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Direct numerical simulations are performed to explore the effects of the rotating direction
of the vertically asymmetric rough wall on the transport properties of Taylor–Couette
(TC) flow, up to a Taylor number of Ta = 2.39 × 107. It is shown that, compared with the
smooth wall, the rough wall with vertical asymmetric strips can enhance the dimensionless
torque Nuω. More importantly, at high Ta, clockwise rotation of the inner rough wall
(where the fluid is sheared by the steeper slope side of the strips) results in a significantly
greater torque enhancement compared to counter-clockwise rotation (where the fluid is
sheared by the smaller slope side of the strips), due to the larger convective contribution
to the angular velocity flux. However, the rotating direction has a negligible effect on the
torque at low Ta. The larger torque enhancement caused by the clockwise rotation of the
vertically asymmetric rough wall at high Ta is then explained by the stronger coupling
between the rough wall and the bulk, attributed to the larger biased azimuthal velocity
towards the rough wall at the mid-gap of the TC system, the increased turbulence intensity
manifested by larger Reynolds stress and a thinner boundary layer, and the more significant
contribution of the pressure force on the surface of the rough wall to the torque.
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1. Introduction

Turbulent flows with rough walls are ubiquitous in nature, and many engineering
applications must contend with rough boundaries. The viscous length scales in the flow
decrease with increasing Reynolds numbers and, eventually, every surface appears to be
rough, even when the roughness is small in absolute scale. Nikuradse (1933) was the
first to study how local wall roughness (sand glued to the wall) affects global transport
properties in pipe flow. Since then, numerous studies (Chan et al. 2018; Rouhi, Chung
& Hutchins 2019; Ma et al. 2020; Modesti et al. 2021; Jelly et al. 2022) and reviews
(Flack & Schultz 2014; Chung et al. 2021) have explored the effects of wall roughness
in (pipe or channel) turbulence. Instead of using open-channel or pipe flow with rough
walls, we employ a Taylor–Couette (TC) apparatus, which is a closed system with an exact
balance between energy input and dissipation. Furthermore, due to its simple geometry and
excellent controllability, the TC system offers favourable conditions for both numerical and
experimental investigations (Verschoof et al. 2018; Zhu et al. 2018b).

In most experimental and numerical studies, both the inner and outer cylinders of the
TC system are smooth surfaces (see Grossmann, Lohse & Sun (2016) for a comprehensive
review). The effects of rough walls have only been investigated in recent decades.
According to the shape of rough walls, they can be divided into three categories. The
first type of rough wall is the irregular rough surface made by adhering particles randomly
on the cylindrical wall (Berghout et al. 2019, 2021; Bakhuis et al. 2020). It was found
that the torque can be enhanced by the irregular rough wall, indicating drag enhancement.
The second type of rough wall is where the regular roughness is arranged in the way
aligned with the mean flow, which is called ‘parallel roughness’. It was found that the
parallel grooves result in drag enhancement at relatively high Taylor numbers once the
height of roughness is larger than the velocity boundary layer (BL) thickness (Zhu et al.
2016), which is because the plumes are ejected from the tips of these grooves and the
system forms a secondary circulating flow inside the groove. Stronger plume ejections
have an enhanced effect on the torque and then lead to drag enhancement. However, the
parallel corrugated surface resulted in drag reduction at low Taylor number Ta, whereas
drag enhancement was found at high Ta (Ng, Jaiman & Lim 2018; Razzak, Cheong & Lua
2020). Similar findings were also reported in studies employing micro-grooves (Razzak
et al. 2020; Xu et al. 2023).

The third type is where the roughness is arranged perpendicular to the mean flow,
i.e. ‘vertical roughness’. Cadot et al. (1997) first reported this rough wall effect on drag
by attaching vertical ribs on the inner and outer cylinders. Inspired by their work, Van
den Berg et al. (2003) performed further experiments with the same style of roughness by
conducting four groups of experiments, i.e. two smooth walls, rough-inner/smooth-outer,
smooth-inner/rough-outer and two rough walls. Both studies found that the vertical
roughness has a drag enhancement effect on the TC flow due to the extra torque of the
rough elements coming from the pressure force. Zhu, Verzicco & Lohse (2017) carried
out a quantitative analysis on the origins of torque at the rough wall and found that the
contribution of pressure force to the torque at the rough wall is of prime importance
for drag enhancement. Lee et al. (2009), Motozawa et al. (2013), Zhu et al. (2018a),
Verschoof et al. (2018) and Sodjavi, Ravelet & Bakir (2018) also studied the effects of
vertical rough walls, focusing on the effects of the number of vertical strips, the strip
height and/or the radius ratio. To date, all studies on the effects of regular rough walls
have used symmetrical, rough walls, resulting in the same influences by different rotating
directions of the cylinders, whereas the asymmetric effect of different rotating directions
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DNS of TC flow with vertical asymmetric rough walls
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Figure 1. Schematic view of the Taylor–Couette system and the geometry of roughness. (a) Three-dimensional
view. The inner cylinder with radius ri is rotating with angular velocity ωi. Here, ωi > 0 represents that the fluid
is sheared by the smaller slope side of the strips, referred subsequently as counter-clockwise rotation; ωi < 0
indicates the fluid is sheared by the steeper slope side of the strips, referred subsequently as clockwise rotation.
The outer cylinder with radius ro is stationary. (b) Cross-section view of the gap between the two cylinders:
d = ro − ri. The rough elements are eighteen triangular vertical strips positioned equidistantly on the inner
cylinder wall. The height of the rough elements are 0.1d and 0.2d. In the present simulations, a rotational
symmetry of six is used. Therefore, the computational domain contains 1/6 of the azimuthal width and has
three rough elements on the inner cylinder.

with vertical asymmetrical rough walls on the TC flow, which may make a huge difference,
remains unexplored.

