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This study proposes a novel super-resolution (or SR) framework for generating
high-resolution turbulent boundary layer (TBL) flow from low-resolution inputs. The
framework combines a super-resolution generative adversarial neural network (SRGAN)
with down-sampling modules (DMs), integrating the residual of the continuity equation
into the loss function. The DMs selectively filter out components with excessive
energy dissipation in low-resolution fields prior to the super-resolution process. The
framework iteratively applies the SRGAN and DM procedure to fully capture the
energy cascade of multi-scale flow structures, collectively termed the SRGAN-based
energy cascade reconstruction framework (EC-SRGAN). Despite being trained solely on
turbulent channel flow data (via ‘zero-shot transfer’), EC-SRGAN exhibits remarkable
generalization in predicting TBL small-scale velocity fields, accurately reproducing
wavenumber spectra compared to direct numerical simulation (DNS) results. Furthermore,
a super-resolution core is trained at a specific super-resolution ratio. By leveraging
this pretrained super-resolution core, EC-SRGAN efficiently reconstructs TBL fields at
multiple super-resolution ratios from various levels of low-resolution inputs, showcasing
strong flexibility. By learning turbulent scale invariance, EC-SRGAN demonstrates
robustness across different TBL datasets. These results underscore the potential of
EC-SRGAN for generating and predicting wall turbulence with high flexibility, offering
promising applications in addressing diverse TBL-related challenges.
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1. Introduction

Turbulent boundary layers (TBLs) play a crucial role in various engineering applications.
Owing to the chaotic nature of turbulence and perturbations of wall friction, fully capturing
the multi-scale TBL flow structures remains a challenging task.

The experimental measurements of TBL flow distribution are often insufficiently
accurate to evaluate the small-scale flow characteristics in the inertial subrange (Shevkar,
Mohanan & Puthenveettil 2023). To fill the scale gap, direct numerical simulation (DNS)
and large eddy simulation (LES) are introduced to reproduce the energy cascade of
turbulence (Cao et al. 2022). However, considerable computational costs are required to
obtain physically realistic turbulence with sufficiently high mesh resolution. Therefore, in
the field of turbulence prediction, a novel approach is highly motivated which focuses on
both precision and efficiency.

With the availability of high-fidelity turbulence databases obtained from DNS,
data-driven methods have rapidly advanced in deep learning algorithms (DLAs), providing
efficient solutions for turbulence reconstruction (Vinuesa & Brunton 2022). From
data with limited resolution alone, high-resolution (or HR) turbulence can be rapidly
reconstructed using super-resolution DLA.

As a representative DLA, convolutional neural networks (CNNs) are commonly utilized
to extract and integrate features from spatial flow distributions. Fukami, Fukagata & Taira
(2021) efficiently reconstructed the wake flow field from extremely sparse measurements
using CNN-based models. They also employed CNN convolution modules to construct
super-resolution generative adversarial neural networks (SRGANs) for reconstructing
turbulent fields. The effectiveness of the adversarial mechanism in SRGANs for enhancing
the fidelity of reconstructed flow in the inertial range was demonstrated by Stengel et al.
(2020). Güemes et al. (2021) applied SRGANs to reconstruct near-wall turbulent velocity
fields using coarse-wall measurements. Compared with the CNN-based method, SRGAN
could provide a significant improvement in recovering the small-scale flow structures.
Yousif, Yu & Lim (2021) trained the multi-scale enhanced SRGAN (MS-ESRGAN) with
physics-based loss terms, including velocity gradients and Reynolds stress, to generate
high-fidelity turbulent channel flow from sparsely distributed data. Their predictions of
energy spectra showed compelling similarities with DNS results.

