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The depth-integrated horizontal momentum equations and continuity equation are
employed to develop a new model. The vertical velocity and pressure can be expressed
exactly in terms of horizontal velocities and free-surface elevation, which are the only
unknowns in the model. Dividing the water column into elements and approximating
horizontal velocities using linear shape function in each element, a set of model equations
for horizontal velocities at element nodes is derived by adopting the weighted residual
method. These model equations can be applied for transient or steady free-surface flows
by prescribing appropriate lateral boundary conditions and initial conditions. Here, only
the wave–current–bathymetry interaction problems are investigated. Theoretical analyses
are conducted to examine various linear wave properties of the new models, which
outperform the Green–Naghdi-type models for the range of water depth to wavelength
ratios and the Boussinesq-type models as they are capable of simulating vertically sheared
currents. One-dimensional horizontal numerical models, using a finite-difference method,
are applied to a wide range of wave–current–bathymetry problems. Numerical validations
are performed for nonlinear Stokes wave and bichromatic wave group propagation in
deep water, sideband instability, regular wave transformation over a submerged shoal
and focusing wave group interacting with linearly sheared currents in deep water.
Very good agreements are observed between numerical results and laboratory data.
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Lastly, numerical experiments of wave shoaling from deep to shallow water are conducted
to further demonstrate the capability of the new model.

Key words: coastal engineering, surface gravity waves

1. Introduction

Numerical solutions for free-surface flows can be obtained by solving the Navier–Stokes
(N–S) equations with necessary boundary conditions. The free-surface location is
part of the solution and the free-surface boundary conditions are nonlinear. When
viscous/turbulent effects are negligible, the N–S equations reduce to Euler’s equations.
The direct numerical solutions of N–S and Euler’s equations are computationally
expensive for three-dimensional (3-D) problems, especially for large-scale problems,
since the solution solver for the pressure Poisson equation (PPE) requires a significant
amount of computing time. Furthermore, tracking the location of the free surface is also
challenging. An attractive alternative is the so-called depth-integrated models, in which
the model equations are solved only in horizontal dimensions after certain approximations
are invoked for the vertical profiles of the velocity and pressure fields. Theoretically
speaking, with proper descriptions of lateral boundary conditions and initial conditions,
appropriate numerical algorithms could be selected to solve these two-dimensional
horizontal (2-DH) model equations for transient free-surface flows, including water wave
propagation and scattering problems and transient/steady hydraulic flow problems. Based
on the background and procedures for deriving existing 2-DH models, they can be divided
into two general categories: Boussinesq-type models and Green–Naghdi-type models.
A brief review of each category is provided as follows.

Denoting H as the characteristic wave height, k as the characteristic wavenumber and h
as the water depth, Boussinesq-type models adopt the Boussinesq approximation, where
the nonlinearity, ε = H/h, and frequency dispersion, μ2 = (kh)2, are equally small and
require flows to be irrotational or weakly rotational. The traditional Boussinesq models
are of O(μ2) (Peregrine 1967). Over the last 40 years, great efforts have been made
to extend the applicable range of the traditional Boussinesq equations from relatively
shallow to deeper water and from weak to full nonlinearity (e.g. Madsen & Sørensen 1992;
Nwogu 1993; Liu 1995; Wei et al. 1995; Gobbi, Kirby & Wei 2000; Madsen & Agnon
2003; Lynett & Liu 2004; Liu, Fang & Cheng 2018). Generally speaking, it is relatively
straightforward to include the full nonlinearity. Wei et al. (1995) and Liu (1995) presented
such models by specifying ε = O(1) and expanding the governing equations and boundary
conditions only in terms of μ2. These fully nonlinear models no longer satisfy the
Boussinesq approximation. However, they have been called the Boussinesq-type models in
the literature. It is more challenging to expand the model capability into deep-water depth
regimes. Gobbi et al. (2000) introduced the standard higher-order (μ4) extension of the
traditional μ2 Boussinesq model (Nwogu 1993). Although the resulting model can indeed
be applied to a deeper-water regime, the model equations contain fifth-order derivatives,
requiring more boundary conditions and greater computing effort.

To avoid these issues, Lynett & Liu (2004) introduced the multi-layer model concept.
In their model, the wave motions in each layer satisfy the Boussinesq approximation,
and the vertical profile of the horizontal velocity in each layer is approximated by
quadratic polynomials being matched at the layer interface with the horizontal velocity
in the adjacent layer. The resulting model only consists of spatial derivatives up to three.
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New 2-D horizontal free-surface-flow models

An alternative approach was first proposed by Agnon, Madsen & Schäffer (1999)
and further developed by Madsen, Bingham & Liu (2002), whose approach was
formulated based on the exact boundary condition and the approximated solution of
the Laplace equation for irrotational flow. The vertical velocity component is retained
in the formulation, and the resulting model consists of six coupled equations solving
for free-surface elevations, horizontal gradient of the velocity potential at the surface,
horizontal and vertical velocity components at the still water level and computational
horizontal and vertical velocity components at an arbitrary level.

In general, Boussinesq-type models are useful tools for simulating wave transformations
from deep water to shallow water, while maintaining a good balance between efficiency
and accuracy. However, most Boussinesq-type models are only applicable up to the
deep-water limit, which is restricted by the weakly dispersive assumption in the
Boussinesq approximation. The basic assumption of weak rotationality further restricts
models’ applications to wave–current interaction problems; only depth-uniform or very
weakly sheared current can be considered in Boussinesq-type models. A concise literature
review of these depth-integrated models can be found in Kirby (2016).

Green–Naghdi-type models approximate the vertical profile of the velocity components,
both horizontal and vertical, in a polynomial form in terms of the vertical coordinate.
Following Kantorovich & Krylov (1958), the resulting momentum equations are satisfied
in a weighted-averaged sense (Shields & Webster 1988). If the vertical profile of
the horizontal velocity is assumed to be depth-uniform, the simplest Green–Naghdi
equations (Green, Laws & Naghdi 1974; Green & Naghdi 1976) or Serre equations (Serre
1953) are derived, which have been used for studying waves generated by a moving
pressure disturbance (Ertekin, Webster & Wehausen 1986). Employing higher-degree
polynomials for the velocity profiles, Webster, Duan & Zhao (2011) derived more
complicated Green–Naghdi-type models with more unknowns but better accuracy, which
have been applied to study several wave transformation and wave–current interaction
problems (Zhao, Duan & Ertekin 2014; Zhao et al. 2023). However, in these models
the vertical momentum equation was not satisfied exactly and the analytical expression
for the non-hydrostatic pressure field was not available. Using a combined approach
from Boussinesq-type shallow-water wave scaling and the polynomial representation
of the horizontal velocity in Green–Naghdi equations, Zhang et al. (2013) derived the
Boussinesq–Green–Naghdi rotational water wave theory. The free coefficients used in the
polynomial approximation have been optimised to achieve the best model performance in
terms of various linear and nonlinear wave properties.

Yang & Liu (2020) (referred to as YL20 herein) presented two sets of depth-integrated
wave–current models. The major difference between models developed by YL20 and
other existing models is that YL20 models are based on the depth-integrated continuity
equation and momentum (Euler’s) equations in terms of horizontal velocity components
and free-surface elevation. As mentioned earlier, these equations are exact and the
free surface and bottom boundary conditions are also satisfied. More importantly, the
vertical velocity component and the pressure field can be expressed analytically in terms
of the horizontal velocity and the free-surface elevation. Approximating the vertical
profiles of the horizontal velocity components by polynomials, and using the Galerkin
and subdomain methods, YL20 constructed GK and SK models, respectively. By a
theoretical linear analysis, the SK models demonstrated better accuracy than GK models
and Green–Naghdi-type models in terms of various wave properties. Both SK and GK
models were also validated with several laboratory experiments. The SK models were
also extended to simulate waves interacting with arbitrarily sheared currents (Yang & Liu
2022), which cannot be handled by Boussinesq-type and Green–Naghdi-type models.
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In both Green–Naghdi models and YL20 models, one polynomial of a certain degree
is used to approximate the horizontal velocity profile in the entire water column, yielding
models of different complexity and accuracy. In this study, we formalise the approximation
of the horizontal velocity components in the water column by using the finite-element
method (FEM; Zienkiewicz, Taylor & Zhu 2013), i.e. the water column is divided into
several elements, and the horizontal velocity profile within each element is approximated
by shape functions in terms of the vertical coordinate. Whereas the continuity of
horizontal velocity is satisfied automatically, the vertical velocity and pressure fields
at the finite-element nodes are enforced. The resulting residuals from the horizontal
momentum equations are minimised via the method of weighted residuals (Zienkiewicz
et al. 2013). A set of 2-DH equations for horizontal velocities at finite-element nodes is
derived. In this paper, the linear shape functions are adopted, although the formulations
can be readily extended to higher-order shape functions. A theoretical analysis shows
that the new models significantly outperform Green–Naghdi models in terms of their
applicability over the range of water depth to wavelength ratios, while maintaining the
advantage of dealing with waves interacting with vertically sheared currents compared
with Boussinesq-type models. The resulting 2-DH model equations can be solved by
using appropriate numerical algorithms with prescribed lateral boundary conditions and
initial conditions. In the present paper, models employing two linear elements and
three linear elements are numerically implemented in the 1-D horizontal domain with a
five-point central differencing combined with a fourth-order Runge–Kutta method for time
integration. Various numerical validations are performed to study nonlinear Stokes wave
and bichromatic wave group propagation in deep water, sideband instability in deep water,
regular wave transformation over a submerged shoal and newly conducted experiments of
focusing wave group interacting with linearly sheared currents in deep water, and very
good agreement is obtained between the numerical results and laboratory experiments.

This paper is organised as follows. First, § 2 summarises the mathematical derivation
of the depth-integrated model. A general derivation of models employing any number
of linear elements is presented. An analytical analysis is carried out in § 3 to examine
the Stokes-wave-type properties of the new models; their performance is compared with
other depth-integrated models. The mathematical models are implemented numerically
and validated by benchmark laboratory experiments in § 4. Numerical experiments of the
wave shoaling process from deep water to shallow water are conducted and discussed in
§ 5. Finally, conclusions and drawn in § 6.

