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Abstract. Scarparo has constructed counterexamples to Matui’s HK-conjecture. These
counterexamples and other known counterexamples are essentially principal but not
principal. In the present paper, a counterexample to the HK-conjecture that is principal
is given. Like Scarparo’s original counterexample, our counterexample is the transfor-
mation groupoid associated to a particular odometer. However, the relevant group is
the fundamental group of a flat manifold (and hence is torsion-free) and the associated
odometer action is free. The examples discussed here do satisfy the rational version of the
HK-conjecture.
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1. Introduction
Matui’s HK-conjecture [14] predicts a strong relationship between the homology and
K-theory of an important class of groupoids (the precise statement is given below).
There are counterexamples to this conjecture in the essentially principal case. The first
counterexample is due to Scarparo [22], and a stronger counterexample (due to Ortega and
Scarparo) can be found in [16]. On the other hand, there have been a number of positive
results, starting with Matui’s original work [14]; see also [1, 9, 15, 17, 25]. In particular,
there has been quite a bit of success verifying the conjecture for particular classes of
principal (rather than essentially principal) groupoids; see, in particular, [1, Corollary C]
and [17, Remark 3.5].

Nevertheless, the goal of this paper is the construction of a counterexample to Matui’s
HK-conjecture that is principal (rather than just essentially principal). It is worth noting
that our examples do satisfy the rational version of the conjecture.
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I will now state the HK-conjecture and outline the construction of the counterexample.
The reader unfamiliar with the various terms used below can see §2 for precise definitions.
The statement of the HK-conjecture is as follows.

Conjecture 1.1. Suppose that G is a second countable, étale, (essentially) principal,
minimal, ample groupoid. Then

K∗(C∗r (G)) ∼=
⊕

i

H∗+2i (G)

where K∗(C∗r (G)) is the K-theory of the reduced groupoid C∗-algebra of G and H∗(G) is
the homology of G.

Like Scarparo’s counterexample [22], the counterexample in the present paper is
obtained from an odometer; see [22, §2] and the references therein for more on odometer
actions. Unlike in [22], the relevant group is torsion-free. The starting point is a flat
manifold, Y, with an expanding endomorphism g : Y → Y in the sense of Shub [23]. By
[23, Proposition 3], g is an n-fold covering map (for some n ≥ 2) and one obtains a chain
of finite-index subgroups

π1(Y ) ⊃ g∗(π1(Y )) ⊃ g2∗(π(Y )) ⊃ · · ·

where π1(Y ) is the fundamental group of Y and g∗ is the map induced by g. Associated
to this chain of finite-index subgroups is an odometer action. This is an action of π1(Y )

on a Cantor set, �. Furthermore, the action is minimal in general and is free in our case
(see Proposition 3.1). In particular, the transformation groupoid associated to this action
(denoted by � � π1(Y )) satisfies the hypotheses of the HK-conjecture and, because the
action is free, is in addition principal.

Next, using results of Scarparo [22, §2.2] and the Baum–Connes conjecture, the
K-theory of the reduced C∗-algebra of � � π1(Y ) is shown to be the inductive limit group
associated to an inductive system of the form

K∗(Y )→ K∗(Y )→ K∗(Y )→ · · ·

where K∗(Y ) is the K-homology of Y. Likewise, using [22, §2.3], the homology of � �

π1(Y ) is shown to be the inductive limit group associated to an inductive system of the
form

H∗(Y )→ H∗(Y )→ H∗(Y )→ · · ·

where H∗(Y ) is the homology of Y. Key to both these inductive limit results is the fact that
Y is a model for Bπ1(Y ).

Based on the structure of these inductive limits, the problem is reduced to constructing
a flat manifold where the K-homology and homology are not isomorphic (see Theorem 1.2
below), while at the same time controlling the maps in the inductive limits.

In regard to the first of these requirements, the following theorem is proved in §5.
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THEOREM 1.2. For any d ≥ 9, there exists a d-dimensional flat manifold Y with the
property that

|T (K∗(Y ))| <
∣∣∣∣∣
⊕

i

T (H∗+2i (Y ))

∣∣∣∣∣
where, for a finitely generated abelian group G, T (G) denotes its torsion subgroup and
|T (G)| denotes the number of elements in T (G) (which is finite in our situation).

The construction of Y satisfying Theorem 1.2 relies on the theory of real Bott manifolds
(see [10, 12] and references therein) and the Atiyah–Hirzebruch spectral sequence.
Although not a direct application of [9, Remark 6.12], our construction has a similar
flavour. Then, using a result of Epstein and Shub [8] and the inductive limits discussed
above, it is shown that for any flat manifold, there is an expanding endomorphism such
that

T (H∗(� � π1(Y ))) ∼= T (H∗(Y )).