A transfer learning (one-shot learning) technique was employed to enhance the
generalization capability of SRCNN (i.e. super-resolution convolutional neural network) or
SRGAN-based models (Guastoni et al. 2021). In one-shot learning, the model is fine tuned
only with a limited amount of labelled data from the target (testing) dataset. Leveraging
one-shot learning, the SRGAN-based model proposed by Yousif et al. (2021) achieved
acceptable accuracy in generating velocity fields across different Reynolds numbers.
Similarly, Obiols-Sales, Vishnu & Malaya (2021) utilized an SRCNN-based model called
SURFNet to reconstruct super-resolution wakes around airfoils with diverse geometry
boundaries.

However, current super-resolution efforts still have some notable limitations in practical
fluid mechanics applications. Firstly, one-shot learning might fail due to insufficient
training samples or limited data resolution in the turbulence data being predicted. If
one-shot learning is not feasible, the question arises whether pretrained models could
be directly generalized to reconstruct turbulence in other related datasets. Secondly,
most models can only reconstruct turbulent fields at a single super-resolution ratio. To
achieve multiple super-resolution degrees of reconstruction, a bundle of models with
different super-resolution ratios are required, leading to excessive consumption of training
resources.
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Figure 1. Schematic of physics-embedded SRGAN: overall training framework of SRGAN for near-wall
turbulence reconstruction.

In response to the aforementioned challenges, this study proposes a framework that
combines an SRGAN model (as the super-resolution core) with down-sampling modules
(DMs). Its objective is to replicate the two-dimensional (2-D) super-resolution wall
turbulence fields with a multi-scale energy cascade derived from low-resolution (or LR)
ones. Thus, the proposed framework is referred to as the SRGAN-based energy cascade
reconstruction framework (EC-SRGAN). The EC-SRGAN is designed to flexibly adapt
to inputs with various levels of coarse flow fields. Besides the high flexibility of inputs,
‘zero-shot transfer’ (Xian et al. 2017) is employed instead of ‘one-shot learning’. This
approach involves training a model on a specific task using labelled data, but directly
applying it to predict unseen datasets without any additional training or labelled data for
the new task. It is particularly useful when acquiring labelled turbulence data for the new
task is difficult or expensive.

2. Methodology

Focused on reconstructing multi-scale near-wall turbulence, the schematic explanations of
the SRGAN model (super-resolution core of EC-SRGAN) and proposed EC-SRGAN are
presented in §§ 2.1 and 2.2, respectively.

2.1. Physics-embedded SRGAN
The inputs of the physics-embedded SRGAN model are flow velocity fields with
low-resolution grids of m/N × n/N. Its objective is to accurately output the m × n
super-resolution near-wall turbulence distributions, where m and n are equal to the
grid numbers of the high-resolution flow fields in the horizontal and vertical directions
respectively. Hereafter, the N × N times finer super-resolution model is denoted as N×
SRGAN, where N is the up-sampling ratio in each direction from low-resolution to
super-resolution turbulence fields. The model plays the core role of increasing the flow
field dimensions within an EC-SRGAN framework.

This study rebuilds the SRGAN following the architecture proposed by Wang et al.
(2019) that was originally dedicated to image super-resolution. The inner structures of
generator (G) and discriminator (D) have been extensively elucidated by Wang et al. (2019)
and Wu et al. (2023).

As shown in figure 1, the training loss function of G is composed of four contributions.
The first two contributions are mean squared error (LMSE) and adversarial loss (LAdver.).
The LMSE is computed based on the pixel difference between the true (high-resolution
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label) and reconstructed (super-resolution output) turbulent fields:

LMSE = ‖y − G(x)‖2
2, (2.1)

where y is the high-resolution label and x is the lower-resolution input. For the second part,
apply LAdver. of G as follows:

LAdver. = − log(D(G(x)), (2.2)

where D(G(x)) outputs the probability that the super-resolution field originates from
the high-resolution data (Stengel et al. 2020). During the training, the weights in G are
updated in the direction that D(G(x)) returns a probability value approaching to 1, so
that the reconstructed flow distributions could be similar to the true ones. This loss term
could measure the generator’s capability of ‘fooling’ the discriminator, with a lower value
indicating more robust performance of G.