2. Derivation of the 2-DH model equations

2.1. Exact governing equations in three dimensions
Assuming viscous and turbulent effects are negligible, the present models are based on
3-D Euler’s equations with boundary conditions for incompressible fluid bounded by a
free surface and a stationary bottom. The sea bottom and the free surface are prescribed by
z∗ = −h(x∗, y∗) and z∗ = η(x∗, y∗, t∗), respectively, where the x∗- and y∗-axes are located
at the still water level and the z∗-axis points upwards. A σ -coordinate transformation
is introduced in this derivation to map the water column from [−h, η] in the Cartesian
coordinate, to a fixed range of [0, 1] in the σ -coordinate. This transformation is defined as
follows:

t = t∗, xi = xi
∗, σ = z∗ + h

h + η
= z∗ + h

H
, (2.1a–c)

999 A32-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.604


New 2-D horizontal free-surface-flow models

where i = 1, 2 and (x1 = x, x2 = y). The independent variables in the σ -coordinate are
(xi, σ, t) with σ being a function of the free-surface elevation η(x∗

i , t∗) and sea-bottom
configuration h(x∗

i ). The total water depth has been denoted as H = h + η. Finally, the
Euler’s equations and boundary conditions in the σ -coordinate are

∂ui

∂xi
+ ∂ui

∂σ
σxi + ∂w

∂σ
σz = 0, (2.2)

∂ui

∂t
+ ∂ui

∂σ
σt + uj

(
∂ui

∂xj
+ ∂ui

∂σ
σxi

)
+ w

∂ui

∂σ
σz = − 1

ρ

(
∂p
∂xi

+ ∂p
∂σ

σxi

)
, (2.3)

∂w
∂t

+ ∂w
∂σ

σt + uj

(
∂w
∂xj

+ ∂w
∂σ

σxi

)
+ w

∂w
∂σ

σz = − 1
ρ

∂p
∂σ

σz − g, (2.4)

p|s = 0, σ = 1, (2.5)

∂η

∂t
+ ui|s ∂η

∂xi
= w|s, σ = 1, (2.6)

ui|b ∂h
∂xi

+ w|b = 0, σ = 0, (2.7)

where ui (i = 1, 2) and w are the horizontal and vertical velocity components, respectively,
and p is the pressure field. The subscript s and b denote the physical variables being
evaluated at the free surface and bottom, respectively. Here, the density of water, ρ,
and the gravitational acceleration, g, are constants. The Euler’s equations consist of
continuity equation (2.2) and horizontal and vertical momentum equations (2.3) and (2.4),
respectively. On the free surface, the dynamic and kinematic boundary conditions are
specified in (2.5) and (2.6), respectively. Along the solid bottom, (2.7) represents the
no-flux condition. Lastly, σt, σxi , and σz denote the partial derivatives of σ with respect to
t∗, x∗

i and z∗, respectively, which can be obtained by the chain rule as follows:

σt = −σ
1
H

∂H
∂t

, σxi = 1
H

(
∂h
∂xi

− σ
∂H
∂xi

)
, σz = 1

H
. (2.8a–c)

To close the problem, appropriate lateral boundary conditions and initial conditions need
to be prescribed.

It is well-known that the governing equations and boundary conditions shown in
(2.2)–(2.7) can be combined into a set of governing equations for the horizontal velocity
components, which depend on the vertical coordinate. The procedure is outlined as
follows. By vertically integrating the continuity equation (2.2) from σ = 0 to 1 and
applying the boundary conditions, (2.6) and (2.7), the well-known depth-integrated
continuity equation can be obtained, i.e.

∂H
∂t

+ ∂

∂xi

[∫ 1

0
(Hui) dσ

]
= 0. (2.9)

Note that the above equation is exact and represents the mass conservation, integrated over
the water column.

On the other hand, the vertical velocity can be derived by vertically integrating the
continuity equation (2.2) from the bottom (σ = 0) to an arbitrary elevation in the water
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column and applying the kinematic boundary condition (2.7) at the bottom. Thus,

w = −ui|b ∂h
∂xi

− H
[∫ σ

0

(
∂ui

∂xi
+ ∂ui

∂σ
σxi

)
dσ

]
. (2.10)

Similarly, the expression for the pressure field is derived by vertically integrating the
vertical momentum equation (2.4) from an arbitrary elevation to the free surface (σ = 1)
and applying the dynamic boundary condition (2.5). Hence,

p = ρH

[
g(1 − σ) +

∫ 1

σ

(
∂w
∂t

+ ∂w
∂σ

σt + uj

(
∂w
∂xj

+ ∂w
∂σ

σxi

)
+ w

∂w
∂σ

σz

)
dσ

]
, (2.11)

where the first term represents the hydrostatic pressure and the second term is the
non-hydrostatic pressure. Finally, by substituting the pressure field (2.11) into (2.3), the
horizontal momentum equation can be organised into the following form:

∂ui

∂t
+ ∂ui

∂σ
σt + uj

(
∂ui

∂xj
+ ∂ui

∂σ
σxi

)
+ w

∂ui

∂σ
σz = −g

∂(H − h)

∂xi
− ∂pnh

∂xi
− ∂pnh

∂σ
σxi,

(2.12)
where

pnh = H
∫ 1

σ

[
∂w
∂t

+ ∂w
∂σ

σt + uj

(
∂w
∂xj

+ ∂w
∂σ

σxi

)
+ w

∂w
∂σ

σz

]
dσ. (2.13)

Note that the vertical velocity w can be expressed in terms of ui and H, as shown in (2.10).
The above vertically integrated governing equations can be also found in Phillips (1966),

where they are derived in Cartesian coordinates. The 3-D Euler’s equation and boundary
conditions (2.2)–(2.7) are now organised into (2.9) and (2.12) without any approximations,
in which only ui and H are unknown quantities to be solved. However, the horizontal
velocity components ui still depend on the vertical coordinate. Therefore, to construct
2-DH models, approximations are needed for the vertical profile of the horizontal velocity
components so as to remove the vertical dependency (Yang & Liu 2020). Since the vertical
integration has been used throughout the derivation, suggesting that the free surface must
be a single-valued function. Therefore, the resulting models cannot be used for describing
the wave overturning phenomena in the pre-plunging breaker, which is a restriction shared
by all depth-integrated models.

2.2. Approximated governing equations in 2-DH

2.2.1. FEM discretisation in the water column
In this paper, the vertical profiles of the horizontal velocity components are approximated
by adopting the finite-element discretisation (Zienkiewicz et al. 2013). The water column,
spanning from σ = 0 to 1, is divided into several elements and different shape functions
can be used to represent the velocity variations within each element. Here, we shall
only employ the linear elements; namely, the horizontal velocity is assumed to be linear
within each element. However, the procedure can be readily extended to use higher-order
elements, resulting in more complex models.
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1
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ui,M–1
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e1

eM
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ck+1

ck

c3

c2

c1

1

cM

NM
2

NM
1

Figure 1. Sketch of the FEM discretisation of horizontal velocity in the water column. Elements are denoted
as ek. Lines in colours, shape functions corresponding to each node; thick black line, approximated horizontal
velocity profile.

As shown in figure 1, the water column is discretised into M linear elements with
(M + 1) nodes. The global coordinates of the nodes are denoted as ck, with element ek
being defined in ck < σ < ck+1. Note that e1 denotes the element connected to the bottom
(σ = 0), while eM is next to the free surface (σ = 1). The trial horizontal velocity
component in element ek, i.e. ũi,k, is constructed as

ũi,k(xi, σ, t) = ui,kNk
1 + ui,k+1Nk

2, ck < σ < ck+1, (2.14)

where ui,k and ui,k+1 are the nodal horizontal velocities, which are also sketched in
figure 1 for clarity. The shape function Nk, corresponding to the node with an elevation of
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σ = ck, is defined (Zienkiewicz et al. 2013, p. 56) as

Nk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, σ < ck−1,

Nk−1
2 = σ − ck−1

ck − ck−1
, ck−1 � σ � ck,

Nk
1 = σ − ck+1

ck − ck+1
, ck < σ � ck+1,

0, σ > ck+1,

(2.15)

in which both non-zero parts are linear functions in σ . Note that the shape functions have
only one non-zero part for the boundary nodes at the bottom and the free surface. Finally,
the trial solution for the horizontal velocity in element ek, can be written in the following
general form:

ũi,k(xi, σ, t) = 1
ck+1 − ck

[
(ck+1 − σ)ui,k + (σ − ck)ui,k+1

]
. (2.16)

Substituting the approximated horizontal velocity as given in (2.16) into the exact
depth-integrated continuity equation (2.9), the resulting depth-integrated continuity
equation reads

∂H
∂t

+
M∑

k=1

1
2

{
(ck+1 − ck)

∂

∂xi

[
(ui,k + ui,k+1)H

]} = 0. (2.17)

Once the approximation on the horizontal velocity profile is made, the vertical velocity
can be found in (2.10). The vertical velocity within each element can be expressed in a
piecewise manner as

w̃k(xi, σ, t) = w̃k−1|ck − 1
σz

∫ σ

ck

(
∂ ũi,k

∂xi
+ ∂ ũi,k

∂σ
σxi

)
dσ, ck < σ < ck+1. (2.18)

For the lowest element adjacent to the bottom, k = 1 and e1 : c1 < σ < c2, the boundary
condition (2.7) is applied, i.e. w̃0|c1=0 = w|b. The vertical velocity in the upper element
can be obtained by integrating the continuity equation piecewisely and using the vertical
velocity evaluated at the node shared with the lower element as the boundary condition.
Substituting the approximation for the horizontal velocity equation (2.16) into (2.18), the
vertical velocity in element ek is a quadratic function in terms of the vertical coordinate,
which reads

w̃k(xi, σ, t) = wk,0 + wk,1σ + wk,2σ
2, ck < σ < ck+1, (2.19)

where

wk,0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ui,1

∂h
∂xi

, if k = 1,

−ui,1
∂h
∂xi

+
k−1∑
m=1

2∑
n=1

cn
m+1(wm,n − wm+1,n), if k > 1;

(2.20)

the expressions for wk,1 and wk,2 are lengthy and are shown in the supplementary material
§ A available at https://doi.org/10.1017/jfm.2024.604 for completeness.
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Similarly, the pressure in each element can be also obtained in a piecewise manner from
(2.11) as

p̃k(xi, σ, t) = p̃k+1|ck+1 + ρgH(ck+1 − σ)

+ ρH
∫ ck+1

σ

[
∂w̃k

∂t
+ ∂w̃k

∂σ
σt + ũj,k

(
∂w̃k

∂xj
+ ∂w̃k

∂σ
σxj

)
+ w̃k

∂w̃k

∂σ
σz

]
dσ,

ck < σ < ck+1, (2.21)

For the uppermost element next to the free surface, eM : cM < σ < cM+1, the boundary
condition for the integration is the free-surface dynamic boundary condition, (2.5), i.e.
p̃M+1|cM+1 = p|s = 0. In addition, the boundary condition for the lower element can be
provided by the pressure evaluated at the element interface from the element above. By
substituting the expressions for the horizontal and vertical velocity (2.16) and (2.19), the
pressure field in element ek reads

p̃k(xi, σ, t) = ρH( pk,0 + pk,1σ + pk,2σ
2 + pk,3σ

3 + pk,4σ
4), ck < σ < ck+1, (2.22)

where

pk,0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g(1 − σ) +

4∑
n=1

pM,n, if k = M,

g(1 − σ) +
4∑

n=1
pM,n +

M−1∑
m

4∑
n=1

cn
m+1( pm,n − pm+1,n), if k < M.