Combining this last equation with the fact that

|T (K∗(C∗r (� � π1(Y ))))| ≤ |T (K∗(Y ))|
and Theorem 1.2 completes the construction of the counterexample. Finally, it is shown
that every transformation groupoid associated to an odometer constructed from a flat
manifold and expanding endomorphism (via the process discussed above) satisfies the
rational version of the HK-conjecture; see Theorem 4.5 for the precise statement.

As the reader might have noticed, the construction involves quite a few ‘moving parts’.
I would encourage the reader to familiarize themself with [22, §§2.1–2.3] and [23, §1].
I have followed [10, §§2 and 3] when considering real Bott manifolds in §5. In addition,
some basic knowledge of flat manifolds and the Atiyah–Hirzebruch spectral sequence is
also assumed, although I have explicitly listed the facts used.

In the next few paragraphs, future work is discussed. It is worth noting that the
dimension of the flat manifold constructed in §5 is 9 (or more) and that if a flat manifold
satisfies the conclusion of Theorem 1.2, then its dimension must be greater than or equal
to 4. A systematic study of flat manifolds as in Theorem 1.2 would be an interesting
future project, especially in light of the positive results for low-dimensional examples;
see, in particular, [1, Corollary C] and [17, §3]. In particular, one can show that the
dynamic asymptotic dimension of an odometer associated to a flat manifold and expanding
endomorphism is the dimension of the manifold. As such, for any d ≥ 9, we have a
counterexample with dynamic asymptotic dimension equal to d. It would be interesting
to obtain examples with smaller dynamic asymptotic dimension.

Based on the positive result of [1, Corollary C], one might ask if the following
conjecture holds.

Conjecture 1.3. Suppose that G is a second countable, étale, principal, minimal, ample
groupoid. Then there exists a (possibly different) groupoid G̃ that is second countable,
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étale, principal, minimal, and ample such that

K∗(C∗r (G)) ∼= K∗(C∗r (G̃))

and the HK-conjecture holds for G̃.

One approach to this conjecture would be to study the range of the K-theory of
groupoids satisfying the HK-conjecture (for example, by satisfying the hypotheses of
[1, Corollary C] or ideally generalizations of it). As stated, Conjecture 1.3 would not be
useful for computations. However, one could hope that there is an explicit construction of
G̃ from G that would facilitate computations.

Although this paper makes no reference to Smale spaces. I would like to mention
that there is a connection between the unstable relation of a Smale space with totally
disconnected stable sets and odometer actions; see [19, pp. 194] for a specific case. In
future work, this connection will be explored in detail. For now, it seems appropriated to
mention that the counterexample in the present paper can be used to show that there is a
counterexample to the HK-conjecture in the class of groupoids obtained from the unstable
relation of Smale spaces with totally disconnected stable sets. This is of interest in light of
recent results of Proietti and Yamashita [18] connecting the homology of étale groupoids
to Putnam’s homology theory for Smale spaces [20].

2. Preliminaries
2.1. Groupoids. Let G be a groupoid. Its unit space is denoted by G(0) and its range and
source maps by r , s : G→ G(0). The ordered pair g, h ∈ G is composable if s(g) = r(h)

and their composition is denoted by gh. The inverse of g ∈ G is denoted by g−1. In this
paper all groupoids will be locally compact, Hausdorff, second countable, with compact
unit space. Moreover, all groupoids in the paper will be étale, meaning that r and s are
local homeomorphisms. In this case G(0) is an open subset of G and the Haar system is
given by counting measures. We say that G is principal if, for each x ∈ G(0), the isotropy
group

Gx
x := {g ∈ G | s(g) = r(g) = x}

is trivial (that is, equal to {x}). A groupoid, G, is essentially principal if the interior of the
set {g ∈ G | s(g) = r(g)} is G0. Notice that principal implies essentially principal, but the
converse is false. A groupoid is ample if its unit space is totally disconnected (for example,
the Cantor set).

To a groupoid, G, satisfying the assumptions above one can associate its reduced
groupoid C∗-algebras. The resulting C∗-algebra is denoted by C∗r (G). The computation
of the K-theory of C∗r (G) is an important problem in C∗-algebra theory.

The homology of G was defined in [5] and will be denoted by H∗(G). Some basic facts
of this theory are as follows.
(1) If X is a finite CW-complex with the trivial groupoid structure, then the groupoid

homology is isomorphic to the standard cohomology of X.
(2) If G is a group, then H∗(G) is isomorphic to the group homology of G. Hence if BG

is the classifying space of G, then H∗(G) ∼= H∗(BG).
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In the present paper, only the second item and some results in [22] relating groupoid
homology to classical homology will be needed. As such, a detailed introduction to
groupoid homology is not needed.

With this notation introduced, Matui’s HK-conjecture [14] for principal groupoids is as
follows.

Conjecture 2.1. Suppose that G is a second countable, étale, principal, minimal, ample
groupoid. Then

K∗(C∗r (G)) ∼=
⊕

i

H∗+2i (G).

The rational version of this conjecture (again in the principal case) is as follows.