To reconstruct physically realistic turbulence and better identify the sharp gradients,
this study embeds a priori information into the training process. That is, the residual
of the continuity equation of three-dimensional incompressible flow and the errors of
velocity gradients are selected as the third and fourth contributions of the loss function,
respectively:

LConti. = (∂vi/∂xi)SR (i = 1, 2, 3), (2.3)

LGrad. =
3∑

i=1

|(∂vi/∂xi)HR − (∂vi/∂xi)SR|, (2.4)

where the derivatives ∂vi/∂xi (∂u/∂x, ∂v/∂y and ∂w/∂z) are calculated by the
finite difference method and all discretized automatically during the training. The
subscripts ‘HR’ and ‘SR’ denote that the velocity gradients are calculated from the
reference and reconstructed flow fields, respectively. Since the physical quantities are all
non-dimensionalized from the datasets we utilize, it is reasonable to combine the loss
terms with different meanings into the loss function. The total loss function LG of G is
hence defined as:

LG = LMSE + α × LAdver. + β1 × LConti. + β2 × LGrad., (2.5)

where α, β1 and β2 are balance factors to scale magnitudes of respective loss terms.
The α is fixed as 10−3 in accordance with the application of Stengel et al. (2020). To
fully integrate a priori information into the trained model, β1 and β2 should be adjusted
dynamically such that the combined influence of two physics-embedded terms constitutes
more than 50 % of LG at each training epoch. The proportion 50 % is empirically selected
to ensure that the weights of physics-related loss contributions are not less than those of
LMSE and LAdver.. This aims to learn the conservation law and gradient characteristics fully
for the SRGAN model (Wu et al. 2023).

During the training process, the ADAM optimizer is utilized to minimize the total
loss of G with a learning rate of 10−4. In the meantime, it is imperative to monitor the
discriminator loss of D (LD), according to the training procedure in Stengel et al. (2020).
The training process described above is implemented based on Tensorflow-1f.15-GPU.

2.2. The EC-SRGAN framework
Although the SRGAN model increases the data dimensionality of the flow velocity, it
cannot guarantee the reproduction of multi-scale structures in the super-resolution flow
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Figure 2. Schematic workflow of the EC-SRGAN framework for multi-scale reconstruction of TBL. Two or
more super-resolution (or SR) procedures are included in the framework. For the input fields, ki denotes the
wavenumber that nearly corresponds to streamwise integral scale and kmax,LR is the cutoff wavenumber. The
down-sampling ratio R of the first bicubic interpolation is thus determined by ki/kmax,LR.

fields. To realize multi-scale prediction, a reasonable framework design is further needed
based on the trained SRGAN model.

Figure 2 shows the schematic workflow of the EC-SRGAN framework employed in
reconstructing multi-scale TBL. As the inputs of EC-SRGAN, the low-resolution fields of
velocity components are initially obtained by average pooling from the DNS TBL fields.
Next, low-pass filtering is applied to the initial low-resolution fields. This imitates the
energy dissipation of small-scale flow structures when the TBL simulation is conducted in
the low-resolution grids. After the above down-sampling processes, the energy-containing
region should be encompassed by the wavenumber spectra of low-resolution input data.
This ensures that the averaged scale characteristics of flow fields, including turbulent
integral scale, could be appropriately restored and captured.

To successively recover the turbulence energy of wall turbulence from large to small
scales, the filtered low-resolution inputs are subjected to two or more super-resolution
procedures. In each procedure, the trained N× SRGAN model serves as the core for
up-sampling the turbulence. Prior to the up-sampling, DMs are incorporated to filter out
flow components exhibiting excessive energy dissipation in the low-resolution inputs. This
step presents an opportunity for the super-resolution procedure to accurately reproduce
flow structures at larger scales. Once the energy recovery is realized at larger scales,
it is promising that the SRGAN model would progressively infer the smaller-scale flow
structures, leveraging the energy cascade theory.