(2.23)

The full expressions of pk,n, n = 1, 2, 3, 4 are quite lengthy and are only shown in
the supplementary material § B for brevity and completeness. The pressure field is
a fourth-degree polynomial in terms of the vertical coordinate in each element. We
reiterate here that in the present FEM approach with linear element discretisation, the
corresponding horizontal velocity components are linear functions in σ , see (2.16),
whereas the vertical velocity component is a quadratic function. These dependencies are
the results of satisfying the conservation laws and boundary conditions.

2.2.2. Galerkin weighted residual method
The trial solutions of the vertical velocity and pressure fields are substituted into the
re-organised exact horizontal momentum equation (2.12) to calculate the residual, which
reads

Ri,k = ∂ ũi,k

∂t
+ ∂ ũi,k

∂σ
σt + ũj,k

(
∂ ũi,k

∂xj
+ ∂ ũi,k

∂σ
σxj

)
+ w̃k

∂ ũi,k

∂σ
σz + 1

ρ

(
∂ p̃k

∂xi
+ ∂ p̃k

∂σ
σxi

)
.

(2.24)

By substituting the expressions for horizontal, vertical velocity and pressure field into the
equation above, the residual in element ek becomes

Ri,k =
4∑

n=0

Ri,k,nσ
n, ck < σ < ck+1. (2.25)
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The detailed expressions for Ri,k,n, are only shown in the supplementary material § C
for brevity. The residual is also a fourth-degree polynomial.

To minimise the global errors caused by the approximations in velocity profile, the
Galerkin weighted residual method is adopted, in which the shape function is used as the
weighting function. The weighted residual corresponding to each node can be expressed
as∫ 1

0
NkRi dσ =

∫ ck

ck−1

Nk−1
2 Ri,k−1 dσ +

∫ ck+1

ck

Nk
1Ri,k dσ = 0, k = 1, . . . , (M + 1).

(2.26)

Thus, the total number of momentum equations is also (M + 1), which makes the equation
system closed. Since Ri,k,n is a fourth-degree polynomial in terms of σ , the above equation
can be written more explicitly as follows:

4∑
n=0

(
Ri,k−1,n

∫ ck

ck−1

Nk−1
2 σ n dσ + Ri,k,n

∫ ck+1

ck

Nk
1σ

n dσ

)
= 0, k = 1, . . . , (M + 1).

(2.27)
The vertical integrals in the equation above can be integrated analytically, i.e.∫ ck

ck−1

Nk−1
2 σ n dσ = F1(k, n) = 1

ck − ck−1

(
cn+2

k − cn+2
k−1

n + 2
− ck−1(cn+1

k − cn+1
k−1)

n + 1

)
,

(2.28)∫ ck+1

ck

Nk
1σ

n dσ = F2(k, n) = 1
ck − ck+1

(
cn+2

k+1 − cn+2
k

n + 2
− ck+1(cn+1

k+1 − cn+1
k )

n + 1

)
, (2.29)

which are only functions of constants ck and n. Using the notation introduced previously,
(2.27) can be written as

4∑
n=0

(Ri,k−1,nF1(k, n) + Ri,k,nF2(k, n)) = 0, (2.30)

for k = 1, . . . , (M + 1). Equations (2.17) and (2.30) form the final depth-integrated
equation system for solving the total water depth H and nodal horizontal velocities ui,k.
Whereas the accuracy of models strongly depends on not only the number of elements
but also element mesh configurations, the complexity of models is only determined by the
number of elements. The resulting models are named as LFE-M, where M denotes the
number of linear elements.

While a general derivation of models employing any number of linear elements is
presented above, for demonstration purposes, we show explicitly the model equations of a
linearised two-linear-element model, i.e. LFE-2, on a constant water depth (i.e. h(x) = d),
in one-dimensional horizontal (1-DH) space. The depth-integrated continuity equation is

∂η

∂t
+ 1

2
d

[
c2

∂u1

∂x
+ ∂u2

∂x
+ (1 − c2)

∂u3

∂x

]
= 0, (2.31)

and three momentum equations are written in the following form for better clarity, i.e.

Aij
∂uj

∂t
+ Bijd2 ∂3uj

∂x2∂t
+ Dig

∂η

∂x
= 0, (2.32)
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New 2-D horizontal free-surface-flow models

where i = 1, 2, 3, j = 1, 2, 3. Moreover, A, B and D are constant coefficients, depending
only on c2, and their detailed expressions are given in Appendix A for brevity. Similar
to Boussinesq-type models, terms with mixed spatial and temporal derivatives provide
the frequency dispersion effects. The linear theoretical analysis carried out in § 3 is
also performed on the above-linearised model equations for the LFE-2 model. In terms
of nonlinear terms, the highest spatial derivatives always remain at three regardless of
the number of elements employed, whereas higher-order Boussinesq-type models require
higher-order (>3) spatial differentiations.

One of the major differences between the present approach and the direct FEM
formulation, solving the 3-D Euler’s equation, is that in the present approach the vertical
velocity and the pressure field are eliminated by integrating the continuity equation and
the vertical momentum equation. Therefore, the present models only solve the horizontal
velocity components and the free-surface displacement in the 2-DH space that can be
solved by various numerical algorithms. We reiterate that in the present models there
are analytical expressions for the vertical velocity and the pressure field in each element,
which are quadratic and fourth-degree polynomials in terms of the vertical coordinate,
respectively.

3. Theoretical analysis of the model equations

In this section, a Stokes-wave-type Fourier analysis is conducted on the LFE-M models
to examine various linear and nonlinear wave properties on a flat bottom in 1-DH, i.e.
h(x) = d. The sensitivity of the FEM mesh configuration is also demonstrated by using
two to four elements with different mesh configurations.

3.1. Stokes-wave-type Fourier analysis
A Stokes-wave-type Fourier analysis is conducted on the resulting model equations to
scrutinise various linear and nonlinear wave properties embedded in the model equations.
This is achieved by substituting the following standard Stokes expansions into the resulting
1-DH governing equations, i.e.

H = h + η = d + εa1 cos θ + ε2a2 cos 2θ, (3.1)

uk = εuk1 cos θ + ε2uk2 cos 2θ, (3.2)

where ε is the small nonlinear parameter defined as κa (κ is the wave number and
a is the typical wave amplitude), and uk = {uk, k = 1, . . . , M + 1} are the dependent
horizontal velocity variables. The second subscript number (1, 2) indicates the solutions
at different orders of ε and θ = (κx − ωt) is the phase function, where ω is the wave
angular frequency. In the leading order, we examine the following wave properties:
phase velocity, group velocity, shoaling gradient, vertical profiles of horizontal and
vertical velocity components and vertical profiles of the non-hydrostatic pressure field.
For the second-order solution, only the second-order wave amplitude is studied. On the
other hand, since potential flow assumption is not involved in the derivation of present
models, the Doppler-shift effect of linear waves on both uniform and vertically linearly
sheared currents embedded in the model equations is also studied. Using different mesh
configurations, the model results are compared with analytical solutions from the Stokes
wave theory and other existing depth-integrated models.
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The analytical expressions of the vertical velocity and pressure field are given explicitly
for the linearised model on a flat bottom. The coefficients in the vertical velocity
expression (2.19) are

wk,1 = d
[
ck+1(uk)x − ck(uk+1)x

]
ck − ck+1

, wk,2 = d
[
(uk+1)x − (uk)x

]
2 (ck − ck+1)

, (3.3a,b)

and the coefficients in the pressure field (2.22) are

pk,1 = (wk,0)t, pk,2 = 1
2(wk,1)t, pk,3 = 1

3 (wk,2)t, pk,4 = 0, (3.4a–d)

where the subscripts x and t denote partial differentiation. Since all terms in pk,4
are contributed by nonlinear terms, pk,4 reduces to zero in the linearised model. In
summary, for the linearised model on a flat bottom, although the horizontal velocity
has a linear vertical profile in each element, the vertical velocity and pressure field
exhibit a quadratic and cubic polynomial form with respect to the vertical coordinate,
respectively.

3.2. Linear wave properties
The linear wave frequency dispersion relation, which is a fundamental property for surface
wave phenomena, embedded in the LFE-M models can be written in the following general
form, i.e.

C2
m = ω2

κ2 = gd
1 + ∑M

i=1 Pi(κd)2i

1 + ∑M+1
j=1 Qj(κd)2j

, (3.5)

where Cm is the wave phase velocity obtained from the model equation, which will
be compared with the exact analytical solutions of linear Stokes waves, i.e. C2

e =
gd(tanh κd/κd). Here Pi and Qj are various constant coefficients, which are presented
as follows.

Taking the LFE-2 model as an example, substituting the solution form of (3.1) and (3.2)
into the governing equations and collecting terms at the leading order, a linear equation
system can be obtained as follows:⎛⎜⎝ m11 m12 m13 m14

m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

⎞⎟⎠
⎛⎜⎜⎝

a1
g
d

u11
u21
u31

⎞⎟⎟⎠ = A·X =

⎛⎜⎝ 0
0
0
0

⎞⎟⎠ , (3.6)

where mij = mji and their detailed expressions are

m11 = ωd/g, m12 = −1
2 c2dκ, m13 = −dκ

2 , m14 = 1
2 (c2 − 1)dκ,

m22 = 1
60 c2ω(−7c2

2d2κ2 + 15c2d2κ2 + 20),

m23 = − 1
120 c2ω(c2

2d2κ2 + 10c2d2κ2 − 20(d2κ2 + 1)),

m24 = 1
12(c2 − 1)2c2d2κ2ω,

m33 = − 1
60ω(c2

2d2κ2 + 4c2d2κ2 − 8d2κ2 − 20),

m34 = 1
120(c2 − 1)ω(c2

2d2κ2 + 8c2d2κ2 − 9d2κ2 − 20),

m44 = − 1
60 (c2 − 1)ω(3c2

2d2κ2 − 6c2d2κ2 + 3d2κ2 + 20).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)
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By ensuring a non-trivial solution of the above equation system, the determinant of A is
forced to be zero. For the LFE-2 model, the coefficients in the model solution of the linear
frequency dispersion relation, (3.5), are

P1 = 1
10 (−c2

2 + c2 + 1), P2 = 1
1600 c2(4c3

2 − 8c2
2 − 11c2 + 15), (3.8a,b)

Q1 = 1
30(−3c2

2 + 3c2 + 13), Q2 = 1
400(c4

2 − 2c3
2 − 14c2

2 + 15c2 + 5),

Q3 = 1
4800(c2 − 1)2c2(4c2 + 5).