Conjecture 2.2. Suppose that G is a second countable, étale, principal, minimal, ample
groupoid. Then

K∗(C∗r (G))⊗Q ∼=
⊕

i

H∗+2i (G)⊗Q.

We will provide a counterexample to the first of these conjectures, but our examples
satisfy the weaker rational HK-conjecture. If one weakens the assumption of being
principal in these two conjectures to being essentially principal (as in Matui’s original
formulation [14]) then there are counterexamples to both; see [22].

It is worth noting that all groupoids in the present paper are amenable.

2.2. Group theory considerations. Let G be an abelian group. The torsion subgroup
of G is denoted by T (G). When G is finitely generated, T (G) is finite. The number of
elements in a finite group, F, is denoted by |F |. Given an inductive systems of groups of
the form

G
β0−→ G

β1−→ G
β2−→ · · · ,

the associated inductive limit group is denoted by lim→(G, βi). An element is denoted by
[γ , k] where γ ∈ G and k ∈ N; see [20] for more on inductive limits and this notation.

The next few results are certainly known, but it is useful to have them recorded for later
use.

PROPOSITION 2.3. Suppose G is a finitely generated abelian group, n is an integer greater
than or equal to 1, and α : G→ G and β : G→ G are group homomorphisms satisfying
α ◦ β = multiplication by n. If, for each γ ∈ T (G), nγ = γ then β|T (G) : T (G)→ T (G)

is an isomorphism.

Proof. By assumption, for any γ ∈ T (G), (α ◦ β)(γ ) = nγ = γ . Hence, β|T (G) is
injective. But T (G) is finite (since G is finitely generated abelian) so β|T (G) is also
surjective.

PROPOSITION 2.4. Suppose G is a finitely generated abelian group, n is an integer
greater than or equal to 1, and, for each i, αi : G→ G and βi : G→ G are group
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homomorphisms satisfying αi ◦ βi = multiplication by n. If, for each γ ∈ T (G), nγ = γ ,
then the map � : T (G)→ T (lim→(G, βi)) defined via

γ �→ [γ , 0]

is an isomorphism.

Proof. It is clear that � is a group homomorphism. That � is injective follows because
each βi is injective.

To show that � is onto, let [γ̃ , k] ∈ T (lim→(G, β)). By the definition of the inductive
limit group,

k1(βk2 ◦ βk2−1 ◦ · · · ◦ βk+1)(γ̃ ) = 0

for some k1, k2 ∈ N. Applying αk+1 ◦ · · · αk2−1 ◦ αk2 leads to

k1 · nk2(γ̃ ) = 0.

It follows that γ̃ is in T (G).
The previous proposition ensures that, for each i, (βi)|T (G) is an isomorphism. Hence,

we can form

γ = (((β0)|T (G))
−1 ◦ · · · ◦ ((βk)|T (G))

−1)(γ̃ ).

One checks that

�(γ ) = [γ , 0] = [(βk ◦ · · · β0)(γ ), k] = [γ̃ , k]

as required.

PROPOSITION 2.5. Suppose G is a finitely generated abelian group,

G
β0−→ G

β1−→ G
β2−→ · · ·

is an inductive system, and lim→(G, βi) is the inductive limit group. Then T (lim→(G, βi))

is a finite group and |T ((G, βi))| ≤ |T (G)|.
Proof. Since G is finitely generated abelian, T (G) is a finite group. Take M = |T (G)| + 1
elements in T (lim→(G, βi)), which we write as

[γ1, k1], [γ2, k2], . . . , [γM , kM ].

As in the proof of the previous result, we can assume that γi ∈ T (G) for each
i = 1, . . . , M . Furthermore, by applying the connecting maps in the inductive system, we
can assume that k1 = k2 = · · · = kM . It follows from the pigeonhole principle that there
exists i �= j such that γi = γj , which completes the proof.

2.3. Flat manifolds. A flat manifold refers to a closed, connected, Riemannian flat
manifold. Throughout this section and the rest of the paper, Y is a flat manifold with
dimension d. Examples of flat manifolds in low dimensions include the circle, the torus
and the Klein bottle; see [3] for more details and many more examples (see, in particular,
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[3, p. 41]). The following basic properties will be used. The first two can be found, for
example, in [3] and the third follows from the first two.
(1) The fundamental group of Y, π1(Y ), is torsion-free and fits within the following short

exact sequence:

0→ Zd → π1(Y )→ F → 0

where Zd is maximal abelian and F is a finite group (called the holonomy).
(2) The short exact sequence in the previous statement is obtained from a |F |-fold cover

of Y by the d-torus. This covering map is denoted by p.
(3) It follows from the previous statements that Y is a model for the classifying space

B(π1(Y )) and likewise Rd is a model for E(π1(Y )). Furthermore, π1(Y ) is amenable
and hence the Baum–Connes conjecture with coefficients holds for π1(Y ).

The next result is well known; see, for example, [7, Lemma 2.7].