In the first super-resolution procedure, the streamwise integral scale (lx) of the
low-resolution velocity fields is first calculated. Next, the bicubic interpolation module
is used to further down-sample the low-resolution fields to sparser grid distributions,
where the maximum wavenumber (kxm) nearly corresponds to the lx. Through this
initial down-sampling interpolation, flow scales smaller than lx are filtered out from the
low-resolution inputs. Following this step, the trained N× SRGAN model is utilized
to expand the dimensions of the flow fields. The goal of this procedure is to initially
reproduce the absent flow structures at larger scales within energy-containing and early
inertial subregions.

In the second super-resolution procedure, the initially reconstructed fields are further
down-sampled by another bicubic interpolation, with a ratio of 1/6. The ratio is determined
based on the approximation that the Taylor scale is typically approximately 1/6 of the
integral scale for high-Reynolds-number turbulence. Then, the down-sampled fields are
reconstructed once more by the trained up-sampling core. It is expected to further recover
turbulence energy at larger scales and generate spatial fluctuations at smaller scales within
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the inertial subregion. Through this procedure, the grid dimension of the flow velocity
data is expanded by (1/6 × N) times.

As for multi-ratio super-resolution reconstruction from different levels of low-resolution
inputs, the secret lies in adjusting both the number of super-resolution procedures and
the down-sampling ratio of final nearest interpolation. The (1/6 × N)× super-resolution
procedure should be reconducted, until the following two conditions are both satisfied.
Firstly, the reconstructed flow fields exceed the targeted resolution of high-resolution ones.
Secondly, for the super-resolution outputs, the cutoff wavenumber of the inertial subregion
is larger than six times the kxm corresponding to lx. As a final process, super-resolution
outputs are required to align with the targeted resolution. Thus, the final down-sampling
ratio could be determined. The reconstruction fidelity of super-resolution flow fields is
verified through the comparison with high-resolution ones from the DNS dataset.

3. Data description and processing

In terms of the turbulence generation mechanism, channel flow and boundary layer exhibit
similarities as they are both influenced by wall friction. Therefore, this study plans to apply
the turbulent channel flow database (Lee, Malaya & Moser 2013) available at the Johns
Hopkins Turbulence Databases (JHTDB) to exclusively train and validate the SRGAN
model. Furthermore, zero-shot transfer performance of the trained SRGAN and its carrier
(EC-SRGAN) is evaluated based on the TBL database (Lee & Zaki 2018) from JHTDB.

The selected turbulent channel flow dataset was obtained from DNS. The coordinates x,
y and z are defined as the streamwise, wall-normal and cross-flow, respectively, with the
corresponding velocity components u, v and w. Flow fields of these components are stored
at a dimensionless time step of 0.0065 in a duration of t = [0, 25.9935], resulting in 4000
snapshots of data.

Focused on the reconstruction of near-wall turbulence, training and validating data are
thus obtained from the 2-D planes normal to the streamwise direction (y–z planes). The
domain size of training and validating datasets is fixed to be y × z = 0.3835H × 1.5340H
with 500 × 500 uniformly distributed grid nodes extracted, where H is the channel height.
The grid is dense enough to resolve the small-scale characteristics of turbulent channel
flow. The y–z planes of x = πH and x = 3πH are chosen as the sources of training and
validating datasets, respectively. In the training process, to calculate ∂u/∂x in the LConti.,
velocity components u in the neighbouring y–z planes of x = πH and x = 3πH are both
required. Thus, the data from x = πH + δx and x = 3πH + δx are respectively added to
the training and validating datasets, where δx is the streamwise grid spacing used in DNS.
However, since the ∂v/∂y and ∂u/∂x could be discretized within one y–z plane, there is
no need to extract extra v and w data from two neighbouring planes.