}
(3.9)

Similarly, the coefficients for the LFE-3 model are shown in Appendix B for brevity and
completeness. The coefficients for the LFE-4 model are extremely lengthy and are not
shown here. The corresponding approximated vertical profiles of the horizontal, vertical
velocity and pressure field can be obtained by substituting the solutions of horizontal
velocities from linearised momentum equations into (2.16), (2.19) and (2.22), respectively,
whereas the coefficients in the polynomial expressions of vertical velocity and pressure
field can be found in (3.4a–d). The procedures for obtaining these model results are carried
out by using the symbolic manipulation software MathematicaTM, which are not shown
here for brevity, but can be found in YL20.

As the approximated horizontal velocity profile depends on the finite-element mesh
configuration, i.e. the choice of free parameters, ck, which denote the elevations of nodes,
the resulting properties of model equations are also influenced by the mesh configuration.
To demonstrate this, six different mesh configurations are tested for the LFE-2 as follows:
c2 = 0.1, 0.3, 0.5, 0.7, 0.8 and 0.9. The model results for the linear phase velocity are
shown in figure 2(a). For a specified allowable relative error, the applicable range of LFE-2
model is extended significantly when the value of c2 is increased, i.e. decreasing the length
of the surface element. More specifically, by setting the relative error bound of 2 % (or
Cm/Ce = 0.98), the applicable range of the LFE-2 model is extended from κd = 3.61 to
κd = 14.71 by increasing c2 from 0.1 to 0.8. This is not surprising, since wave motions are
more intense near the free surface, especially for waves in deep water. However, when the
c2 value becomes too large (closer to 1), the relative errors do not grow monotonically
as κd grows. For example, as shown by the line in cyan in figure 2(a), denoting the
behaviour of the LFE-2 model with c2 = 0.9, the accuracy of the model decreases when
κd value increases from 2.5 to 10, followed by an increase in accuracy for even larger
κd values, which reaches a local peak at κd ≈ 23 with 2 % relative error. Overall, based
on the results shown in figure 2(a) the optimal mesh configuration (c2) for the LFE-2
model appears to be around 0.8. Similarly, for the LFE-3 model, the performance of four
different mesh configurations with combinations of (c2, c3) is shown in figure 2(b). If c2
is fixed at 0.4, using the 2 % relative error bound rule, the applicable range of the model is
almost doubled from κd = 7.7 to 14.8 by increasing c3 value from 0.6 to 0.8. On the other
hand, by increasing both c2 and c3 to (0.7, 0.9), the accuracy of the model is significantly
extended up to κd ≈ 29.5 (2 % error). Lastly, if very large values (close to 1) are employed
for both parameters, e.g. (c2, c3) = (0.8, 0.95), although slight undulations are observed
at relatively shallow water (κd ≈ 5.5), which have a magnitude of less than 0.7 %, the
LFE-3 model can be applied to κd ≈ 59.5 with less than 2 % relative error in terms of
phase velocity. This suggests again that a higher density of elements near the free surface
is more desirable. The accuracy of the LFE-4 model in terms of phase velocity is illustrated
by using five different mesh configurations, which is shown in figure 2(c). A similar trend
can be found for the LFE-4 model. For example, the LFE-4 model can be applied to
κd ≈ 294 with 2 % relative error using the combination of (c2, c3, c4) = (0.8, 0.95, 0.97),
however, undulations with magnitudes of approximately 1 % relative error can be found in
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Figure 2. The accuracy of the linear wave frequency dispersion relation with different mesh configurations:
(a) LFE-2 model, nodal point locations c2 = 0.1, 0.3, 0.5, 0.7, 0.8, 0.9; (b) LFE-3 model, combinations of
nodal point locations (c2, c3) are (0.4, 0.6), (0.4, 0.8), (0.7, 0.9) and (0.8, 0.95), which are represented by lines
from left to right; and (c) LFE-4 model, combinations of nodal point locations (c2, c3, c4) are (0.3, 0.5, 0.8),
(0.5, 0.8, 0.9), (0.6, 0.8, 0.95), (0.8, 0.95, 0.97) and (0.8, 0.95, 0.99), which are represented by lines from left
to right.

relatively shallow-water regimes, which peaked at κd ≈ 125 with a magnitude of 1.22 %.
We can conclude that the performance of the model is sensitive to mesh configurations.
A general trend is that the more elements cluster near the free surface, the more accurate
the results become. However, undulations of the accuracy at relatively shallower water
deserve attention when elements are too close to the free surface.

The above analysis indicates that to achieve the best model performance it is necessary
to optimise the mesh configuration based on certain criteria. Same as the approach
used for SK models in YL20, a total relative error, Etotal, being defined as the
combination of relative errors induced by phase velocity, group velocity, integrated
shoaling gradient, horizontal and vertical velocity profiles, is minimised to find the optimal
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mesh configuration, i.e.

Etotal = Ec + Ecg + Eshoal + Eu + Ew

=
∫ Ω

0

∣∣∣∣ [C2
m(κd) − C2

e(κd)]W
C2

e(κd)

∣∣∣∣ d(κd) +
∫ Ω

0

∣∣∣∣ [Cgm(κd) − Cge(κd)]W
Cge(κd)

∣∣∣∣ d(κd)

+ exp
[∫ Ω

0

(γe − γm)W
κd

d(κd)

]
− 1

+
∫ Ω

0

∫ 1

0

∣∣∣∣um(σ ) − ue(σ )

ue(1)

∣∣∣∣ dσW d(κd)

+
∫ Ω

0

∫ 1

0

∣∣∣∣wm(σ ) − we(σ )

we(1)

∣∣∣∣ dσW d(κd), (3.10)

where the overbar denotes the normalisation by each error’s median value. Here Ω is the
upper limit of the range of κd considered, which is determined on a trial-and-error basis by
achieving possibly larger κd values for overall accuracy without sacrificing local accuracy
significantly (table 1). Subscripts m and e denote the model solutions and exact analytical
linear solutions, respectively. The weighting function, W = exp[(2−κd − 2−π) log 5], is
designed to be exponentially decaying with respect to κd to address the importance
of shallower-water regimes and to avoid possible large local errors. To illustrate the
procedure, we shall present the results for the LFE-2 model. Figure 3(a) shows the
variations of the relative errors from five linear wave properties vs different mesh
configurations, i.e. different c2 values. The optimised locations of the node for the vertical
profiles of horizontal and vertical velocities are smaller than those concerning the other
three linear wave properties. However, the differences in the optimised parameters for
those five linear wave properties are relatively small. By calculating the total relative
errors for different c2 values ranging from 0 to 1 with an increment of 0.001 based on
(3.10), we find the optimised free parameter for the LFE-2 model is 0.728, which means
that the LFE-2 model achieves the best overall accuracy in terms of those five linear wave
properties when the node is located at σ = 0.728 (see figure 3b). Similarly, the optimised
finite-element mesh configurations for other LFE-M models are summarised in table 1. It
is not surprising that when considering wave-alone problems, elements are arranged closer
to the free surface (free parameters close to 1) where wave motions are stronger. However,
it should be noted that the above optimisation processes and the resulting optimised free
parameters, which are based on five dominant linear wave properties, are not unique,
and often depend on the specific physical problem being examined. For example, as
demonstrated in figure 2, in terms of linear wave frequency dispersion relation, larger
applicable ranges of models can be achieved by using different sets of free parameters
rather than the optimised free parameters, however, possible local errors may deserve
special attention.

The comparisons of various linear wave properties, including phase velocity, group
velocity, shoaling gradient and integrated shoaling gradient (Chen & Liu 1995), among
the LFE-2 model and other existing depth-integrated models are displayed in figure 4.
By specifying a relative error bound of 2 % for each linear property, the upper limits of
applicable κd values are summarised in table 2. First, considering the assumptions on the
horizontal velocity profile, the LFE-2 model can be applied up to κd ≈ 10.9 in terms of
phase velocity, which is essentially in very deep water and almost triples that of the GN-2
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Figure 3. (a) Variations of relative errors from five linear wave properties vs mesh configuration parameter c2
for the LFE-2 model. (b) Variations of total relative error vs c2, where the asterisk symbol denotes the location
of the optimised c2 value (smallest total error).

Model Ω c2 c3 c4

LFE-2 8 0.728 — —
LFE-3 24 0.726 0.925 —
LFE-4 80 0.745 0.923 0.977

Table 1. Summary of optimised mesh configuration parameters for various LFE-M models.

model (dashed lines in figure 4), which employs a linear horizontal velocity approximation
in the entire water column. The S2 model developed in YL20 also assumes a linear
horizontal velocity profile, but the horizontal momentum equation is a weighted average
using the subdomain method. Whereas the applicable range of the S2 model is larger than
the GN-2 model, it is only half that of the LFE-2 model. However, the number of velocity
unknowns that need to be solved increased from two for the GN-2 and S2 models to three
for the LFE-2 model. Second, comparing the present model with other models with the
same number (three) of velocity unknowns, i.e. G3 and S3 models developed in YL20, the
LFE-2 model still exhibits better accuracy. The applicable range of κd values for the LFE-2
model is 60 % more than that of the G3 model and slightly better than the S3 model for all
three listed linear wave properties. Third, the accuracy of other two-layer model systems
including the two-layer Boussinesq model with Δlin = 0.006 optimisation (Lynett & Liu
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Figure 4. Comparisons of linear wave properties among LFE-2 model, GN-2 model (Shields & Webster 1988),
S2, G3 and S3 models (Yang & Liu 2020), two-equidistant-layer non-hydrostatic model (Stelling & Zijlema
2003) and two-layer Boussinesq model (Lynett & Liu 2004).