PROPOSITION 2.6. If x ∈ T (H∗(Y )), then the order of x divides |F |. In particular, for any
k ∈ N and x ∈ T (H∗(Y )), (|F | + 1)kx = x.

2.4. The Atiyah–Hirzebruch spectral sequence. A number of results concerning the
Atiyah–Hirzebruch spectral sequence are collected for future use. None of them is new
and all are likely well known to experts. The results are summarized here so that the
computations in §5 are as easy as possible. Although a number of the results below hold
in more generality, X is assumed throughout to be a closed connected orientable manifold
with dimension d.

Before getting to the spectral sequence, a few fundamental properties of the Steenrod
square maps (see, for example, [11, Ch. 10, §8]) are discussed as they are relevant for
the differentials in the spectral sequences. Recall that for each non-negative integer m, the
Steenrod square map of degree m is a map Sqm : Hk(X; Z/2Z)→ Hk+m(X; Z/2Z). We
will only need these maps when m = 2 or 3 and the formal definition is not required. The
only properties needed are as follows.
(1) For k = m, it maps x to x ∪ x (we denote x ∪ x by x2).
(2) We have that Sq3 = r ◦ β ◦ Sq2, where

(a) β : Hk+2(X; Z/2Z)→ Hk+3(X) is the Bockstein map and
(b) r : Hk+3(X)→ Hk+3(X; Z/2Z) is the reduction mod 2 map.

We now move to the spectral sequences. The reader is invited to review [11, Ch. 21]
for the notation used here. In addition, note that p and q have been suppressed from
the notation of the differentials. We have the following fundamental properties of the
Atiyah–Hirzebruch spectral sequences for K-theory {Ep,q

m } and K-homology {Em
p,q} (recall

that X is an orientable manifold):

(1) E3
p,q
∼= E2

p,q
∼=
{

Hp(X), q is even,

0, q is odd.

(2) E
p,q
3
∼= E

p,q
2
∼=
{

Hp(X), q is even,

0, q is odd.

https://doi.org/10.1017/etds.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.25


1836 R. J. Deeley

(3) The Atiyah–Hirzebruch spectral sequence for K-homology is a module over the
Atiyah–Hirzebruch spectral sequence for K-theory. In particular, if x ∈ H ∗(X)

and [X] is the fundamental class of X associated to a particular orientation, then
we have

d3(x ∩ [X]) = d3(x) ∩ [X]± x ∩ d3([X]).

(4) The differential d3 : Hk(X)→ Hk+3(X) is given by β ◦ Sq2 ◦ r , where
(a) r : Hk(X)→ Hk(X; Z/2Z) is the reduction mod 2 map,
(b) Sq2 : Hk(X; Z/2Z)→ Hk+2(X; Z/2Z) is the Steenrod square map, and
(c) β : Hk+2(X; Z/2Z)→ Hk+3(X) is the Bockstein map.

(5) If d3 �= 0, then

|T (K∗(X))| <
∣∣∣∣∣
⊕

i

T (H∗+2i (X))

∣∣∣∣∣ .

A short justification of this fact proceeds as follows. Since the Chern character is
an isomorphism after tensoring with the rational numbers, the differentials in the
Atiyah–Hirzebruch spectral sequence are pure torsion morphisms (see, for example,
[11, Ch. 21: Remark 4.7 and Theorem 4.8] in the case of K-theory rather than
K-homology). This implies that for all p, q.

|T (E4
p,q)| ≤ |T (E3

p,q)| =
{
|T (Hp(X))|, q is even,

1, q is odd.

Moreover, since d3 �= 0, there exists p, q such that

|T (E4
p,q)| < |T (E3

p,q)| =
{
|T (Hp(X))|, q is even,

1, q is odd,

where we have used the fact that the relevant torsion groups are finite because all
groups considered are finitely generated abelian. Likewise, for all p, q,

|T (E∞p,q)| ≤ |T (E3
p,q)| =

{
|T (Hp(X))|, q is even,

1, q is odd,

and for at least one p, q,

|T (E∞p,q)| < |T (E3
p,q)| =

{
|T (Hp(X))|, q is even,

1, q is odd.

Using this and the fact that the Atiyah–Hirzebruch spectral sequence converges to
the K-homology of X, it follows that (see, for example, [11, Ch. 21: Assertions 4.3
and 4.5] in the context of K-theory)

|T (K∗(X))| <
∣∣∣∣∣T
(⊕

i

H∗+2i (X)

)∣∣∣∣∣ .

This completes the proof.
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Finally, recall that the Stiefel–Whitney classes of X (see, for example, [11, Ch. 10,
Definition 3.7]) are classes wi(X) ∈ Hi(X; Z/2Z) and the integral Stiefel–Whitney
classes of X are classes Wi(X) ∈ Hi(X). We only need the following property:

r(W3(X)) = w3(X)

where r : H 3(X)→ H 3(X; Z/2Z) is the reduction mod 2 map.