At each instance, it is necessary to establish a mapping between high-resolution and
low-resolution velocity component data for the SRGAN model. As the output labels of
the SRGAN model, high-resolution fields are organized into the dimension of 500 ×
500 × 4, where ‘500 × 500’ is the grid size of the high-resolution field, and ‘4’ indicates
the channel number of the output. The first two channels store the distributions of
velocity component u from two neighbouring planes, while v and w fields are placed
in the last two channels, respectively. Fed as inputs of the N× SRGAN model, the
low-resolution velocity components are obtained by average pooling from corresponding
channels of high-resolution labels to a dimension of 500/N × 500/N × 4. Hereafter, the
low-resolution input is termed as 1/N× input.
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Figure 3. Reconstruction performances of the physics-embedded SRGAN models: instantaneous turbulent
channel flow fields of components v over (a) the validating plane and (b) the extracted subdomain when t =
13.0 and (c) the wall-normal variations of mean absolute divergences of super-resolution fields within the
validating period.

Alternatively, the TBL dataset provided by JHTDB is employed as the testing set. The
dataset was produced via DNS of incompressible flow over a no-slip flat plate. Note that the
definitions of the velocity components are the same as those used in the turbulent channel
flow dataset. The detailed descriptions on domain and grid sizes were presented in Lee &
Zaki (2018) and Yousif et al. (2023). The available data span a period of t = [0, 1175]L/U
with a time step of 0.25L/U where L represents the half-thickness and U is the free stream
velocity. Thus, the dataset here contains 4700 snapshots for EC-SRGAN testing.

The testing set is constituted by the velocity fields from only one targeted y–z plane of
x = 1000L, where the turbulence was verified to be fully developed (Lee & Zaki 2018). The
size of the testing 2-D zone is set as y × z = 23.65L × 117.2L, corresponding to 200 × 400
grid nodes extracted at an equal spacing in each direction. As a high-resolution label, the
data dimension is 200 × 400 × 4 for each testing sample. The size of the high-resolution
data is further reduced by 1/N to 200/N × 400/N × 4, which could be realized by average
pooling and low-pass filtering, as depicted in § 2.2.

4. Results and discussion

4.1. Validations of turbulent channel flow reconstruction based on physics-embedded
SRGAN

This subsection validates the capability of a 12× physics-embedded SRGAN model
to reconstruct the super-resolution channel flow fields from 1/12× low-resolution data
of velocity components. This model would be inserted into the EC-SRGAN as a
super-resolution core in the last three subsections.

In figure 3(a), the instantaneous super-resolution velocity field of components v is
compared with the DNS snapshots at the same instant of t = 13.0. The physics-embedded
SRGAN model could successfully generate the velocity fluctuations at small scales that
are seriously missing in the low-resolution input near the wall. The effect of the embedded
physical loss terms on the SRGAN training process is further assessed according to the
velocity distributions (figure 3b). A subdomain is extracted near the wall for detailed
comparisons. With the help of embedded LConti. and LGrad., the rolling patterns of flow
structures are reproduced better compared with the result from the regular model, as
highlighted by the black ellipses in figure 3(b).

Two indicators are utilized to assess the reconstruction performances of regular and
physics-embedded SRGAN models. As shown in table 1, the mean square error (MSE) and
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Model MSE R2

Regular 2.25 × 10−1 0.9715
Physics-embedded 8.96 × 10−2 0.9864

Table 1. Comparison of reconstruction performances of regular and physics-embedded SRGAN models.
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Figure 4. Zero-shot transfer performances of the physics-embedded SRGAN model in TBL reconstruction:
(a) instantaneous super-resolution velocity fields of component v when t = 727.5 and (b) wavenumber spectra
of the instantaneous u and v fields (Euu and Evv), compared with the corresponding results of high-resolution
and low-resolution (or LR) fields.

determination coefficient (R2) both represent the agreement degree of spatial fluctuations
between the reconstructed and DNS total velocity (

√
u2 + v2 + w2) fields. As physical

loss terms are informed, the physics-embedded SRGAN model achieves lower MSE and
higher R2, indicating even stronger fitting capacity for complex velocity fluctuations. To
further reflect the impact of physical loss terms, the mean absolute divergence (MAD)
reflecting the residuals of the continuity equation is assessed in figure 3(c). The MAD
is obtained by two steps. Firstly, it is computed on each grid node in the reconstructed
flow fields averaged over 4000 time steps (given by (1/4000)