In this article, direct numerical simulation (DNS) of a TC flow with vertical
asymmetrical rough walls is carried out to study how different rotating directions affect
the global response as well as local flow behaviour. The manuscript is organized as
follows. In § 2, the numerical method and settings are described. In § 3, the relationships
between Nusselt number and Taylor number for vertical asymmetrical rough inner walls
with different heights and rotating directions are presented, and the mechanism behind
the differences in torque is explained. The local flow behaviour is also analysed. Finally,
conclusions are drawn in § 4.

2. Numerical method and setting

In the present study, the outer cylinder is at rest, and the inner cylinder is rotating and thus
driving the flow. The outer cylinder is a smooth wall and the inner one is a rough wall, with
both walls subject to the no-slip boundary condition. Axially periodic boundary conditions
are used, meaning that the present study does not include the effects of end walls presented
in the TC experiments. The inner cylinder is roughened by attaching eighteen vertical
strips of right triangle cross-section where one side of the strips is perpendicular to the
inner wall and the strips with a height of δ are equally distributed in the azimuthal direction
(see figure 1). The motivation behind this study is to investigate the impact of asymmetric
roughness on torque in the Taylor–Couette system, particularly its effects on turbulent
statistics. While there are various possibilities for asymmetric roughness shapes, we focus
on the right triangular rib (the simplest asymmetric geometry model) as a starting point to
examine the effects on statistics of turbulent Taylor–Couette flow. Our primary objective
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is to investigate how the presence of asymmetric roughness elements impacts both global
transport and local flow statistics in Taylor–Couette turbulence.

For the sake of simplicity and ease of explanation, as illustrated in figure 1(a), the
angular velocity of the inner cylinder ωi > 0 represents that the fluid is sheared by the
smaller slope side of the strips, referred subsequently as ‘counter-clockwise rotation’. In
contrast, ωi < 0 indicates the fluid is sheared by the steeper slope side of the strips, referred
subsequently as ‘clockwise rotation’. The gap width (d) is calculated as the difference
between the radii of the outer cylinder (ro) and the inner cylinder (ri). The radius ratio
is η = ri/ro = 0.714 and the aspect ratio is Γ = L/d = 2π/3, where L is the length of
axial periodicity. The geometry of the system is fixed at the radius ratio of η = 0.714
and the outer cylinder is stationary, to make a direct comparison with previous results
(Ostilla-Mónico et al. 2013; Xu et al. 2022). With Γ = 2π/3, we can have a relatively
small computational domain with a pair of Taylor vortices. A rotational symmetry of six
is selected to reduce the computational cost while not affecting the results, which has been
verified by previous studies (Brauckmann & Eckhardt 2013; Ostilla-Mónico, Verzicco
& Lohse 2015; Xu et al. 2022). As a result, there are only three triangular strips in the
azimuthal direction, as shown in figure 1(b).

The fluid between the two cylinders is assumed to be Newtonian and incompressible.
The motion of the fluid under these assumptions is governed by the continuity equation,

∇ · u = 0, (2.1)

and the momentum conservation equation (Zhu et al. 2016),

∂u
∂t

+ ∇ · (uu) = −∇p + f (η)

Ta1/2 ∇2u, (2.2)

where u and p are the dimensionless fluid velocity and pressure, respectively. The
equations are normalized using the gap width d, and the tangential velocity of the inner
cylinder ui = riωi, time is normalized by the characteristic length and velocity d/ui, and
the pressure term is normalized by the square of inner wall velocity and density ρu2

i . We
also define the non-dimensional radius r∗ to be r∗ = (r − ri)/d. Here, f (η) is a geometrical
factor written in the form (Ostilla-Mónico et al. 2013; Zhu et al. 2016)

f (η) = (1 + η)3

8η2 . (2.3)

The Taylor number can characterize the driving TC flow. In the case of static outer
cylinder, it is defined as (Grossmann et al. 2016)

Ta = (1 + η)4

64η2

d2(ri + ro)
2ω2

i

ν2 , (2.4)

where ν is the kinematic viscosity of the fluid. An alternative way to determine the
system is using the inner Reynolds number that is defined as Rei = riωid/ν, and these two
definitions can be interconverted using the formula Ta = [ f (η)Rei]2. Both the Reynolds
and Taylor numbers are presented in table 1. Moreover, the use of the Taylor number,
instead of the Reynolds number, is common for distinguishing different TC flow regimes
(Ostilla-Mónico et al. 2013, 2014a; Grossmann et al. 2016). In addition, we also provide
the Reynolds number for the roughness based on the average azimuthal velocity at the
height of the roughness, which is defined as Reδ = δūϕ,r=ri+δ/ν and shown in table 1.
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DNS of TC flow with vertical asymmetric rough walls