2004), and the two-equidistant-layer non-hydrostatic model (Stelling & Zijlema 2003) are
also shown in the same figure. For the linear wave phase velocity, all models show similar
accuracy up to κd ≈ 7. However, for increasing κd values the G3 model deviates from the
exact solution first, followed by the Boussinesq model, non-hydrostatic model, S3 model
and LFE-2 model. Moreover, the non-hydrostatic model shows small undulations locally

999 A32-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.604


Z. Yang and P.L.-F. Liu

Model

Property GN-2 S2 G3 S3 Boussinesq Non-hydrostatic LFE-2 LFE-3 LFE-4

Phase velocity 3.3 4.8 6.8 10.2 7.8 8.8 10.9 39.2 127.9
Group velocity 1.8 2.8 3.8 6.2 4.8 5.7 6.7 25.8 80.5
Shoaling
gradient

2.2 3.2 4.3 6.8 5.3 5.9 7.2 27.1 86.6

Table 2. Applicable upper limits of κd values for the GN-2 model (Shields & Webster 1988), S2, G3 and S3
models (Yang & Liu 2020), two-layer Boussinesq model (Lynett & Liu 2004), two-layer non-hydrostatic model
(Stelling & Zijlema 2003) and the LFE-M models in terms of various linear properties. The error bound is set
at 2 %.

for κd < 2. The comparisons of group velocity, shoaling gradient and integrated shoaling
gradient are shown in figures 4(b), 4(c) and 4(d), respectively. Similar to the behaviour of
phase velocity, LFE-2 model also outperforms the other models. In general, these models
also share the same feature that the applicable κd ranges in terms of group velocity and
shoaling gradient are smaller than those in terms of phase velocity.

The performance of LFE-M models (up to four elements) using the optimised mesh
configurations (table 1) in terms of various linear wave properties is shown in figure 5; the
applicable ranges of κd values (with relative error bound of 2 %) are also summarised in
table 2. YL20 has shown that SK models are superior to GK models, and thus only SK
models are included in the same figure for comparisons. Although the difference between
the S3 and LFE-2 model is not that obvious, by increasing the number of elements,
the accuracy of LFE-M models improves dramatically, which significantly outperforms
SK models with the same number of unknowns (lines of the same colour in figure 5).
In terms of linear wave phase velocity, whereas the LFE-2 model is applicable up to
κd = 10.9, the LFE-4 model extends the applicable range significantly to κd = 127.9,
which is essentially in infinitely deep water. Although the number of velocity unknowns
increases from three for the LFE-2 model to five for the LFE-4 model, the improvement of
the applicable range is more than a factor of 10, which demonstrates the advantage of the
multi-element approach in enhancing model accuracy.

One of the most critical approximations used in deriving depth-integrated models is
the assumption on the vertical profile of the horizontal velocity, and it is always more
challenging to reproduce the correct velocity profile than the correct phase velocity for
depth-integrated models. For models with a two-layer formulation mentioned above, their
underlying assumptions on the horizontal velocity profiles are drastically different. In the
two-layer Boussinesq model, the horizontal velocity is a quadratic polynomial within
each layer, resulting from the shallow-water wave scaling and weak horizontal vorticity
assumptions being enforced in each layer. In addition, the velocity is continuous at the
layer interface. However, in the two-layer non-hydrostatic model, the horizontal velocities
are depth-uniform within each layer and they are discontinuous at the layer interface. On
the other hand, a quadratic polynomial is employed in the G3 and S3 models to describe
the vertical profile of the horizontal velocity in the entire water column, which has the
advantage of being not only continuous but also differentiable.

The vertical profiles of horizontal velocity and vertical velocity for different κd values
are obtained from the LFE-2 model, and they are compared with the results from the G3
and S3 models and Stokes wave solutions as shown in figure 6(a–h), respectively. The
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Figure 5. Comparisons of various linear wave properties between LFE-M models and SK models.

LFE-2 model can reasonably capture the velocity profiles in the water column for those
four representative κd values, covering from shallower- to deeper-water wave conditions.
The velocities are continuous in the entire water column, but not necessarily smooth at
the finite-element node, i.e. the interface between elements. Only slight underestimations
can be observed for the horizontal velocities at the surface and element interface. For
higher κd values, all models are struggling to capture the correct velocity profiles and,
specifically, larger undulations can be observed for the G3 and S3 models, which is a
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Figure 6. Comparisons among the G3 (green lines), S3 (red lines) and LFE-2 (blue lines) model results and
Stokes wave solutions (black lines) for the vertical profiles of normalised (by the maximum Stokes wave
solution) horizontal velocity (a–d), vertical velocity (e–h) and non-hydrostatic pressure field (i–l) for different
κd values.

result of the limited capability of the quadratic polynomial assumed. In terms of the
vertical velocity, the LFE-2 model results demonstrate better agreement with the analytical
solutions for all κd values considered. This is because the vertical profile is quadratic in
each element as enforced by the continuity equation. The velocity profile is also smoother
than the horizontal velocity at the interface between elements. The G3 and S3 models use
a cubic polynomial to describe the vertical velocity in the entire water column, and for the
deeper-water condition, κd = 10, large discrepancies appear at the lower part (σ < 0.8) of
the velocity profile, where the velocity should be almost zero.

To demonstrate the effects of using more elements in the LFE model, the
model-analytical solution comparisons of the vertical profiles of normalised horizontal
and vertical velocities for different κd values are shown in figures 7(a–h) and 8(a–h) for
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Figure 7. Comparisons of vertical profiles of normalised horizontal velocity (a–d), vertical velocity (e–h) and
non-hydrostatic pressure field (i–l) for different κd values between model solutions (blue line, LFE-3) and
analytical solutions (black line).

the LFE-3 and LFE-4 models, respectively. Generally, very good agreements are achieved.
Only some small local discrepancies are observed at the nodes. Moreover, the feature
of near-zero horizontal velocity in the lower portion of the water column for deep-water
waves is well captured by the LFE-M models. However, the maximum horizontal velocity
tends to be underestimated for relatively larger κd values. As discussed earlier, because of
the quadratic profile of vertical velocity, the agreements for the vertical velocity profile are
remarkable, which are better than the comparisons for the horizontal velocity profiles.

Compared with the direct FEM approach, one of the most important features of the
present models is that they avoid solving the PPE since the non-hydrostatic pressure
field is eliminated through vertical integration. This would reduce the computational
time significantly for a large-scale simulation. Moreover, in the depth-integrated models
the gradient of the non-hydrostatic pressure field is represented by mixed spatial and
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Figure 8. Same as figure 7 but for the LFE-4 model.

temporal derivatives, see e.g. (2.32). It is, therefore, important to check the accuracy
of the non-hydrostatic pressure field results. The approximated vertical profiles of the
non-hydrostatic pressure field can be obtained from (2.22), and the results are shown in the
lower panels of figures 6–8 for LFE-2, LFE-3 and LFE-4 models, respectively. The vertical
profiles of the non-hydrostatic pressure field of SK models have been derived by Yang &
Wang (2022), and the results from the S3 model are also shown in figure 6 for comparisons.
The non-hydrostatic pressure field predicted by the S3 model shows significant undulations
for higher κd values, whereas the LFE-2 model provides very good agreements with the
analytical solutions. As the non-hydrostatic pressure field is a cubic polynomial in each
element, for models with more elements in much deeper water, the agreement between the
model results and analytical solutions is still extremely good with only small undulations
appearing at the highest node near the free surface, where the pressure field has a very large
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Figure 9. Comparisons on the accuracy of second-order wave amplitude among LFE-2, GN-2, G3 and S3

models.

Model

Property GN-2 G3 S3 LFE-2

a2 1.25 3.1 4.1 6.0

Table 3. Applicable upper limits of κd values for the LFE-2, GN-2, G3 and S3 models in terms of
second-order wave amplitude. The error bound is set at 5 %.

gradient. The above analysis shows that the present models are also reliable in providing
not only velocity but also pressure field distribution.

3.3. Second-order nonlinear wave property
Nonlinearity can generate higher harmonic waves through various mechanisms,
e.g. shoaling by bathymetric variations and wave–wave/current interaction. The nonlinear
wave property is analysed at the second order and the obtained second-order wave
amplitude (a2m) is compared with Stokes waves theory (e.g. Skjelbreia & Hendrickson
1960), which reads

a2e = ka1
2

4
[3 coth3 κd − coth κd]. (3.11)

The accuracy of the LFE-2 model’s nonlinear wave property is represented by normalising
the second-order wave amplitude obtained from the model (a2m) by the theoretical value
(a2e) as shown in figure 9. The second-order wave amplitudes embedded in the GN-2, G3
and S3 models are also included in figure 9 for comparisons. Although the LFE-2 model
shows slight undulations (less than 1 %) at around κd ≈ 2, it achieves better accuracy
compared with other models. By setting the relative error bound to be 5 %, the applicable
upper limits of κd values for the tested models are summarised in table 3. Although the
GN-2 model, which assumes a linear horizontal velocity profile in the water column, is
only applicable up to κd = 1.5, the LFE-2 model extends the applicability up to κd = 6.0,
which is beyond the deep-water-wave limit. The applicable range of the present LFE-2
model doubles that of G3 model and is also better than the S3 model, although they all
need to solve three horizontal velocity unknowns.
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3.4. Wave–current interaction Doppler shift effect
Unlike the conventional depth-integrated models, e.g. Boussinesq-type models, the present
models do not invoke the irrotational flow (or the weak rotationality) assumption.
Thus, the present models can be used for studying waves interacting with vertically sheared
currents that contain appreciable horizontal vorticity. Similar to the analysis that has been
done in YL20, the frequency dispersion relation of linear waves on depth-uniform or
linearly vertically sheared current embedded in the model equations, which represents
the Doppler-shift effects induced by the presence of currents, is examined and compared
with analytical solutions. Only the LFE-2 model is considered in this section since the
analytical analysis of models with more elements is rather prohibitive. However, it can be
expected that the behaviour of models using more elements should follow a trend similar
to that observed for the LFE-2 model.

The linear wave frequency dispersion relation is modified when the wave propagates in
an ambient current field, and the Doppler shift effect is the most direct consequence of
current effects on waves. For example, the analytical solution for the modified frequency
dispersion relation when waves riding on a vertically linearly sheared current (e.g.
Thompson 1949; Nwogu 2009) is

C − U0 = − Θ

2κ
tanh κd ±

√(
Θ

2κ
tanh κd

)2

+ g
κ

tanh κd, (3.12)

where C is the phase speed, U0 is the current velocity on the free surface and Θ represents
the constant shear. It should be noted that the Doppler shift effect under a depth-uniform
current can be recovered by setting Θ = 0 in the above equation.