PROPOSITION 2.7. Suppose X is an orientable manifold and d3 is non-zero. Then d3 is
also non-zero.

Proof. Fix an orientation on X to obtain the fundamental class [X] ∈ Hd(X). If
d3([M]) �= 0 then we are done.

Otherwise, take x ∈ H ∗(X) such that d3(x) �= 0. Then, using the module structure,
Poincaré duality, and the fact that d3([X]) = 0, we obtain

d3(x ∩ [X]) = d3(x) ∩ [X] �= 0.

PROPOSITION 2.8. If X is an orientable manifold and w3(X)2 is non-zero, then d3 is
nonzero. In particular, under these assumptions on X,

|T (K∗(X))| <
∣∣∣∣∣
⊕

i

T (H∗+2i (X))

∣∣∣∣∣
Proof. Firstly, by assumption, Sq3(w3(X)) = w3(X)2 �= 0. Then, since

Sq3(w3(X)) = (r ◦ β ◦ Sq2)(w3(X)),

it follows that

(β ◦ Sq2)(w3(X)) �= 0.

Finally, since r(W3(X)) = w3(X),

d3(W3(X)) = (β ◦ Sq2 ◦ r)(W3(X)) = (β ◦ Sq2)(w3(X)) �= 0.

This completes the proof of the first statement.
The ‘in particular’ part of the theorem follows using the previous proposition and Item

(5) in the list of properties of the Atiyah–Hirzebruch spectral sequence.

3. Expansive endomorphisms of flat manifolds and odometers
Throughout this section Y is a flat manifold and g : Y → Y is an expanding endomor-
phism. That is (see [23, p. 76]), there exist C > 0 and λ > 1 such that ‖T gkv‖ ≥ cλk‖v‖
for each v ∈ T Y and strictly positive integer k. Here ‖ · ‖ denotes a fixed Riemannian
metric, but it is worth noting that being expanding is independent of the choice of metric
(although the particular constants C and λ do depend on the metric).

By [23, Proposition 3], g is a covering map, and since Y is compact, g is a n-fold
cover for some n ≥ 2. By [23, Theorem 1], g has a fixed point y0. We will use this as
our based point, so π1(Y ) denotes π(Y , y0). Associated to g is a chain of finite-index,
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proper subgroup inclusions:

π1(Y ) ⊃ g∗(π1(Y )) ⊃ g2∗(π(Y )) ⊃ · · · .

The associated odometer is obtained as follows. Let

� = lim← (�i , f i
i−1)

where �i = π1(Y )/gi∗(π(Y )) and f i
i−1 is given by inclusion of cosets. Each �i is a finite

set (containing more than one element) and hence � is a Cantor set. An element in � can
be written as

(γ0π1(Y ), γ1g∗(π1(Y )), γ2g
2∗(π1(Y )), . . .).

The odometer action of π1(Y ) on � is defined via

γ · (γ0π1(Y ), γ1g∗(π1(Y )), γ2g
2∗(π1(Y )), . . .)

= (γ γ0π1(Y ), γ γ1g∗(π1(Y )), γ γ2g
2∗(π1(Y )), . . .).

The odometer action is minimal; see, for example, [4, §2.1]. By Proposition 4 in
[23, p. 181], ⋂

k≥0

gk∗(π1(Y )) = {e},

but (again see [4, §2.1]) this is not enough to conclude that the action is free. This is
because the subgroup g∗(π1(Y )) ⊆ π1(Y ) is typically not normal; see [24, Corollary 1.18].
Nevertheless the odometer action associated to an expanding endomorphism is indeed free
and this is likely known. I was unable to find a precise reference so a proof is included.

PROPOSITION 3.1. The odometer action associated to an expanding endomorphism
g : Y → Y is free.

Proof. To begin, fix a Riemannian metric on Y and recall that y0 is a fixed point of g. The
odometer action can be described in terms of preimages of y0 with respect to g, g2, . . . .
To do so, notice that there is a one-to-one correspondence between g−1(y0) and cosets
associated to the subgroup g∗(π1(Y )).

This correspondence is given as follows. Given a coset, take a loop, γ , based at y0

representing a class in that coset. Let γ̃ : [0, 1]→ Y denote the unique lift of γ to a path
starting at y0. Then γ̃ (1) ∈ g−1(y0). Furthermore, this defines the required one-to-one
correspondence. One must check the process is well defined and one-to-one, but this
follows from elementary properties of covering space theory.

