and LCD, the most
recent cohort study in Australian women showed a
27% higher risk of T2D with LCD (comparing extreme
quartiles, with absolute risk increase of about 3 %),
although the relative risk (RR) was attenuated to 10%
after adjustment for BMI(142). A meta-analysis of eleven
prospective cohort studies showed that different regions
had different outcomes(143). In Europe(144–147), LCD
increased the T2D risk by 12 % (pooled relative risk
(RR) 1⋅12; 95 % CI 1⋅04, 1⋅20), whereas in Japan(148)

and China(149), LCD decreased the T2D risk by 20 %
(pooled RR 0⋅80; 95 % CI 0⋅70, 0⋅90)(143). The pooled
result in Asian countries was explained by white rice as
a key food source of (refined) carbohydrate, a major
component in Japanese and Chinese diets(148,149). A
study showed that substituting white rice with brown
rice or wholegrain could result in T2D risk reduction
by 16 and 36 % respectively(150).

Sources of protein and fat in replacing carbohydrate
also contributed to T2D risk. LCD with high animal pro-
tein and fat was associated with a 37% increase in T2D
risk in men (95% CI 1⋅2, 1⋅58; P-trend <0⋅01)(139), and a
40% increase in T2D risk in women with history of gesta-
tional diabetes (95% CI 1⋅06, 1⋅84; P-trend = 0⋅004)(151).
Conversely, LCD with vegetable protein and fat was asso-
ciated with a 18% T2D risk reduction in women (95% CI
0⋅71, 0⋅94; P-trend = 0⋅001)(152). Contrary findings between
men and women could be explained by sex differences in
T2D susceptibility(153). Pre-menopausal women are less
susceptible to T2D than men, partly explained by the dif-
ference in sex steroid hormones(153). Endogenous oestrogen
plays a protective role in various metabolic regulations
including insulin secretion and sensitivity, although the
underlying mechanism has yet to be explored(153).
Women have higher capability for lipid utilisation, favour-
ing subcutaneous adipose tissue as an energy storage, pre-
venting them from ectopic fat accumulation(153).

Low-carbohydrate diets and CVD

In the prospective cohort Nurses Health Study of 82 802
women, diets were assessed by a validated FFQ and a
calculated ‘LCD score’ (higher scores representing higher
intakes of fat and protein, and lower intake of carbohy-
drate). During the 20 years follow-up, a higher LCD
score (10th decile v. 1st decile) was associated with a 29
% increased risk of CHD (age-adjusted RR 1⋅29; 95 %
CI 1⋅04, 1⋅60). After adjustment for BMI, smoking sta-
tus, physical activity, history of diabetes and hyperten-
sion, the adjusted RR for CHD was attenuated to 0⋅94
(95 % CI 0⋅76, 1⋅18, P for trend 0⋅19). Interestingly,
when analysing the LCD score based on vegetable
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protein and vegetable fat, the adjusted RR of CHD was
0⋅70 (95 % CI 0⋅56, 0⋅88; P-trend 0⋅002) whereas when
animal protein and animal fat were chosen, the adjusted
RR was 0⋅94 (95 % CI 0⋅74, 1⋅19; P-trend 0⋅52)(154).
When using a composite outcome of cardiovascular
events (IHD, ischemic stroke, haemorrhagic stroke, sub-
arachnoid haemorrhage and peripheral arterial disease),
a large cohort study of 43 396 Swedish women reported
that every two units greater in the LCHP diet score
was associated with a 5 % increase in the incidence of
cardiovascular events (incidence rate ratio 1⋅05; 95 %
CI 1⋅02, 1⋅08)(155).

LCD are also associated with increased risk of incident
atrial fibrillation(156). Findings from a large prospective
community-based cohort study (Atherosclerosis Risk in
Communities Study) showed that every 9⋅4 % higher in
carbohydrate intake as percentage of energy (1-standard
deviation) was associated with reduced risk of incident
atrial fibrillation by 18 % (adjusted hazard ratio 0⋅82;
95 % CI 0⋅72, 0⋅94), while there was no association
found between animal and plant sources of protein and
fat and incident atrial fibrillation(156). These contrasting
findings highlight the need to pay greater attention to
the foods (and nutrients) replacing carbohydrates in
LCD.