The expansions for the total water depth and total horizontal velocities for the combined
wave–current solutions in the Cartesian coordinates can be expressed as

H = d + εa1 cos θ, (3.13)

uk = εuk1 cos θ + U0 + Θz, (3.14)

where U0 and Θ are prescribed, and uk1 denotes the amplitude of the periodic orbital
motion of linear waves. The combined wave and current solution (3.13) and (3.14) are
substituted into the model equations to be examined and the procedure for obtaining the
frequency dispersion relation is similar to that of pure-wave scenarios.

For the depth-uniform current scenario, it is verified that the coefficients in the
expression of the frequency dispersion relation, (3.5), are the same as those for pure wave
situations, meaning that the Doppler-shift effect induced by the depth-uniform current is
indeed captured by the present LFE-2 model. For the vertically linearly sheared current,
figure 10 shows the wave phase velocity, normalised by the exact solution (3.12) for the
LFE-2 model. The upper and lower parts of the figure compare the normalised linear wave
frequency dispersion relation for the following (wave and current are in the same direction)
and opposing (wave and current are in the opposite direction) currents, respectively. The
dimensionless parameter S = Θd/

√
gd denotes the strength and direction of the vertical

shear; S = −0.4, −0.2, 0, 0.2 and 0.4 are selected for demonstration. Relative to the
pure-wave situation, the linear frequency dispersion associated with the models shows
better accuracy for following currents with larger negative shear, and it is less accurate
for following currents with larger positive shear, which is the opposite of what we have for
opposing-current scenarios. The observed behaviour of the LFE-2 model is quite similar to
that of the depth-integrated model derived in YL20; namely the accuracy of the embedded
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Figure 10. Normalised linear frequency dispersion for waves on vertically linearly sheared current for the
LFE-2 model: red dotted, S = −0.4; red dashed, S = −0.2; black, S = 0.0; blue dashed, S = 0.2; blue dotted,
S = 0.4.

Doppler shift effect of the model only slightly deviates from the wave-alone scenario.
Thus, without showing details, it is concluded that the present LFE-2 model also behaves
better than the S3 and G3 models as shown by the analysis of the wave-alone frequency
dispersion relation in § 3.2.

4. Model validations

In this paper, the 1-DH versions of LFE-2 and LFE-3 models are implemented numerically
using the same algorithm as discussed in YL20, i.e. employing a five-point central
difference scheme for spatial discretisation and a fourth-order Runge–Kutta method for
time integration. In this section numerical models are applied to a wide range of physical
processes, including nonlinear deep-water wave propagation in constant water depth over
long distance, bichromatic wave group propagation in deep water, sideband instability of
deep water waves, regular wave transformation over a submerged bar and focusing wave
group interacting with vertically sheared currents. All the following numerical results are
obtained using the optimised mesh configurations in the water column as listed in table 1.
All the numerical results are checked with experimental data with satisfactory agreement.

4.1. Nonlinear deep-water wave propagation in constant water depth
In this section, the capability of present models in simulating nonlinear deep-water waves
propagating in constant depth over long distance is checked with available laboratory data.
The experiments were performed in a long wave flume at the Tainan Hydraulics Laboratory
of the National Cheng Kung University, Taiwan. The flume was 300 m in length, 5.0 m in
width and 5.2 m in depth. It was equipped with a piston-type wavemaker at one end and
a wave-absorbing structure at the opposite end; the maximum reflection coefficient was
estimated at about 7 %. A total of 62 capacitance-type wave gauges were installed along
the wave flume between x = 15 m and x = 226 m downstream of the wavemaker (x = 0).
Although many sets of experiments for regular and bichromatic waves were conducted
(Hsiao et al. 2005), only three regular non-breaking deep-water wave cases, Reg06, 03
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Case Wave period (s) Wave height (m) κd κa LFE-2 LFE-3

Reg06 1.6 0.12 5.5 0.094 0.10 % 0.052 %
Reg03 1.6 0.2 5.5 0.157 0.16 % 0.052 %
Reg24 1.3 0.1 8.3 0.119 1.06 % 0.06 %

Table 4. Summary of wave conditions conducted in § 4.1. The relative differences in phase velocity between
numerical results and the experimental data are indicated in the last two columns.

and 24, are examined here, in which the water depth was a constant at d = 3.5 m. The
experimental wave conditions are summarised in table 4 (see also Hsiao et al. 2005).

In the numerical simulations, waves are generated by an internal wavemaker proposed
by Hsiao et al. (2005) close to one end of the numerical wave flume, whereas sponge
layers are arranged at both ends for absorbing outgoing waves. The spatial and temporal
resolutions of the numerical simulations are approximately L/40 and T/45, respectively,
where L is the wavelength and T is the wave period of the incident waves. The duration of
numerical simulations is 190 T for cases Reg03 and Reg06 and 290 T for case Reg24.

For case Reg06, the incident wave is in deep-water condition, κd = 5.5, with κa =
0.094 (table 4). Figure 11 shows the comparisons of the time series of free-surface
elevations between the numerical results of LFE-2 model and the experimental data at
nine gauge stations, being evenly spaced by 24 m. In the figure, the horizontal locations
of wave gauges are indicated by both absolute (x) and normalised (x/L) values, whereas
the time axis is normalised by the wave period (t/T). The black and red dashed lines are
constructed by tracing the locations of a specified wave crest in time in the experimental
data and numerical results, respectively. The slopes of these lines, 2.5052 m s−1 and
2.5026 m s−1, denote the wave phase speeds for the experimental data and numerical
results, respectively, indicating that numerical waves travel about 0.1 % slower than those
in the experiment. On the other hand, the numerically calculated phase velocity is 0.18 %
larger than that of the linear wave theory, i.e. 2.498 m s−1, which is in agreement with the
theoretical analysis presented in § 3.2, i.e. the error in linear phase velocity at κd ≈ 5.5 is
less than 0.3 % for the LFE-2 model, see figure 4.

To investigate the effects of nonlinearity, case Reg03 is simulated numerically, in which
the incident wave has the same κd value as that in Reg06, but the κa value increases to
0.157. The results of LFE-2 model are shown in figure 12. By tracing one of the wave
crests in the numerical results and the experimental data as shown by the dashed lines in
figure 12, the difference in phase velocities between numerical results (2.5290 m s−1) and
experimental data (2.5250 m s−1) is about 0.16 %. Both numerical and experimental phase
velocities are faster than that estimated from the linear wave theory (2.498 m s−1) because
of nonlinearity. Hsiao et al. (2005) reported that the two-layer Boussinesq model showed
more significant phase differences from x/L = 26.52 onwards, and the wave heights were
also over-predicted at the last few gauge stations, which are attributed to the Boussinesq
approximation. LFE-3 model was also used to simulate both cases Reg06 and Reg03, and
the results are almost identical to those of LFE-2 model. They are not presented here for
brevity.

Case Reg24 represents a very-deep-water condition with κd = 8.3, while the
nonlinearity is moderate with κa = 0.119. LFE-2 model is first employed for simulation
and the numerical results for the free-surface elevations are shown in figure 13.
The numerical waves propagate at 2.0170 m s−1 and is slower than the phase speed of
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Figure 11. Comparisons of the time series of free-surface elevations (normalised by incident wave amplitude,
a = 0.06 m) between numerical results using the LFE-2 model (red line) and experimental data (black line) for
case Reg06. The time is normalised by the wave period T = 1.6 s. The red and black dashed lines are obtained
by tracing a specific wave crest in the numerical results and experimental data, respectively. The slopes of these
lines are the wave phase velocities, which are 2.5052 m s−1 and 2.5026 m s−1 for the experimental data and
numerical results, respectively.

the experimental waves, 2.0382 m s−1. Although the phase speed difference is only about
1.05 %, noticeable phase differences are observed starting from x/L = 16.3, increasing
as waves propagate farther downstream. At x/L = 52.68, the phase difference reaches
approximately one-half of a wave period. Based on the linear analysis in § 3.2, the LFE-2
model has 0.8 % error in phase velocity at κd = 8.3 inherently (see figure 4), thus, the
numerical results are expected to exhibit a phase difference of 0.64 wave period after
propagating a distance of 80 wavelengths, without counting other possible factors, such
as nonlinear effects and possible slight numerical dispersion. In fact, the phase difference
reaches approximately 0.80 wave period at the last wave gauge (x/L = 79.79), and is close
to the estimation based on linear analysis.

To demonstrate that the performance of the model improves when more elements are
used in the water column, the LFE-3 model is applied to simulate case Reg24 as well. The
comparisons between the numerical results and experimental measurements are shown in
figure 14, indicating that the agreement is greatly improved by using the LFE-3 model.
The difference between the numerical and experimental phase velocities is 0.06 %. Only
a small discrepancy in phase appears at the last gauge station, which could probably be
partially induced by reflected waves in the laboratory experiment. On the other hand, as
waves propagate farther downstream, it is also challenging for the LFE-3 model to capture
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Figure 12. Same as figure 11 but for case Reg03. The amplitude and period of incident waves are a = 0.10 m
and T = 1.6 s, respectively. The slopes of dashed lines are the wave phase velocities, which are 2.5290 m s−1

and 2.5250 m s−1 for the experimental data and numerical results, respectively.

the correct amplitude modulations, which can be observed at a few gauge stations, e.g.
x/L = 43.58 and 61.78.

In summary, it has been demonstrated that the LFE-3 model shows significant
improvement over the LFE-2 model in deep water, suggesting the advantage of the
multi-element approach in enhancing the model accuracy for deeper-water-wave condition
and for long distance simulation. It is also important to note that for case Reg24 the LFE-3
model only requires approximately 10 % more computational time than the LFE-2 model.

4.2. Bichromatic deep-water wave group propagation
In this section, the numerical model is employed to investigate the propagation of
bichromatic wave groups in deep water. The numerical results are checked with the
experimental data of Stansberg (1993). The laboratory experiments were carried out in
the wave flume of 260 m long and 10.5 m wide at Marintek. The configuration of the
flume bottom is a step with a sudden change of bottom heights at a distance of 80 m from
the wavemaker. In the experiments, the water depth was 10 m (= d1) in front of the step
and 5 m (= d2) in the shallower part of the flume. The incident bichromatic wave group
consists of two wave period components (T1 = 2.1 s and T2 = 1.904 s), corresponding
to k1d1 = 9.1 and k2d1 = 11.1 in a water depth of d1 = 10 m. The amplitudes of wave
components are identical at 0.078 m. Surface elevations were measured at six locations
simultaneously.
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Figure 13. Same as figure 11 but for case Reg24. The amplitude and period of incident waves are a = 0.05 m
and T = 1.3 s, respectively. The slopes of dashed lines are the wave phase velocities, which are 2.0382 m s−1

and 2.0170 m s−1 for the experimental data and numerical results, respectively.