Repeating this process with g−2(y0), g−3(y0), . . . , we have that � is homeomorphic to

{(y0, y1, y2, . . .) | y0 is the fixed point above and g(yi+1) = yi}
where the topology is the subspace topology. Furthermore, the odometer action with
respect to this realization is given as follows. Let γ be a loop based at y0 representing
an element in π1(Y ) and y1 ∈ g−1(y0). Let γ̃1 : [0, 1]→ Y be the unique lift of γ to a
path starting at y1. Then [γ ] · y1 := γ̃1(1). As with the discussion at the topological space
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level, by repeating this process one obtains the odometer action on the space

{(y0, y1, y2, . . .) | y0 is the fixed point above and g(yi+1) = yi}.
We can now show that the action is free. Let γ be a loop based at y0 representing a class
in π1(Y ), which we can and will assume is smooth so that it has a well-defined arclength.
Suppose that

[γ ] · (y0, y1, y2, . . .) = (y0, y1, y2, . . .).

We must show that [γ ] is the identity in π1(Y ). By the definition of the action discussed
above, we have that the unique lift of γ to a path, γ̃1 : [0, 1]→ Y starting at y1, satisfies
the following properties.
(1) Because [γ ] · y1 = y1, γ̃1 is a loop based at y1 (rather than just a path starting at y1).
(2) Because g is expanding and g ◦ γ̃1 = γ (by the definition of lift), the arclength of γ̃1

is less than or equal to L/Cλ where L is the arclength of γ and C, λ are constants
from the definition of expanding endomorphism.

Noticing that γ̃1 is a loop, we denote it by γ1. The process applied (to γ ) above can be
applied to γ1. We obtain a loop based at y2, γ2 with arclength less than or equal to L/Cλ2

that is a lift of γ1. Continuing the process, for each positive integer k, we obtain a loop γk

based at yk with arclength less than or equal to L/Cλk that is a lift of γk−1. Since λ > 1,
there exist k and open set U ⊆ Y containing yk such that U ∼= Rd and γk(t) ∈ U for all
t ∈ [0, 1]. It follows that γk is nullhomotopic. But then γ = gk ◦ γk is also nullhomotopic
and hence [γ ] is the identity in π1(Y ).

In summary, the properties discussed above imply the following proposition.

PROPOSITION 3.2. Suppose (as above) Y is a flat manifold and g : Y → Y is an expanding
endomorphism. Then the transformation groupoid associated to the odometer action of
π1(Y ) on � is a second countable, étale, principal, minimal groupoid. Moreover, its unit
space is the Cantor set.

Proof. The transformation groupoid of the action of a discrete group is always étale
and the unit space in our situation is � (the Cantor set). The groupoid is clearly second
countable. It is minimal because the action is minimal and it is principal because the action
is free.

4. The K-theory and homology of odometers
4.1. Homology. As in the previous section, Y is a flat manifold of dimension d,
g : Y → Y is an expanding endomorphism (it is an n-fold cover), � is the Cantor
set associated with the odometer action of π1(Y ), and � � π1(Y ) is the associated
transformation groupoid.

THEOREM 4.1. The homology of � � π1(Y ) is isomorphic to the inductive limit group,
lim→(H∗(Y ), g̃i ), where each g̃i : H∗(Y )→ H∗(Y ) with the property that there exists
h̃i : H∗(Y )→ H∗(Y ) such that h̃i ◦ g̃i is multiplication by n. In particular, g̃i is a rational
isomorphism.
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Proof. By [22, Proposition 2.4], the homology of � � π1(Y ) is isomorphic to the
inductive limit group,

lim→ (H∗(pi∗(π1(Y ))), tri+1
i ),

where tri+1
i is the transfer map in group homology. By [2, Proposition III.9.5(ii)], the

connecting maps have the required property. Moreover, Y is a model for B(π1(Y )) and, for
each i, pi∗(π1(Y )) ∼= π1(Y ). Hence (for each i), H∗(pi∗(π1(Y ))) ∼= H∗(Y ).

Finally, the ‘in particular’ part of the theorem follows from the fact that h̃i ◦ g̃i =
multiplication by n.

4.2. K-theory. As in the previous section, Y is a flat manifold of dimension d,
g : Y → Y is an expanding endomorphism (it is an n-fold cover), and � is the Cantor
set associated with the odometer action of π1(Y ). The (reduced) transformation groupoid
C∗-algebra of the odometer actions is C∗r (� � π1(Y )) ∼= C(�) �r π1(Y ) where we note
that π1(Y ) is amenable, so there is no difference between the full and reduced C∗-algebras
and we will drop the r from the notation.

THEOREM 4.2. The K-theory of C(�) � π1(Y ) is isomorphic to the inductive limit group,

lim→ (K∗(Y ), ĝi ).

Moreover, each map ĝi : K∗(Y )→ K∗(Y ) is a rational isomorphism.