δ/d Ta Rei Reδ Nϕ × Nr × Nz Nuω 100ΔJ

0.1 1.87 × 103 −35 −3.25 90 × 90 × 45 1.08027 0.18
0.1 1.87 × 103 +35 +3.25 90 × 90 × 45 1.07885 0.22
0.1 4.61 × 103 −55 −5.19 100 × 100 × 50 1.09027 0.27
0.1 4.61 × 103 +55 +5.18 100 × 100 × 50 1.08859 0.25
0.1 1.06 × 104 −83.5 −7.94 110 × 110 × 55 1.09366 0.24
0.1 1.06 × 104 +83.5 +7.93 110 × 110 × 55 1.09224 0.31
0.1 3.90 × 104 −160 −14.49 120 × 120 × 60 2.04604 0.29
0.1 3.90 × 104 +160 +14.45 120 × 120 × 60 2.03780 0.25
0.1 1.03 × 105 −260 −22.63 130 × 130 × 65 2.68482 0.40
0.1 1.03 × 105 +260 +22.56 130 × 130 × 65 2.68105 0.36
0.1 2.44 × 105 −400 −33.51 140 × 140 × 70 3.37146 0.37
0.1 2.44 × 105 +400 +33.40 140 × 140 × 70 3.37098 0.41
0.1 7.04 × 105 −680 −55.53 160 × 160 × 80 4.48368 0.45
0.1 7.04 × 105 +680 +55.20 160 × 160 × 80 4.47725 0.42
0.1 1.91 × 106 −1120 −93.35 200 × 200 × 120 5.89129 0.57
0.1 1.91 × 106 +1120 +92.87 200 × 200 × 120 5.82758 0.54
0.1 3.90 × 106 −1600 −133.96 230 × 230 × 150 7.05058 0.66
0.1 3.90 × 106 +1600 +132.35 230 × 230 × 150 6.98768 0.71
0.1 9.52 × 106 −2500 −209.65 250 × 250 × 200 8.81297 0.79
0.1 9.52 × 106 +2500 +206.55 250 × 250 × 200 8.52065 0.72
0.1 2.39 × 107 −3960 −340.88 320 × 320 × 250 11.2194 0.80
0.1 2.39 × 107 +3960 +336.40 320 × 320 × 250 10.7176 0.85
0.2 1.87 × 103 −35 −6.51 90 × 90 × 45 1.27208 0.21
0.2 1.87 × 103 +35 +6.50 90 × 90 × 45 1.26989 0.20
0.2 4.61 × 103 −55 −10.52 100 × 100 × 50 1.27398 0.26
0.2 4.61 × 103 +55 +10.51 100 × 100 × 50 1.27167 0.28
0.2 1.06 × 104 −83.5 −16.18 110 × 110 × 55 1.27882 0.24
0.2 1.06 × 104 +83.5 +16.14 110 × 110 × 55 1.27699 0.21
0.2 3.90 × 104 −160 −29.68 120 × 120 × 60 2.36599 0.23
0.2 3.90 × 104 +160 +29.57 120 × 120 × 60 2.35736 0.26
0.2 1.03 × 105 −260 −44.34 130 × 130 × 65 3.18239 0.28
0.2 1.03 × 105 +260 +44.09 130 × 130 × 65 3.16564 0.31
0.2 2.44 × 105 −400 −69.03 140 × 140 × 70 4.08044 0.30
0.2 2.44 × 105 +400 +68.40 140 × 140 × 70 4.05339 0.32
0.2 7.04 × 105 −680 −116.07 160 × 160 × 80 5.56394 0.36
0.2 7.04 × 105 +680 +114.57 160 × 160 × 80 5.49542 0.33
0.2 1.91 × 106 −1120 −187.66 200 × 200 × 120 7.25148 0.41
0.2 1.91 × 106 +1120 +185.92 200 × 200 × 120 7.01813 0.45
0.2 3.90 × 106 −1600 −278.16 230 × 230 × 150 8.83068 0.49
0.2 3.90 × 106 +1600 +271.54 230 × 230 × 150 8.46703 0.47
0.2 9.52 × 106 −2500 −449.22 250 × 250 × 200 10.9950 0.58
0.2 9.52 × 106 +2500 +439.74 250 × 250 × 200 10.4784 0.59
0.2 2.39 × 107 −3960 −725.56 320 × 320 × 250 14.0615 0.69
0.2 2.39 × 107 +3960 +712.28 320 × 320 × 250 13.1831 0.73

Table 1. Values of the control parameters and the numerical results of the simulations. The columns display
the strip height, the Taylor number, the inner Reynolds number, the Reynolds number for the roughness, the
resolution employed, the dimensionless torque Nuω and the maximum deviation of angular velocity flux �J,
respectively. All of the simulations are run in reduced geometry with Γ = 2π/3 and a rotation symmetry of
the order of six. The corresponding cases at the same Ta without roughness (with smooth cylinders) can be
found in our previous study (Xu et al. 2022) and in that of Ostilla-Mónico et al. (2013).
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In TC flow, the angular velocity flux from the inner cylinder to the outer cylinder is
strictly conserved along the radius r (Eckhardt, Grossmann & Lohse 2007). It is defined
as