Lynett (2002) attempted to use a two-layer Boussinesq model to simulate the
experiments and encountered many challenges. The propagation of bichromatic
deep-water waves represents a more complicated process, in which not only the wave
phase velocity, but also the wave group velocity and nonlinear interactions are important.
More importantly, in intermediate and deep water, the cubic nonlinearity could be much
stronger than the quadratic nonlinearity and generate superharmonic and subharmonic
waves, whose amplitudes could be comparable to the amplitudes of the fundamental wave
components. Most of the depth-integrated models are not capable of simulating these
processes because of their poor accuracy in calculating the linear wave phase velocity
and nonlinear properties (especially at the third order) in deep-water conditions. In this
section, we demonstrate that the new models can capture most of these features accurately.

Before conducting the numerical experiments, we need to address the treatment of the
bottom step configuration, which appears at x = 80 m in the laboratory experiments. For
wave propagation, the step plays a very minor role as the incident wave components in the
shallower-water-depth region (d2 = 5 m) are in deep-water condition (i.e. k1d2 = 4.6 and
k2d2 = 6.6) and waves do not feel the bottom configuration. Thus, to simplify the problem
Lynett (2002) assumed a constant water depth throughout the flume. The 5 m depth was
chosen because a deeper water depth would pose a challenge for the two-layer Boussinesq
model. This is because the two-layer model contains an error of 5 % in linear wave phase
velocity at kd ≈ 10, leading to approximately 60 % of T1 phase difference at the edge of the
step (x = 80 m), even without considering nonlinear effects. On the other hand, the slope
of the bathymetry becomes infinite at the step, which is difficult for most numerical models
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Figure 14. Same as figure 11 but for case Reg24 using the LFE-3 model. The amplitude and period of incident
waves are a = 0.05 m and T = 1.3 s, respectively. The slopes of dashed lines are the wave phase velocities,
which are 2.0382 m s−1 and 2.0395 m s−1 for the experimental data and numerical results, respectively.

to deal with, especially the depth-integrated models. A common way to address the step
issue is to replace the step with a smooth and differentiable configuration (e.g. Bingham
& Zhang 2007). To better reproduce the laboratory experiment, in the present numerical
simulations using the LFE-3 model, the water depth is constructed by connecting two
flume parts of different water depths smoothly using a hyperbolic function, i.e.

h(x) =
(

d1 + d2

2

)
−

(
d1 − d2

2

)
tanh

(
2sx′

d1 − d2

)
, (4.1)

where x′ is the shifted x-axis, i.e. x′ = x − 80 and s is the maximum slope for the entire
bottom profile. The s parameter is tuned to be reasonably large to better represent a
step, but not too large to cause numerical instability. Figure 15 shows the step bottom
configuration and corresponding slope by using three different s parameters in (4.1).
As expected, numerical results are almost identical by using different s parameters as
waves are in deep-water conditions throughout the domain. Finally, s = 2.5 is used,
so the first-order derivative (dh/dx) of the bottom profile at x = 80 m is 2.5 and the
transition zone is approximately 5 m (see figure 15). In the numerical simulation, waves
are generated by an internal wavemaker at x = 0. The numerical wave flume is 260 m in
length while sponge layers are implemented both upstream (−30 m < x < −15 m) and
downstream (215 m < x < 230 m) for absorbing outgoing waves. Spatial and temporal
resolutions of 0.1 m and 0.05 s are adopted in the numerical simulations, respectively.

The comparisons of the time series of free-surface elevations between numerical results
and experimental data at six locations from x = 9.3 m to x = 200 m are shown in figure 16.
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Figure 15. Step bottom configuration (a) and corresponding slope (b) by using different s parameters in (4.1).

For the first 80 m where both incident wave components are in very deep water (k1d1 = 9.1
and k2d1 = 11.1 for d1 = 10 m), the free-surface elevations can be accurately captured by
the LFE-3 model, using the approximated step configuration. The agreement is also quite
reasonable at x = 80 m, where the local water depth is 7.5 m in the numerical model.
However, discrepancies become more noticeable and continue to grow from x = 120 m
onwards. By checking the arrival times of the highest surface elevations, the phase
difference between the numerical and experimental results is approximately 13 % of T1
at x = 200 m. However, the surface elevations calculated by the two-layer Boussinesq
model show a phase difference of approximately 100 % of T1 at the same location (Lynett
2002). This is because although the two-layer Boussinesq model can accurately capture
the fundamental wave components, higher frequency wave components generated through
nonlinear interactions (especially at the third order), which have larger kd values, are well
beyond the capability of the two-layer Boussinesq model.

The contours of the spatial distribution of wave amplitude vs frequency obtained
from the numerical results by using the fast Fourier transform (FFT) are shown in
figure 17. As a reminder, ω1 = 2π/T1 = 0.476 Hz and ω2 = 2π/T2 = 0.525 Hz. The
overall picture indicates that the nonlinear effects take place very quickly near the
wavemaker, generating both subharmonic and superharmonic wave components. More
superharmonic wave components are being generated and become noticeable as waves
propagate farther downstream, indicating more complex nonlinear interactions between
various wave components. Whereas primary (relatively large-amplitude) wave components
are in the range 0.4–0.8 Hz, higher wave frequencies can even go beyond 1.2 Hz.

To gain further insights, the harmonic wave amplitude distributions vs frequency
over the range 0.4–0.8 Hz with a resolution of 0.0062 Hz are plotted at the wave
gauge locations in figure 18. In each subplot, the thin dashed vertical lines indicate the
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Figure 16. Comparisons of the time series of free-surface elevations between numerical results obtained
from the LFE-3 model (red line) and experimental data (black markers) for bichromatic wave propagation.

locations of subharmonic and superharmonic frequencies through nonlinear interactions.
The corresponding kd values, which are calculated based on the smoothed bottom step
configuration, are only shown in subplots at x = 40, 80 and 120 m for brevity. The
generation and growth of wave components with frequencies of (2ω1 − ω2) and (2ω2 −
ω1) are most noticeable, demonstrating the importance of the cubic nonlinearity in deep
water. The amplitudes of these wave components become comparable to the fundamental
wave components at x = 160 m. Throughout this process the numerical model provides
quite reasonable predictions of the generation and growth of different wave components,
especially those components generated by cubic nonlinearity. However, The two-layer
Boussinesq model significantly underestimates the amplitudes of wave components at
(2ω1 − ω2) and (2ω2 − ω1) because of its poor accuracy in third-order nonlinear property
in deep water.

Similar results of the wave amplitude distributions for the higher-harmonic components
over the range 0.8–1.2 Hz are shown in figure 19. Note that the scale of the vertical axis of
figure 19 is one order smaller than that of figure 18. The higher-harmonic wave components
in this frequency range are primarily generated by the quadratic nonlinearity and their
amplitudes are much smaller than those of fundamental wave components. The wave
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Figure 17. The contours of the spatial distribution of wave amplitude vs frequency of bichromatic wave
propagation obtained from the LFE-3 model. The amplitudes are in log scale (m).

component at (ω1 + ω2), corresponding to kd = 20.2, is dominant at the initial stage.
However, other superharmonic wave components become equally important at farther
downstream locations, which have large kd values up to 26.5, making the numerical
simulations more difficult. Impressively, the agreement between the numerical results
obtained from the LFE-3 model and experimental data is very reasonable.

4.3. Sideband instability in deep water
The sideband instability was first reported by Benjamin & Feir (1967), who theoretically
and experimentally showed that periodic wave trains in deep water are unstable subject
to a pair of sideband disturbances. Following Benjamin & Feir (1967), the free-surface
fluctuations of a wave train consisting of a carrier wave at frequency ωc and two sideband
disturbances, whose frequencies slightly deviate from the fundamental frequency of the
carrier wave, can be expressed as

η(x, t) = ac sin (ωct − κcx) + a+ sin (ω+t − κ+x + φ+) + a− sin (ω−t − κ−x + φ−),

(4.2)

ω± = ωc ± �ω, (4.3)

where ac, a+ and a− are the amplitudes of the carrier wave and the upper and lower
sidebands, respectively. The dimensionless frequency difference parameter β is defined as
β = �ω/(ωcκcac), where κc and ac are the wavenumber and amplitude of the carrier wave
component. Benjamin & Feir (1967) found that the sideband occurs when κch > 1.363,
and the most unstable condition is when β = ±1. Theoretical and numerical investigations
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Figure 18. Comparisons of harmonic wave amplitude distribution vs frequency for primary frequency
components between numerical results (red line) and experimental data (black markers) at different locations.
The thin dashed vertical lines indicate expected locations of subharmonic and superharmonic frequencies
through nonlinear interactions, where the ω combinations are shown to the right of the lines in (a).

on the evolution of nonlinear wave trains were also conducted by Zakharov (1968), Dysthe
(1979) and Lo & Mei (1985), based on the nonlinear Schrödinger (NLS) equation. Madsen
et al. (2002) simulated the sideband instability using a Boussinesq-type wave model.

To simulate the sideband instability, the model must be able to accurately resolve the
frequency dispersion and nonlinearity. The capability of the present model in simulating
the sideband instability is tested in this section. First, the wave modulation and the
recurrence phenomenon are reproduced in a numerical experiment in a very long spatial
and temporal domain. Second, the numerical model is validated against experimental data
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Figure 19. Same as figure 18 but for higher-frequency wave components.

collected in a super-long wave flume (Chiang 2005). The LFE-3 model is applied in this
section considering the deep-water wave conditions and long-distance simulations.

4.3.1. Recurrence
As discussed by Agnon et al. (1999), first- and second-order derivatives of ω with
respect to κ are of great importance for modelling sideband instability. Thus, most
Boussinesq-type models are not suitable for simulating the sideband instability because
of their assumptions on weak dispersion. Madsen et al. (2002) derived a fully nonlinear
and highly dispersive Boussinesq-type model and showed that for κd = 25 the model has
a 2 % error in linear frequency dispersion accuracy; they then employed the model to
study the sideband instability. If the same 2 % error criteria is applied, the present LFE-3
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Figure 20. Snapshot of free-surface elevations (normalised by incident carrier wave amplitude ac = 0.1 m)
for nonlinear wave trains with one carrier wave and two sidebands. The horizontal distance is normalised by
incident carrier wavelength Lc = 2π m.

is suitable for simulating waves for κd = 32.2. Thus, it will be used to reproduce the
numerical experiment conducted by Madsen et al. (2002).