Proof. For the inductive limit part of the proof, we begin with the fact (see [22, pp. 2544])
that

C(�) � π1(Y ) ∼= lim→ C(�i) � π1(Y ),

where �i = π1(Y )/gi∗(π1(Y )) and the map in the inductive limit is obtained from the map
�i+1 → �i defined using gi+1∗ (π1(Y )) ⊆ gi∗(π1(Y )). Furthermore, [22, Proposition 2.3]
implies that, for each i,

C(�i) � π1(Y ) ∼= Mni (C)⊗ C∗r (π1(Y )),

where we have used the fact that g is an n-fold cover and (for each i) pi∗(π1(Y )) ∼= π1(Y ).
We have that

K∗(C(�i) � π1(Y )) ∼= K∗(Mni (C)⊗ C∗r (π1(Y ))) ∼= K∗(C∗r (π1(Y ))) ∼= K∗(Y ),

where in the last step we have used the fact that π1(Y ) satisfies the Baum–Connes
conjecture, π1(Y ) is torsion-free, and Y is a model for B(π1(Y )).

For the second part of the proof, again by the Baum–Connes conjecture (now with
coefficients), for each i,

K∗(C(�i) � π1(Y )) ∼= KKπ1(Y )∗ (C0(R
d), C(�i))

and the connecting maps in the inductive limit are given by

(gi)∗ : KKπ1(Y )∗ (C0(R
d), C(�i))→ KKπ1(Y )∗ (C0(R

d), C(�i+1)),
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where at the space level gi : �i+1 → �i is defined using gi+1(π1(Y )) ⊆ gi∗(π1(Y )). The
map gi is a covering map and hence there is a transfer map

(gi)! : KKπ1(Y )∗ (C0(R
d), C(�i+1))→ KKπ1(Y )∗ (C0(R

d), C(�i)).

One can then show that (gi)∗ is a rational isomorphism directly (compare with the proof of
[21, Lemma 4.2, Part 2] in the context of K-theory) or using the Chern character to relate
the inductive limit in the present theorem with that for homology in the previous section;
the details are omitted.

Remark 4.3. With a bit more work, one can show that the inductive limits in both
Theorems 4.1 and 4.2 are stationary. However, this is not needed for the results of the
present paper. The fact that these inductive limits are stationary is similar to my previous
work with Yashinski in [6] concerning the stable groupoid C∗-algebra of a Smale space
with totally disconnected stable sets.

4.3. Main results
THEOREM 4.4. Suppose that Y is a flat manifold. Then there exists an expanding
endomorphism g : Y → Y such that

T (H∗(� � π1(Y ))) ∼= T (H∗(Y )).

Proof. By the main result of [8] (see the theorem in [8, p. 140]), there exists an expanding
endomorphism g : Y → Y satisfying

(S1)d
p−−−−→ Y

×m

⏐⏐	 g

⏐⏐	
(S1)d

p−−−−→ Y

where:
(1) p is the cover of Y by the torus discussed in §2.3; and
(2) ×m is the map multiplication by m with m = |F | + 1 (F was also discussed in §2.3).

It follows that g is an n-fold cover with n = md = (|F | + 1)d . By Proposition 2.6
and the fact that the homology of Y is finitely generated, we can apply Proposition 2.4.
The result then follows from an application of Proposition 2.4 to the inductive limit in
Theorem 4.1.

THEOREM 4.5. Suppose Y is a flat manifold and g : Y → Y is an expanding endomor-
phism. Then

K∗(C(�) � π1(Y ))⊗Q ∼= K∗(Y )⊗Q and H∗(� � π1(Y ))⊗Q ∼= H∗(Y )⊗Q.

In particular, the rational HK-conjecture holds for � � π1(Y ).
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Proof. Since taking the tensor product with the rationals respects inductive limits, we can
apply Theorem 4.2 to obtain

K∗(C(�) � π1(Y ))⊗Q ∼= lim→ (K∗(Y )⊗Q, ĝi ⊗ idQ).

Furthermore, Theorem 4.2 implies that ĝi ⊗ idQ is invertible. This completes the proof for
K-theory. For homology, the proof is the same, with the use of Theorem 4.2 replaced by
Theorem 4.1.

Finally, the rational HK-conjecture holds because the Chern character (from the
K-homology of Y to the even/odd homology of Y) is a rational isomorphism.

Based on Theorem 4.4 we have the following corollary.

COROLLARY 4.6. Suppose Y is a flat manifold with

|T (K∗(Y ))| <
∣∣∣∣∣
⊕

i

T (H∗+2i (Y ))

∣∣∣∣∣ .

Then there exists an expanding endomorphism g : Y → Y such that the transforma-
tion groupoid associated to the odometer action of π1(Y ) is a counterexample to the
HK-conjecture. Moreover, the relevant groupoid is principal.

Proof. Take g : Y → Y as in Theorem 4.4. By Proposition 3.2, the groupoid � � π1(Y )

satisfies the hypotheses of the HK-conjecture and is principal. Using Proposition 2.5 and
Theorem 4.4, we have

|T (K∗(C∗(� � π1(Y )))| ≤ |T (K∗(Y ))| <
∣∣∣∣∣T
(⊕

i

(H∗+2i (Y ))

)∣∣∣∣∣
=
∣∣∣∣∣T
(⊕

i

H∗+2i (� � π1(Y ))

)∣∣∣∣∣ .