Jω = r3(〈urω〉A,t − ν∂r〈ω〉A,t), (2.5)

where ur is the radial velocity, ω is the angular velocity, and 〈. . . 〉A,t denotes averaging
over a cylindrical surface (averaging over the axial and azimuthal directions) with constant
distance from the axis and over time. Here, the radius is selected to be within the scope of
ri + δ ≤ r ≤ ro. Additionally, Jω is connected to the dimensionless torque Nusselt number
Nuω via

Nuω = Jω/Jω
lam, (2.6)

where Nuω is the key response parameter in TC flow and Jω
lam = 2νr2

i r2
oωi/(r2

o − r2
i ) is the

angular velocity flux of the non-vortical laminar state. Note that Nuω can be connected
to the experimentally measurable torque τ via τ = 2πlρNuωJω

lam by keeping the cylinder
rotating with a constant velocity (Grossmann et al. 2016), where l is the height of the part
of the cylinder on which the torque is measured and ρ is the fluid density.

Equations (2.1) and (2.2) are solved with a second-order-accuracy, colocated
finite-volume method in the Cartesian coordinate system, using OpenFOAM as the
computational platform. During the simulations, the results in the Cartesian coordinate
are transformed to the format in the cylindrical coordinate, and the simulations are run
for at least 40 large eddy turnover times (d/riωi) for data analysis. The no-slip boundary
condition of the inner rough wall was dealt with a second-order-accuracy immersed
boundary method (Zhao et al. 2020a,b). The temporal term is discretized using the
second-order backward scheme and the convective term is discretized using a second-order
total variation diminishing (Vanleer) scheme. All simulations are achieved using a fixed
time step based on the Courant–Friedrichs–Lewy (CFL) criterion and the CFL number
is less than 1.0 in all simulations. More details of the simulation accuracy are shown in
Appendix A.

Two different strip heights (δ = 0.1d and δ = 0.2d) on the inner cylinder with different
rotating directions, i.e. ωi > 0 (counter-clockwise rotation) and ωi < 0 (clockwise
rotation), were analysed. In each series with the same strip height, Ta ranges from 103

to 107 or Rei is varied from 35 to 3960. The parameter space consists of the Taylor number
Ta and the strip height δ/d, which are shown in figure 2. Note that the vertical solid
lines in figure 2 are the transition values of Ta for smooth surfaces in TC flow, and the
flow states are δ-dependent. The division of flow state is at a smooth surfaces and the
radius ratio η = 0.714, which is in accordance with the classification methods proposed
by Ostilla-Mónico et al. (2014a) and Grossmann et al. (2016), i.e. the determination of the
critical Taylor number was based on the onset of Taylor vortices within the TC system.

3. Results

3.1. Dimensionless torque
To study the effect of the triangle strip walls, the dimensionless torque Nuω is presented
as a function of Ta (i.e. Nuω = ATaβ). Figure 3(a) shows the dimensionless torque Nuω

with increasing Ta for a smooth wall and rough wall with two strip heights rotating in
different directions. The results of previous smooth walls (Ostilla-Mónico et al. 2013) and
parallel roughness walls (Zhu et al. 2016) are also shown in figure 3(a) for reference. In
the non-vortical laminar flow regime, the flow only has an azimuthal velocity component
and Nuω = 1 for a smooth wall by definition. However, the values of Nuω are larger than 1
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DNS of TC flow with vertical asymmetric rough walls
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Figure 2. Explored (Ta, δ/d) parameter space. There are three different regimes in the phase spaces, i.e. the
non-vortical laminar flow, the laminar Taylor vortices and the turbulent Taylor vortices regimes. The triangles
represent the strip height of 0.1d, the rhombuses show the strip height of 0.2d.
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δ/d = 0.1, ωi > 0
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Figure 3. (a) Nusselt number as a function of Ta for smooth cases and rough cases with two strip heights
for different rotating directions of the inner cylinder at η = 0.714. The results of previous smooth walls
(Ostilla-Mónico et al. 2013; Xu et al. 2022) and parallel roughness walls with two different groove heights
(Zhu et al. 2016) are also shown for reference. (b) The Nuω deviation between rough and smooth walls with
increasing Ta.

for a rough wall, and a higher strip results in a larger Nuω. Although both flows for the
smooth and rough cases are purely azimuthal at this regime, the ω-gradient of the latter
is larger and the radial velocity ur = 0. According to (2.5), the angular velocity flux Jω

for the rough walls is larger, i.e. the torque is larger. In addition, we also find that the
critical Taylor number (Tac), determined based on the onset of Taylor vortices in the
TC system, is affected by the rough surface. We conducted a series of simulations with
various strip heights (δ = 0.1d and δ = 0.2d) at different Taylor numbers. The critical
Taylor number (Tac ≈ 1.15 × 104 or Tac ≈ 1.35 × 104) was identified as the value at
which Taylor vortices became evident, while Tac ≈ 1 × 104 for a smooth wall in previous
studies (Grossmann et al. 2016; Xu et al. 2022) with the same radius ratio η = 0.714,
which means that the presence of a rough surface influences the value of this critical
Taylor number. These results can be easily understood. The appearance of strips enlarges
the effective radius of the inner cylinder, which makes the effective radius ratio of the
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Figure 4. (a) Nusselt number as a function of Ta for smooth cases and rough cases with two strip heights for
different rotating directions of the inner cylinder at η = 0.714. The data of rough cases are from the present
study, and the data of smooth cases are from our previous study (Xu et al. 2022).

rough wall larger than that of the smooth wall, therefore, the critical Taylor number is
larger (Pirro & Quadrio 2008).