∑ |∇ · v|). Secondly, the
time-averaged divergences are further averaged across the nodes at the same height away
from the wall surface. Smaller MAD values approaching 0 indicate a closer match between
the reconstructed and true incompressible flow fields. As shown in figure 3(c), below the
log-law region (y+ < 30), the divergences computed from the regular SRGAN are two
to three times as large as those from the physics-embedded model in the corresponding
height. The current physics-embedded approach is proved to improve the physics-based
fidelity of reconstructed velocity gradient distributions for the SRGAN model.

4.2. Zero-shot reconstruction of TBL only based on 5× super-resolution core
To evaluate the applicability of the proposed zero-shot approach, the TBL fields are
intended to be reconstructed over the plane from the energy-filtered low-resolution
inputs. The filtered inputs could be treated as the numerical simulation results from the
low-resolution mesh. Without any transfer training, the physics-embedded SRGAN model,
i.e. super-resolution core in EC-SRGAN, is directly utilized to predict the super-resolution
velocity fields of TBL (zero-shot transfer).

Here, the 5× super-resolution of the TBL is taken as the first testing case for model
transfer. Figure 4(a) illustrates the super-resolution wall-normal velocity (v), along with
the low-resolution and DNS fields at the same instant (t = 727.5). Disappointingly,
the super-resolution field exhibits severe magnitude underestimations and non-physical
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Figure 5. Zero-shot transfer performances of EC-SRGAN framework in (a) instantaneous TBL
reconstructions for three velocity components when t = 727.5 and (b) wavenumber spectra of the instantaneous
u, v and w fields (Euu, Evv and Eww) through two SR procedures.

fluctuations. Figure 4(b) presents wavenumber spectra of the u and v fields (Euu and Evv)
at t = 727.5 as a function of kz (i.e. wavenumber along the z direction), which elucidate
horizontal distributions and energy cascade characteristics of turbulent structures near
the wall. In the lower-wavenumber region, the spectra of super-resolution u and v fields
maintain similar dissipation trends with those of the corresponding low-resolution inputs,
violating the −5/3 power law in the inertial subregion. They both rebound at approximately
the cutoff wavenumbers of low-resolution inputs and maintain higher energy levels
within the higher-wavenumber region, accounting for the odd fluctuations occurring in
figure 4(a). The predicted spectra of streamwise and non-streamwise velocities jointly
reflect that zero-shot transfer relying solely on a super-resolution core cannot generate
the physically realistic turbulence conforming to the energy cascade theory.

4.3. Zero-shot reconstruction of TBL based on 5× EC-SRGAN
This subsection delves into the applicability of zero-shot reconstruction using EC-SRGAN.
A super-resolution core is inserted into EC-SRGAN to enforce the 5× reconstruction.
Within EC-SRGAN, the down-sampling level of R× is set as 5/12 in the initial bicubic
interpolation module, following the principle introduced in § 2.2. Subsequently, the
first super-resolution procedure involves feeding the down-sampled low-resolution fields
into the SRGAN model. Instead of the 5× SRGAN model, the trained 12× model is
informed in the EC-SRGAN, anticipating reproducing more multi-scale structures from
the low-resolution inputs. Figure 5(a) shows the instantaneous TBL of three velocity
components reconstructed by EC-SRGAN. Through the first super-resolution procedure,
the reconstructed patterns of large-scale velocity structures match well with those of DNS
fields.

Figure 5(b) exhibits the horizontal wavenumber spectra of three velocity components.
Notably, the turbulent energy recovers towards that of DNS results during the first
reconstruction. The −5/3 downward trends persist up to 2–4 times the wavenumber
corresponding to lx of the low-resolution inputs (∼1.2 × 10−1), after which dissipations
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Figure 6. Zero-shot transfer performances of EC-SRGAN framework in TBL reconstructions for vertical
profiles of (a) turbulent intensity and (b) horizontal integral length scales of three velocity components.

occur as wavenumbers increase. It suggests that the first super-resolution procedure
primarily focuses on initially reproducing velocity structures and recovering turbulent
energy at larger spatial scales, i.e. the energy-containing and early inertial subregion.