In particular, K∗(C∗(� � π1(Y ))) �∼=⊕i H∗+2i (� � π1(Y )).

The goal of the next section is the construction of a flat manifold satisfying the condition
in the previous corollary. It is worth noting that if Y satisfies

T (K∗(Y )) �∼=
⊕

i

T (H∗+2i (Y )),

then dim(Y ) ≥ 4; see [13, Proposition 2.1(ii)].

5. The existence of the required flat manifold
Our goal is the construction of a flat manifold satisfying the condition in Corollary 4.6.
In fact, we will prove the following theorem.
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THEOREM 5.1. For each d ≥ 9, there exists a flat manifold Y of dimension d with the
property that

|T (K∗(Y ))| <
∣∣∣∣∣
⊕

i

T (H∗+2i (Y ))

∣∣∣∣∣ .

Recall that for an abelian group G, T (G) denotes its torsion subgroup.

Based on Proposition 2.8 in §2.4, (for each d ≥ 9) we need only construct a flat manifold
Y (of dimension d) such that

w1(Y ) = 0 and w3(Y )2 �= 0.

Notice that w1(Y ) = 0 implies that the Y is orientable, which was a standing assumption
in §2.4.

I would like to recommend that the reader review [10, §§2–3] for an introduction to the
important class of flat manifolds called real Bott manifolds.

The case of d = 9 is considered first. Using the notation of [10] (see, in particular,
p. 1017), let Y (A) be the real Bott manifold associated to the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is worth noting that the dimension of Y (A) is in fact d = 9. The cohomology of Y (A)

with coefficients in Z/2Z is determined by A. This was proved in [12, Lemma 2.1] and can
also be found on p. 1020 of [10]. We have that

H ∗(Y (A); Z/2Z) ∼= (Z/2Z)[x1, . . . , xd ]/
(

x2
j = xj

d∑
i=1

Aijxi | j = 1, . . . , d

)
.

For our specific choice of A, the relations are as follows:

x2
1 = 0, x2

2 = x2x1, . . . , x2
8 = x8x7, x2

9 = x9(x7 + · · · + x1). (1)

Moreover (again see p. 1020 of [10]), the classes w1(Y (A)) and w3(Y (A)) are given
respectively by

w1(Y (A)) =
d∑

i=1

yi
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and

w3(Y (A)) =
∑

1≤i<j<k≤d

yiyj yk , (2)

where, in general (see p. 1017 of [10]),

yi =
i−1∑
k=1

Ak,ixk .

In our specific situation,

y1 = 0, y2 = x1, . . . , y8 = x7, y9 = x1 + · · · + x7. (3)

By either applying [12, Lemma 2.2] or direct computation, one checks that
w1(Y (A)) = 0 and hence Y (A) is orientable.

To show that w3(Y (A))2 is non-zero is more involved. We will show that there are an
odd number of terms of the form x1x2x4x5x6x7 in the expression of w3(Y (A))2. To begin,
we consider terms of the form yiyj yk where 1 ≤ i < j < 8. Collecting terms and using
equation (3), we have

yiyj (yj+1 + · · · y9) = xi−1xj−1(xj+1 + · · · x7 + x1 + · · · + x7)

= xi−1xj−1(x1 + · · · + xj−1),

where we have used the fact that 2xl = 0 since we are working in H ∗(Y (A); Z/2Z).
Importantly for us, none of these terms contain an x7.

This leaves terms of the form yiy8y9 where i = 2, . . . , 7 (where we have used the fact
that y1 = 0). Using equation (3) and the fact x2

7 = x7x6, we have that

yiy8y9 = xi−1x7(x1 + x2 + x3 + x4 + x5).

Each of these terms can be further simplified using equation (1). Explicitly, for i = 3,
we have

x2x7(x1 + x2 + x3 + x4 + x5) = x2x7(x3 + x4 + x5).

A long but straightforward computation using the above considerations, equation (2), and
the relations given in equations (1) and (3) shows that there are exactly three terms (they are
x2x5x7, x5x7x2, and x6x7x2) that square to x1x2x4x5x6x7. This is enough to conclude that
w3(Y (A))2 �= 0 as we are working in H ∗(Y (A); Z/2Z). As mentioned above, it follows
from Proposition 2.8 that

|T (K∗(Y )| <
∣∣∣∣∣
⊕

i

T (H∗+2i (Y ))

∣∣∣∣∣ .
This completes the proof for d = 9.

For d > 9, there are a few options to generalize the construction used above. One can
add zeros to the matrix A above or again take a matrix with 1s along the superdiagonal
except for the last entry, and in the last column except for the last two entries. Explicitly,
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for d = 10, one can take

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This completes the proof of Theorem 5.1.
As mentioned above, if Y satisfies the conclusion of Theorem 5.1, then by Corollary

4.6 we have a counterexample to the HK-conjecture that is principal. Thus, we have
counterexamples and can take the dimension of the relevant flat manifold to be any integer
greater than or equal to 9.
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