After the onset of Taylor vortices, no matter whether walls are smooth or not, the torque
Nuω increases with Ta. It is difficult to directly compare our results with other turbulent
flow systems with rough walls, but the study with other types of rough walls in TC can
be chosen for comparison. As shown in figure 3(a), despite the types of the roughness
being discrepant, a similar conclusion is obtained, that is, higher roughness results in a
larger torque. However, compared with the parallel roughness, the drag enhancement of the
vertical one is better. In addition to this, the rotating direction of the rough inner cylinder
has no effect on the torque at a fixed strip height for low Taylor numbers. This can be seen
more clearly in figure 3(b), which presents the deviation of Nuω from the corresponding
smooth one at different strip heights and rotating directions. It is shown that the effect
of strip height on the torque becomes more significant with increasing Ta after the onset
of Taylor vortices. Additionally, a higher strip results in a larger torque increase with the
same Taylor number. In addition, the effects of rotating direction on the torque for different
strip heights are different. For the case of δ = 0.2d, the influence of rotating direction on
torque appears when Ta > 106, and compared with the case of ωi > 0, the torque of ωi < 0
is larger. However, the effect of rotating direction on the torque comes out until Ta ≈ 107

for δ = 0.1d, and the difference between the counter-clockwise and clockwise rotations
on the torque of δ = 0.1d is smaller than the corresponding difference of δ = 0.2d at the
same Ta.

Here, Nuω − 1 is the additional transport of angular velocity on the top of the
non-vortical laminar transport in TC flow. Figure 4 shows the numerically calculated
Nuω − 1 with increasing Ta after the appearance of Taylor vortices. Here, we plot Nuω − 1
versus Ta − Tac rather than versus Ta to better show the scaling at low Ta (Ostilla-Mónico
et al. 2013). For the smooth TC flow, from Ta = 3.9 × 104 up to Ta = 3 × 106, an effective
scaling law of Nuω − 1 ∼ (Ta − Tac)

1/3 is found, which is connected with the laminar
Taylor vortices regime. When Ta > 3 × 106, there is a transitional region in which the
bulk becomes turbulent but the large-scale coherent structure can still be identified when
looking at the time-averaged quantities, which is associated with the turbulent Taylor
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Figure 5. Convective and diffusive contributions to the angular velocity flux for different rotating directions
with δ = 0.2d at (a) Ta = 2.44 × 105 and (b) Ta = 2.39 × 107. All results are normalized by the angular
velocity flux of the non-vortical laminar state Jω

lam, and only the data within the scope of ri + δ ≤ r ≤ ro
are shown.

vortices regime (Ostilla-Mónico et al. 2014b). In this transitional regime, the boundary
layers are laminar first and become gradually turbulent with increasing Ta.

The situation becomes different for the TC flow with rough walls. As shown in
figure 4, at the laminar Taylor vortices regime, the effective scaling exponent β ≈ 0.35 for
different strip heights on the inner cylinder (δ = 0.1d and δ = 0.2d) rotating in clockwise
(ωi < 0) and counter-clockwise (ωi > 0) directions. However, the situation becomes more
complicated at the turbulent regime. The exponent β is influenced not only by the height
of the strip, but also by the rotating direction of the inner rough wall. Figure 4 shows that
the effect of strip height on the exponent does not show any regularity, but the influence
of rotating direction of the inner rough wall is regular, i.e. the exponent β is slightly larger
for the cases of ωi < 0 compared to the values of ωi > 0 at the same strip height.

In TC flow, the angular velocity flux is calculated as Jω = r3(〈urω〉A,t − ν∂r〈ω〉A,t),
where the first term is the convective contribution and the second term is the diffusive (or
viscous) contribution (Eckhardt et al. 2007). The radial profiles of these two contributions
for different rotating directions of the inner rough wall with δ = 0.2d at Ta = 2.44 × 105

and Ta = 2.39 × 107 are exemplified in figure 5. It can be seen that the convective
contribution to the torque is mainly in the central region and disappears at the boundaries,
as expected. In contrast, the diffusive contribution dominates near the walls but drops to
almost zero in the middle.