The second procedure is hence required for enhancing the recovery of turbulent energy
and replicating the smaller-scale velocity fluctuations. This procedure achieves a (1/6 ×
12)× super-resolution, followed by a 1/2 nearest interpolation to align the resolutions.
Firstly, the instantaneous flow fields are qualitatively compared. In figure 5, the second
super-resolution procedure notably enhances the generation of smaller-scale structures
near the wall, particularly for the wall-normal and cross-flow velocity components.

Then, the turbulent intensities of reconstructed fields are calculated. Figure 6(a)
respectively presents the vertical profiles of streamwise, wall-normal and transverse
turbulence intensity (σu( y)/Uavg( y), σv( y)/Uavg( y) and σw( y)/Uavg( y)). During the
testing period, the turbulence statistics are calculated over 4000 time steps to reach the
stationary states. Through two super-resolution procedures, as indicated in figure 6(a),
three reproduced profiles of EC-SRGAN are all generally consistent with spatial
distributions of turbulence intensities in the DNS data. From 1/5× low-resolution inputs,
the EC-SRGAN could significantly recover the high turbulent intensity characteristics
in the near-wall region approaching to those of the DNS fields, although there are
slight magnitude deficits. The recovery of high turbulent intensities facilitates the
EC-SRGAN recognizing the kinetic energy and momentum transport of near-wall vortex
structures, which are intricately linked to the turbulent scale characteristics. Therefore, the
multiple turbulent length scales are expected to be reasonably inferred from the accurate
reproductions of turbulence intensities.

Next, to check the reconstruction on the averaged turbulent scales, the vertical profiles
of horizontal integral length scales are compared between the DNS and reconstructed flow
fields in figure 6(b). As shown in figure 6(b), three length scales in the reconstructed fields
all match well with those in DNS references, through two super-resolution procedures
of EC-SRGAN. It indicates that EC-SRGAN achieves ideal prediction accuracy on the
average size of the most energetic turbulent eddies.

Finally, we analyse the small-scale reconstruction of the turbulent energy. In figure 5(b),
through two super-resolution procedures, the turbulent energy demonstrates continuous
recovery at larger scales, closely matching the DNS references. Furthermore, at smaller
scales, the predicted end of the inertial subrange extends beyond 2–4 times to over 10
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Figure 7. Flexibility examination of multi-ratio reconstruction by EC-SRGAN: (a) reconstructed
instantaneous v fields from 1/7× and 1/12× low-resolution (or LR) inputs and (b) wavenumber spectra of
corresponding super-resolution (or SR) outputs compared with the results of DNS field.

Resources Method Reθ of selected plane R2 MAD

JHTDB DNS ∼1300 0.9543 5.65 × 10−3

Towne et al. (2023) DNS ∼1900 0.9216 5.47 × 10−3

Table 2. Comparison of reconstruction performances of EC-SRGAN between different TBL datasets.

times the wavenumber corresponding to the lx. This expansion signifies that, through a
minimum of two reconstruction steps, the small-scale velocity characteristics could be
physically preserved from the high-fidelity TBL fields.

4.4. Flexibility examination of multi-ratio reconstruction by EC-SRGAN
Furthermore, to extend the flexibility of EC-SRGAN, it is expected that the EC-SRGAN
could realize the TBL reconstruction with multiple super-resolution ratios from
different levels of coarse turbulent fields. Figure 7(a,b) illustrate instantaneous v fields
reconstructed by EC-SRGAN from 1/7 and 1/12× low-resolution inputs. Superior to
other SRGAN-based reconstruction tests of wall turbulence (Güemes et al. 2021), the
EC-SRGAN could maintain similar reconstruction performances, even though it is input
by low-resolution fields with different filtering levels.