Low-carbohydrate diets and mortality

Several prospective cohort studies and their meta-analyses
showed consistent findings that the LCD pattern was asso-
ciated with an increased risk of all-cause mortality and car-
diovascular mortality(157–163). The Atherosclerosis Risk in
Communities Study found a U-shaped association between
carbohydrate intake (% energy) and all-cause mortality,
with the lowest mortality risk at 50–55% energy carbohy-
drate. The authors also conducted the meta-analysis for
carbohydrate and mortality(162–164). Compared to moder-
ate carbohydrate intake (about 50% energy), low carbohy-
drate intake (<40% energy) was associated with a 20%
increased risk of all-cause mortality (pooled hazard ratio
1⋅2; 95% CI 1⋅09, 1⋅32; P<0⋅0001), and high carbohydrate
intake (>70% energy) was also associated with a 23%
increased risk of all-cause mortality (pooled hazard ratio
1⋅23; 95% CI 1⋅11, 1⋅36; P<0⋅0001)(163). The meta-analysis
also showed that mortality increased by 18% when
replacing carbohydrate with animal-sourced fat and pro-
tein, and decreased by 18% when replacing carbohydrate
with plant-sourced fat and protein(163). Another
population-based cohort study also showed a 22%
increased risk of all-cause mortality, a 13% increased
risk of ASCVDmortality and an 8% increased risk of can-
cer death in associations with LCD pattern (comparing
between extreme quartiles, adjusted for BMI)(5).

Analysis of the combined databases of the Nurses
Health Study and the Health Professional Follow-Up
Study was performed in the population of post-
myocardial infarction survivors(165). Those in the highest
quintile of the LCD score from animal-sourced protein
and fat had a 33% higher risk of all-cause mortality
(95 % CI 1⋅06, 1⋅65) and a 51% increased risk of cardio-
vascular mortality (95 % CI 1⋅09, 2⋅07) than those in the

lowest quintile(165). Interestingly, individuals who chan-
ged their diet from pre- to post-myocardial infarction
towards the LCD pattern was also associated with higher
all-cause and cardiovascular morality by 30 and 53%
respectively.(165)

Real world data on the use of low-carbohydrate diets

Evidence documenting the use of LCD outside clinical
trials remains scarce. In the UK, an estimated three-
million people have tried LCD, accounting for 7–10 %
of respondents in a media poll(49), similar to a finding
of 7 % from a population-based survey in Finland(166),
while it was up to 17% in a nationally representative
samples from the Health Information National Trends
Survey in the USA(3). A survey of individuals following
LCD (in the Active Low-Carber Forum, an online sup-
port group for LCD in the USA) reported that
Atkins-style diets ranked top of LCD used, accounting
for 74 % of reports(167). Two-third of respondents had
lost 30 lbs in weight, or more(167). Avoiding sugar (94
%) and avoiding starch (84 %) were important factors
for weight loss plan, while only 12 % of respondents
thought that ‘decreasing fat’ was an important factor(167).

There is limited evidence for the use of LCD in clinical
practice. Dr Unwin et al. reported a case series of nine-
teen patients with T2D and pre-diabetes who partici-
pated in a LCD programme from one general
practice(70). The LCD advice was to reduce all starchy
carbohydrate foods (e.g. breads, pasta, rice), tropical
fruit and vegetable oils, while promoting consumptions
of green vegetables, berries, meat, eggs, fish, olive oil,
coconut oil and butter. Patients were also advised to con-
sume processed meat such as sausages, bacon, ham, in
moderation. One patient withdrew at the initial stage
for personal reason. Of eighteen patients, mean weight
loss was 8⋅6 (SD 4⋅2) kg (P<0⋅0001), and HbA1c dropped
significantly from 51 (SD 14) to 40 (SD 4) mmol/mol
(P<0⋅001) over 8 months(70). Although this report was
of small sample size with no control diet, it emphasised
that LCD can be effective for weight loss and glucose
control, and can be implemented in clinical practice.
Long-term data of LCD in patients with T2D in primary
care has the potential to depict both benefits and risks on
hard clinical outcomes especially CVD events, renal
adverse effects and even mortality. The role of the health-
care practitioner as a source of support is also an import-
ant consideration in the context of this work.