Furthermore, as shown in figure 5(a), the rotating directions have no effect on the
convective and diffusive contributions to Jω at low Taylor number Ta = 2.44 × 105 which
is in the laminar Taylor vortices regime. However, as shown in figure 5(b), the situation
becomes different at a large Taylor number Ta = 2.39 × 107 that corresponds to the
turbulent Taylor vortices regime. It can be seen that the diffusive contribution is still
unaffected by the rotating direction of the inner rough wall except for the inner and
outer boundaries, but the rotating direction has a significant effect on the convective
contribution to the torque. When the inner wall rotates in the clockwise direction (ωi <

0), the convection term is larger than that of the counter-clockwise direction (ωi > 0).
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Figure 6. Average and fluctuation contributions to the convective term of total angular velocity flux for
different rotating directions with δ = 0.2d at Ta = 2.39 × 107. All results are normalized by the angular
velocity flux of the non-vortical laminar state Jω

lam, and only the data within the scope of ri + δ ≤ r ≤ ro
are shown.

The results presented in figure 5 are consistent with those reported in figure 3 and show
that the torque enhancement is dominantly due to the increased convective contribution.

To better explain why the rotating direction of the inner rough wall influences the
convective term of torque at large Taylor number Ta = 2.39 × 107 in figure 5(b), as shown
in figure 6, the convection contributions to the total torque are further decomposed into
two components: r3〈ūrω̄〉A,t is the averages (which have a structure, due to the presence
of Taylor rolls) and r3〈u′

rω
′〉A,t is arising from the correlation of the fluctuations. Figure 6

shows that compared with the turbulent convective flux r3〈u′
rω

′〉A,t caused by the Reynolds
stress, the mean convective flux r3〈ūrω̄〉A,t caused by the presence of mean Taylor vortices
dominates to derive torques (Brauckmann & Eckhardt 2013). Additionally, when the rough
inner wall rotates in different directions, for the average term, the value of clockwise
rotation ωi < 0 near the smooth outer wall is greater than the value of counter-clockwise
rotation ωi > 0, while the opposite is true on the side near the inner wall, which results
in a small effect of the different rotation directions of the inner rough wall on the mean
convective flux r3〈ūrω̄〉A,t contribution to the total flux Jω. However, the situation becomes
simple for the fluctuant term, r3〈u′

rω
′〉A,t with ωi < 0 always greater than the value with

ωi > 0 at the same radius, indicating that the turbulence caused by clockwise rotation
(ωi < 0) is more intense than that of ωi > 0. Those facts lead to the observed torque
enhancement and the different effects of rotating directions.

3.2. The mechanism of torque enhancement
To understand the mechanism underlying the torque enhancement and the effect of rotating
directions, it is useful to analyse the dependence of the azimuthal velocity profiles uϕ(r)
on the driving parameter Ta. Therefore, uϕ(r) for two representative Taylor numbers
Ta = 2.44 × 105 and Ta = 2.39 × 107 are presented in figure 7. It can be seen that the
azimuthal velocity profiles are influenced by the strip height, where a higher strip results in
a larger azimuthal velocity at the same radius. For small Taylor number Ta = 2.44 × 105,
the azimuthal velocity profiles are almost unaffected by the rotating direction of the inner
rough wall. At large Taylor number Ta = 2.39 × 107, the rotating direction has an effect
on the azimuthal velocity profiles, that is, the clockwise rotation ωi < 0 of the vertical
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Figure 7. Averaged azimuthal velocity profiles for different rotating directions of the inner rough wall with
two strip heights at (a) Ta = 2.44 × 105 and (b) Ta = 2.39 × 107. The averaged azimuthal velocity profiles for
smooth walls at these two Ta from our previous study (Xu et al. 2022) are also included for comparison.

asymmetric rough wall makes the azimuthal velocity larger at a given r, compared with the
case of counter-clockwise rotation ωi > 0. This is because the shear rate of the azimuthal
velocity at the rough wall is smaller than that in the corresponding smooth case (Van den
Berg et al. 2003; Zhu et al. 2017), and the azimuthal velocity should be biased towards the
rough wall at the mid gap compared with the smooth case, leading to the stronger coupling
between the rough wall and the bulk. Furthermore, the difference in azimuthal velocity
profiles with a higher strip height between counter-clockwise and clockwise rotation is
larger. These observations explain the torque enhancement and the effects of rotating
direction to a certain extent.

It is well known that the characteristics of velocity boundary layer (BL) reflect many
features of wall turbulence (Grossmann et al. 2016). Therefore, the non-dimensionalized
azimuthal velocity profiles u+ versus the wall distance y+ for the outer smooth wall and
the inner rough wall in the case of Ta = 2.39 × 107 are shown in figure 8. Figure 8(a)
shows that there is a viscous sublayer (u+ = y+), which is well known for a smooth wall.
The BL of the outer wall is influenced by the height of the strip attached to the inner wall,
resulting in upward shifts of the log-law region, that is, a higher strip results in a larger
shift. However, the rotating direction of inner rough wall with the same strip height has no
effect on the characteristics of velocity boundary layer near the outer stationary wall. For
the inner cylinder, it can be seen from figure 8(b) that the BL is not only influenced by the
strip height, but also affected by the rotating direction of the inner wall. Compared with
the smooth inner wall, significant downward shifts are acquired for the rough cases, which
are similar to the results of Zhu et al. (2016). Meanwhile, the downward trend is larger for
the higher strip or for clockwise rotation (ωi < 0) of the inner rough wall with the same
strip height. It means that a higher strip and clockwise rotation (ωi < 0) of the inner rough
wall can form a thinner BL at this Ta. As a result, the torque enhancement becomes more
obvious with the higher strip and clockwise rotation of the inner rough wall at large Ta.