Figure 7(c) presents the wavenumber spectra of the wall-normal velocity fields
reconstructed from 1/7 and 1/12× low-resolution inputs by the EC-SRGAN. Despite
slight energy loss, the framework succeeds in replicating the −5/3 law of energy cascade
in the inertial subrange, irrespective of the low-resolution field levels provided. It can
be concluded that EC-SRGAN can accommodate multiple super-resolution tasks to
reconstruct multi-scale structures with high physical fidelity. Moreover, the proposed
super-resolution framework exhibits commendable robustness in TBL reconstruction
against the mesh coarseness of low-resolution fields.

4.5. Generalization capability of EC-SRGAN among different datasets
Finally, to verify the generalization capability of EC-SRGAN, reconstruction
performances between different TBL datasets are compared in table 2. Besides data
from JHTDB (Reθ ∼ 1300, Reθ is Reynolds number based on momentum thickness
θ , i.e. Reθ = Uθ/v where U is the free stream velocity and v denotes the kinematic
viscosity), another TBL plane is selected from a DNS dataset (Towne et al. 2023) for TBL
reconstruction testing, which has even higher Reθ (∼1900). Reconstruction performances
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Figure 8. Wavenumber spectra of the reconstructed (or SR) instantaneous fields: (a) u, (b) v and (c) w in
TBL dataset of Towne et al. (2023), compared with the corresponding low-resolution (or LR) inputs and
high-resolution results.

are evaluated by R2 and MAD, where the MAD computed across shear dominating region
(y+ < 300) reflects the reproducibility of the incompressible flow. As shown in table 2, for
an alternative dataset with higher Reθ , the current reconstruction framework can achieve
good fitting of velocity fluctuations (R2 > 0.9) and maintain similar physical fidelity
(similar MAD). Figure 8 exhibits the wavenumber spectra of three velocity component
fields reconstructed from 1/7× low-resolution inputs by the EC-SRGAN. For velocity data
at higher Reθ , the energy cascade in the inertial subregions can still be well reproduced,
although the energy in the dissipation region is slightly underestimated.

We further analysed the reason why the current method shows remarkable generalization
capability across various TBL datasets. Initially, it is essential to acknowledge that
turbulence contains similarities in vortex structures across a spectrum of spatial scales.
Fortunately, in the SRGAN model within EC-SRGAN, the convolutional filters burden the
task to compress and expand the multi-scale distributions of turbulence fields. They play a
pivotal role in nonlinearly capturing the data features linked to the invariants of the velocity
gradient tensor Q and R. Once the nonlinear invariants are identified, the super-resolution
procedures can effectively reconstruct flow structures with sufficient strain and vortex
stretching. Furthermore, through the multi-scale feature extraction, the energy cascade
in TBL could be accurately represented by the super-resolution procedures (Mi, Jin &
Li 2023). This, in turn, contributes to enhancing the similarity of spatial distributions
across different Reynolds numbers. Analogously, the scale-invariant features are also
incorporated during the image feature extraction using CNN (Fukami, Goto & Taira 2024).
Therefore, across various TBL datasets, the similarities of multi-scale vortical structures
could be well-preserved, showcasing high robustness of the EC-SRGAN.

5. Conclusions

This study proposes EC-SRGAN, a flexible framework designed to reconstruct small-scale
motions in wall turbulence through zero-shot transfer. The framework employs iterative
super-resolution procedures to reconstruct multi-scale turbulent structures. The model is
trained once using the turbulent channel flow database and then applied to predict the
TBL field. Firstly, EC-SRGAN demonstrates remarkable transfer capability by accurately
predicting the instantaneous velocity fields of TBL and reproducing wavenumber spectra
with high fidelity compared to DNS results. Secondly, the framework exhibits high
flexibility in reconstruction from various levels of coarse flow fields while preserving
physical accuracy. Lastly, EC-SRGAN possesses high robustness in TBL reconstruction
across different TBL datasets, likely due to its incorporation of scale invariance in
turbulence.
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