Real-world data on dietary intakes in self-reported
LCD followers are also limited(127,168). A recent cross-
sectional study from Iceland with fifty-four self-reported
LCD followers (80 % overweight and 60% with elevated
LDL-cholesterol level) demonstrated further insight into
nutrient intakes(127). Median intake of carbohydrate
was very low (only 8 % energy) while median fat intake
was very high at 68 % energy, with 25% energy from
SFA. Consumption of whole grain was only 5 g/d and
fibre only 11 g/d. Vegetable intake was of 170 g/d com-
pared to 120 g/d of general population; this shows that
vegetable intake is an important source of fibre in the
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context of LCD, requiring further emphasis (beyond the
simple 5-a-day message) when carbohydrate-rich foods
are limited or excluded. Red meat intake was 130 g/d,
nearly double the intake of the general population in
Iceland. Approximately half of the participants had
intakes of vitamin A, thiamine, folate, vitamin C, cal-
cium, iron and magnesium lower than recommendations.
In contrast, 75 % of participants consumed greater
sodium than recommended (2400 mg daily)(127).

As such, healthfulness of LCD is highly dependent on
choices of the foods to restrict but also foods to include
and promote. As practiced, LCD may not be a healthful,
nutritionally-replete dietary approach, unless great care is
taken to balance intakes. In USA, LCD followers had a
healthy eating index score lower than those with higher
carbohydrate diets (58⋅2 v. 70⋅4, P= 0⋅012)(168). Only
half of LCD followers had support from their doctors,
and two-thirds valued information from online supporting
websites instead of government websites/publications(167).
Our own work is currently seeking to establish a clearer
picture of such practice (C Churuangsuk, MEJ Lean
and E Combet, unpublished results). Fig. 4 summarises
the opportunities and challenges presented by LCD in
T2D management and prevention.

Limitations of current research

The well-known limitation of the RCT of LCD is the
absence of evidence for long-term effectiveness on hard
clinical outcomes such as incident T2D, cardiovascular
events and mortality, instead of weight loss. Regarding
T2D management, remission should be a primary aim
for T2D treatment especially in early T2D, and high
quality RCT of LCD aiming at T2D remission in com-
parison with other weight loss diets or routine care are
needed.

RCT and epidemiological evidence showed that the
selection of food choices/sources of protein and fat

could have different effects on health, but limited RCT
on the effect of food choices/sources of protein and fat
in replacing carbohydrate have been conducted(45,46). It
is possible to design a healthful LCD with a complete
micronutrient profile and no detrimental effect on
LDL-cholesterol(45,46,169), but this may require close
supervision by dietitians in collaboration with other
health care professionals.

The ongoing debate on the usefulness of FFQ as a
dietary assessment tool in epidemiological studies has
highlighted the pitfalls associated with poorer accuracy
of nutrient intake estimation and reliance on memory
for recall. While FFQ are practical in the context of
large sample sizes (e.g. population-based study) and to
rank dietary data, carbohydrate intake reports generated
via this method should be evaluated carefully. While the
epidemiological evidence to date shows detrimental
effects of LCD on health, the amount of carbohydrate
consumed is usually higher than intakes relevant to
individuals following (very) low carbohydrate intake,
<20–30 % energy. Real-world data in self-reported low-
carbohydrate dieters may help better elucidate the rela-
tionship between LCD, dietary habits and long-term
health status.

Conclusions

RCT clearly show the efficacy of LCD for weight loss in
people with obesity and/or T2D, leading to glycaemic
improvement. Their efficacy, however, is little different
from that of higher carbohydrate diets or other weight
loss diets with less drastic restriction of whole food
groups. Many studies show only short-term benefit
when compared to higher carbohydrate diets. LCD
may be preferred by some people, and have value at
least for short-term results, but may potentially lead
to micronutrient deficiencies and increased LDL-
cholesterol, and there are longer-term risks of T2D and

Fig. 4. (Colour online) Opportunities and challenges for low-carbohydrate diets (LCD) in type 2 diabetes
management and prevention. The solid line indicates extensive and strong evidence. The dashed line
indicates limited evidence. (+) indicates positive effect. (−) indicates negative effect. (?) indicates no
sufficient evidence. T2D, type 2 diabetes.
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CVD. Ensuring dietary micronutrient adequacy through
food fortification or supplementation should be considered
for all who wish to pursue or prescribe long-term LCD.
Food choices in replacement of the carbohydrate source
may alleviate the negative effects of LCD, but evidence
on this topic remains limited. Evidence is lacking over
whether the main energy source during LCD should be
fat or protein. Long-term, high-quality RCT of LCD
with different food sources between animal and plants, aim-
ing for hard clinical endpoints instead of weight loss are
difficult to conduct, but needed to generate reliable advice.
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