We also plot the dimensionless value δ/δv of the roughness height in wall units for
different strip heights in figure 9, where the grey and blue dashed lines denote the
boundaries of the viscous sublayer (δ/δv < 5) and buffer layer (5 < δ/δv < 30) (Pope
2000). Figure 9 shows that if these dimensionless values are in the viscous sublayer, the
flow is dominated by viscous effects and the rotation direction of the asymmetric rough
wall has no change at all on the torque Nusselt number (which can be seen in figure 3b),
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Figure 8. Non-dimensionalized azimuthal velocity profiles (a) for the outer stationary wall and (b) for different
rotating directions of the inner rough wall with δ = 0.1d and δ = 0.2d versus wall distance at Ta = 2.39 × 107.
The inset in figure 8(b) is the enlargement near the inner wall. The non-dimensionalized azimuthal velocity
profiles for a smooth wall at the same Ta are from our previous study (Xu et al. 2022). For the outer smooth
wall, the non-dimensionalized azimuthal velocity profile is u+ = 〈uϕ〉A,t/uτ and the wall distance is y+ =
(ro − r)/δv , where the friction velocity is uτ =

√
τ/2πlρr2 =

√
NuωJω

lam/r2, the boundary layer thickness δv

is estimated by δv ≈ dσ/(2Nuω), and σ is defined as σ = [(ri + ro)/(2
√

rori)]4 (Brauckmann & Eckhardt
2013; Zhu et al. 2017); for the inner rough wall, the non-dimensionalized azimuthal velocity profile u+ =
(ūϕ,r=ri+δ − 〈uϕ〉A,t)/uτ and the wall distance y+ = (r − ri − δ)/δv . The dotted lines show the relationships
u+ = y+.

50
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0

Figure 9. Dimensionless value of the roughness height δ in wall units. The grey and blue dashed lines denote
the boundaries of the viscous sublayer (δ/δv < 5) and buffer layer (5 < δ/δv < 30).

which is similar to the common finding that the rough surface becomes active only when
the thermal boundary layer thickness is smaller than the characteristic height of roughness
(Shen, Tong & Xia 1996; Stringano, Pascazio & Verzicco 2006) in Rayleigh–Bénard
(RB) flow. In TC flow with parallel grooves, the same results reported by Zhu et al.
(2016) showed that the effect of grooves on the torque Nuω can only be seen when the
BL thickness becomes thinner than the groove height. However, the pressure drag is
affected by the rotation direction of the asymmetric roughness in the buffer layers when
δ/δv ≈ 16 for δ = 0.1d at Ta = 9.52 × 106 and δ/δv ≈ 16 for δ = 0.2d at Ta = 1.91 × 106

in the present simulations (as shown in figure 10b). Furthermore, it is worth noting that
a two-dimensional triangle with the top facing forward (into the wind) has a lower drag
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Figure 10. (a) Contributions to the total torque originating from the pressure force Nup and the viscous force
Nuν with two strip heights δ = 0.1d and δ = 0.2d on the inner wall rotating in different directions. The solid
lines represent the contribution of the pressure force Fp to the total torque, and the dash ones represent the
contribution of the viscous force Fν . (b) Log-log scale of figure 10(a).

as compared with the same triangle with the top pointing in the downstream direction
at sufficiently large Reynolds numbers (e.g. drag coefficient 1.6 versus 2.0 according to
White, Fluid Mechanics, 2011, table 7.2). Our results are consistent with White (2011),
albeit the Reynolds number is relatively lower and the triangles are attached to the wall.

In the present study, the TC system is driven by the rotation of the inner cylinder.
To reveal the mechanism of torque enhancement more directly, it is necessary to study
the torque at the inner wall. To find the mechanism behind the increase of Nuω for the
vertical strips on the inner wall, the pressure and viscous contributions at the rough wall
are quantified. The part of the pressure force is defined as (Zhu et al. 2017)

Nup =
∫

pr
τpa

dS, (3.1)

where p is the pressure, r is the radius, and τpa is the torque required to drive the system in
the purely azimuthal and laminar flow. While the part of viscous force is defined as (Zhu
et al. 2017)

Nuν =
∫

τνr
τpa

dS, (3.2)

where τν is the viscous shear stress.
Figure 10(a) shows the contributions to the total torque originating from Nup and Nuν

for an asymmetric vertical rough wall rotating in different directions with two strip heights
δ = 0.1d and δ = 0.2d, and the log-log scale is also shown in figure 10(b) at laminar
and turbulent vortex regimes. As shown in figure 10(a), at small Taylor numbers, the
torque on the rough wall almost all comes from the viscous force. With increasing Ta,
the contributions of viscous and pressure forces to the torque both increase, but the latter
is significantly faster than the former. More importantly, Nuν is independent of the rotating
directions at a same strip height although the strip is asymmetric. Furthermore, the higher
the strip, the larger the viscous force to the total torque at the same Ta. By contrast, Nup in
the clockwise rotation cases are larger than those for counter-clockwise rotation at the same
strip height, which has not been seen in the previous study with symmetric rough walls
(Zhu et al. 2017). Those facts explain the results shown in figure 3, that is, the torques of
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clockwise rotation become larger than those of counter-clockwise rotation for the same Ta
and indicate that the torque difference of different rotating directions is dominantly due to
the different contribution of Nup.

Furthermore, we also plot the log-log scale in figure 10(b) from Ta = 3.9 × 107 to
Ta = 2.39 × 107. This reveals that both the contribution of viscous forces to torque and
the overall torque display segmented power-law relationships with respect to Ta. In both
scenarios, distinct power-law exponents emerge in the laminar and turbulent Taylor vortex
regimes. Within the laminar regime, the power-law exponent is greater, signifying a
more pronounced dependency of torque contribution on Ta. Conversely, in the turbulent
regime, the power-law exponent is smaller, indicating a comparatively weaker dependency.
However, unlike the segmented power-law relationship between viscous forces and Ta, the
contribution of pressure to torque does not exhibit a segmented power-law relationship
with Ta. Instead, it is characterized by a smaller prefactor yet a larger power-law exponent.
This suggests that pressure plays a more substantial role in torque generation, showing
a stronger dependence on Ta. This implication aligns with the dominance of pressure at
high Taylor numbers, as reported by Zhu et al. (2017). In summary, these observations
indicate the intricate relationships between viscous stress and pressure in different Ta
number regimes.

4. Conclusions

In the present study, extensive direct numerical simulations were conducted to explore the
effect of inner rough walls on the transport properties of Taylor–Couette flow. The inner
cylinder was roughened by attaching 18 vertical asymmetric strips, with strip heights of
δ = 0.1d and δ = 0.2d. Numerical results were obtained for Ta ranging from 1.87 × 103 to
2.39 × 107 at a radius ratio of η = 0.714 and an aspect ratio of Γ = 2/3π, using periodic
boundary conditions in the azimuthal and axial directions.

The main conclusions that can be drawn include: (i) the rotation direction of the vertical
asymmetric rough wall has a negligible effect on the torque at low Taylor numbers.
The influence gradually becomes more pronounced with increasing Ta, and the drag
enhancement effect of clockwise rotation of the inner cylinder is more significant than
that of counter-clockwise rotation; (ii) the rotation direction of a vertical asymmetric rough
wall also has a negligible effect on the azimuthal velocity and the Reynolds stress at low
Taylor number, they are however larger at high Ta when the inner cylinder rotating in
clockwise direction; (iii) for large Ta, the velocity boundary layer (BL) in the case of
clockwise rotation is thinner than that in the case of counter-clockwise rotation, due to
the observed stronger turbulence; (iv) the torque on the vertical asymmetric rough wall
is derived from the viscous force and the pressure force. The contribution of the viscous
force to the torque with the same strip height is always equal at the same Ta, irrespective
of the rotating direction of the inner vertical asymmetric wall. However, the contribution
of the pressure force to the torque for the same strip height is unaffected by the rotating
direction of the inner wall at low Taylor numbers but is significantly affected at large Ta.
Moreover, the contribution of the pressure force in the case of clockwise rotation is larger
than that in the case of counter-clockwise rotation, resulting in the observed larger torque
in clockwise rotation.
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Figure 11. Radial dependence of Nuω for different strip heights and different rotating directions of inner rough
wall at Ta = 2.44 × 105 with three different grid resolutions. An error bar indicating a 1 % error is provided
for reference, the resolved cases lie within this error bar.
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Appendix A. Resolution tests and numerical details

To obtain reliable numerical results, the grid’s spatial resolutions have to be sufficient. The
requirements for spatial resolution is to have the grid length in each direction of the order
of local Kolmogorov length. In the present simulations, the hexahedral grid was uniform
in the azimuthal and axial directions, and refined near the inner and outer cylindrical walls
in the radial direction (Dong 2007; Ostilla-Mónico et al. 2013). In TC flow, Jω and Nuω =
Jω/Jω

lam should not be a function of the radius as mentioned previously, but numerically
it does show some dependence. Because of numerical error, Jω will deviate slightly along
the r from a fixed value. To quantify this difference, Zhu et al. (2016) defined

ΔJ = max(Jω(r)) − min(Jω(r))
〈Jω(r)〉r

, (A1)

where the maximum and minimum values are determined over all r, which is selected
to be within the scope of ri + δ ≤ r ≤ ro. It is a very strict requirement for the meshes
that ΔJ ≤ 0.01 (Ostilla-Mónico et al. 2013). We make sure all the simulations meet this
criterion, the details are listed in table 1.
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A resolution test of grid length has been exemplified in figure 11, which presents
four graphs of radial dependence of Nuω for different strip heights and different rotating
directions of the inner rough wall at Ta = 2.44 × 105 with three different grid resolutions.
An error bar indicating a 1 % error is provided for reference. It is shown that for the
under-resolved cases (Nϕ × Nr × Nz = 80 × 80 × 40), the error of the Nuω along the
radius is larger than 1 %. However, the Nuω error is less than 1 % for the reasonably
resolved cases (Nϕ × Nr × Nz = 140 × 140 × 70) and the extremely well-resolved cases
(Nϕ × Nr × Nz = 200 × 200 × 100).
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