In the numerical simulations, the water depth is 2π m and the period of the carrier
wave is 2.006 s, corresponding to κd = 2π. The amplitude of the carrier wave is
0.1 m, corresponding to κac = 0.1, and the amplitudes of two sidebands, (a−, a+), are
5 % of the carrier wave amplitude. To create the most unstable condition (β = 1),
�ω/ωc is set to be equal to κac and the phase shift is φ± = −π/4. The computational
domain is approximately 250Lc and the simulation time is 1000Tc, where Lc and Tc
are the wavelength and wave period of the carrier wave, respectively. Sponge layers are
implemented at both ends of the numerical domain to absorb outgoing waves.

Figure 20 shows a snapshot of the free-surface elevation at t = 900Tc for demonstration
purposes. The wave train first forms a massive pulse at x/Lc = 67 with a normalised
amplitude of η/ac = 2.55, then it returns to its initial state at x/Lc = 134. This
phenomenon is repeated with the next wave pulse appearing at x/Lc = 202. The spatial
variations of relative wave amplitudes (normalised by incident carrier wave amplitude ac)
of the carrier wave and its sidebands are shown in figure 21. The two sidebands in the
numerical experiment appear to have a slightly slower growth rate than the theoretical
predictions by Benjamin & Feir (1967) during the initial stage. The growth rates of upper
and lower sidebands are not the same. Initially, the upper sideband grows faster than the
lower sideband. However, near the peak of wave modulations the growth rate of the upper
sideband becomes slows and the peak value of the upper sideband is actually smaller
than the lower sideband in the vicinity of the peak modulation, which is consistent with
findings in Lo & Mei (1985) based on the Schrödinger equation. The relative amplitudes
of both sidebands reach their minima at x/Lc = 134, with the relative amplitude of lower
sideband being 0.04. However, the numerical results from Madsen et al. (2002) show that
the relative amplitude drops to nearly zero at this location. Lastly, the recurrence length,
which is determined by the distance between two minima of the carrier wave, is found to
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Figure 21. Spatial variations of amplitudes (normalised by incident carrier wave amplitude ac = 0.1 m) of
one carrier wave and two sidebands. The horizontal distance is normalised by incident carrier wavelength
Lc = 2π m.

be 135Lc, which is in good agreement with numerical results (141Lc) from Madsen et al.
(2002).

4.3.2. Validations with experimental data
Several experiments on sideband instability have been reported. Lake et al. (1977)’s
experiments confirmed that the initial stage of wave evolution was characterised by the
exponential growth of sideband disturbance and the modulated wave train. Melville (1982)
reported that the asymmetric growth of the sidebands corresponded to the onset of wave
breaking. Su et al. (1982)’s experiments focused on nonlinear instability of wave trains
with large steepness in deep water. They found that two-dimensional (2-D) wave trains
evolved into a series of 3-D spilling breakers, followed by a series of 2-D wave groups.
Tulin & Waseda (1999) carried out their experiments in a wave flume 50 m long, studying
the evolution of deep-water waves with wave breaking. They found that the frequency
downshift was correlated with wave breaking.

Chiang (2005) conducted a comprehensive laboratory study on the effects of wave
steepness and different sideband disturbances on the evolution of initially uniform wave
train. His experiments were performed in the same wave flume as discussed in § 4.1.
Although both breaking and non-breaking cases were investigated, only the results for the
frequency downshift induced by wave breaking were reported in Hwung, Chiang & Hsiao
(2007). In this section, one set of experimental data for the evolution of non-breaking wave
trains with a pair of initially imposed sidebands in deep water is employed to validate our
models.

In the numerical simulations, the time series of free-surface elevations measured at
the first wave gauge, located 15 m away from the wavemaker, are used as the boundary
conditions. Since the measurements were taken at discrete times and the time increment
between two successive sampling times is not the same as the numerical time steps used
in the simulations, the FFT is first employed to construct the time series of free-surface
elevations of the measurements. The resulting analytical solutions for the free-surface
elevation are used to calculate the velocity based on linear wave theory and together they
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Case Tc (s) ac (m) a+/ac a−/ac κcac κcd κhd κld Ch/Cc Cl/Cc β

T090 1.6 0.0678 0.219 0.233 0.107 5.5 6.6 4.5 0.91 1.11 0.91

Table 5. Summary of wave parameters conducted in § 4.3.2.

provide the boundary conditions on the left boundary. A sponge layer is implemented
downstream of the computational domain to absorb outgoing waves. A summary of
various wave parameters calculated from the measurement data at the first wave gauge
can be found in table 5. Note that the amplitudes of the sidebands in both cases are more
than 20 % of the carrier wave. In addition, the amplitude of the lower sideband is larger
than the upper sideband. The numerical experiments are carried out for 280 carrier wave
periods.

For the experimental case, while κcd = 5.5 for the carrier wave, κd values of the lower
and upper sidebands are 4.5 and 6.6, respectively. The phase velocities of two sidebands
normalised by the phase velocity of the carrier wave are also given in table 5. Figure 22
shows the comparisons of the time series of free-surface elevations (normalised by incident
carrier wave amplitude ac) between numerical results and experimental measurements at
several wave gauges, where x = 0 is the wavemaker location in the laboratory experiment.
The results from LFE-3 model are in fairly good agreement with the experimental data
up to x/Lc = 42.28, which is 169 m away from the wavemaker. However, more significant
discrepancies in both amplitude and phase appear at the last two wave gauges, in which
the reflected waves in the laboratory experiments might also play a role. Spatial variations
of the amplitudes of the carrier wave and sidebands are obtained by using discrete Fourier
transformation with Hanning window. They are plotted in figure 23 with the corresponding
experimental data. The agreement between numerical results and experimental data is
fairly good. The amplitudes of the carrier wave decrease as waves propagate downstream
and the two sidebands decrease slightly first and then increase to be comparable with the
carrier wave near the peak modulation, located at 50 < x/Lc < 60. The lower sideband
is initially larger than the upper sideband and this trend remains so in the entire domain,
except that the amplitudes of those two sidebands are comparable at x/Lc = 38.

4.4. Regular wave transformation over a submerged bar
Laboratory experiments of regular wave trains propagating over a submerged bar were
conducted by Dingemans (1994). The submerged bar has a front slope of 1/20 and a back
slope of 1/10 which is placed in a still water depth of 0.86 m (see figure 24). Regular
wave trains of different conditions were generated at the left boundary and free-surface
elevations were measured at several locations along the wave flume. Because of wave
shoaling on the front slope, the wave amplitude grows and higher harmonics are generated
on the slope and over the crest of the bar, which challenges the model’s capability in
accurately capturing shoaling effects, linear wave frequency dispersion and nonlinear
harmonic generation. These experimental observations have been used as benchmark
problems for testing many depth-integrated models (Beji & Battjes 1994; Lynett & Liu
2004; Yang & Liu 2020).

The incident wave has an amplitude of a = 0.02 m and a period of T = 2.86 s ( f =
0.35 Hz), representing weakly nonlinear (κa ≈ 0.016) waves propagating in a finite water
depth of κd ≈ 0.7 with a wavelength of L = 7.72 m. The locations of ten wave gauges
for measuring time series of free-surface elevations are indicated in figure 24. Note that
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Figure 22. Comparisons of time series of free-surface elevations (normalised by incident carrier wave
amplitude ac = 0.0678 m) between numerical results (red lines) and experimental data (black lines). The real
time is normalised by the carrier wave period Tc = 1.6 s.
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Figure 23. Comparisons of spatial variations of amplitudes (normalised by incident carrier wave amplitude
ac = 0.0678 m) of carrier wave and its sidebands between numerical results (line) and experimental data
(markers). The horizontal distance is normalised by the carrier wavelength Lc = 3.997 m.
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Figure 24. Experimental set-up and gauge locations (normalised by incident wavelength) for wave
transformation over a submerged bar (Dingemans 1994). Blue line shows the instantaneous free-surface
elevations at t = 21T .

the total length of the submerged bar is equivalent to roughly three incident wavelengths.
In the numerical simulations, waves are generated at the left boundary while a sponge
layer (two to three times the incident wave wavelength) is implemented downstream to
absorb outgoing waves. A spatial resolution of �x = 0.05 m and a temporal resolution
of �t = 0.025 s have been tested to produce the converged numerical results. Figure 25
shows the comparisons of the time series of free-surface elevations (normalised by incident
wave amplitude) at eight wave gauges between numerical results obtained from the LFE-2
model and experimental data. Numerical results from the S2 model (Yang & Liu 2020),
which assumes a linear profile for the horizontal velocity in the entire water column, are
also denoted by black lines in the same figure and are almost identical to the LFE-2 model
up to x/L = 3.94. However, at the last three gauge stations, the LFE-2 model is still able to
produce excellent agreement, whereas discrepancies appear for the S2 model, especially at
x/L = 4.36 and 5.32, where higher harmonic waves are already in deep-water conditions
(κd > π).

The spatial variation of different harmonics along the wave flume for both experimental
data and numerical results are shown in figure 26(a), and the corresponding spatial
variation of local κh values for different harmonics are also presented in figure 26(b).
A significant amount of higher harmonics (up to sixth) are generated on the front slope
and on the top of the submerged bar, and they are released as deep-water wave components
behind the bar. For example, behind the submerged bar, the third harmonic has κh ≈ 3.56
(deep-water limit) and its amplitude is comparable to that of the first harmonic. For the
fourth harmonic, κh = 6.31 behind the submerged bar. However, its amplitude is relatively
small. As shown in figure 26(a) the results of the first and second harmonics obtained from
S2 model are in good agreement with the results obtained from the present model, LFE-2,
and the experimental data throughout the entire domain. However, significant differences
can be observed for higher harmonics in the region behind the submerged bar, and the
numerical results from the LFE-2 model achieve better agreement with experimental data
than the S2 model.

4.5. Focusing waves group interacting with vertically sheared currents
Laboratory experiments have been conducted to generate a wave–current environment
at the Technology Centre for Offshore and Marine, Singapore (TCOMS), with the
intention to further study the dynamic responses of an offshore structure (Li et al. 2023).
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Figure 25. Comparisons of free-surface elevations (normalised by incident wave amplitude a = 0.02 m)
between numerical results obtained from the LFE-2 model (blue line), S2 model (black line) and experimental
data (Dingemans 1994) (red circles) at eight wave gauges. The real time is normalised by incident wave period
T = 2.86 s.

The deep-water ocean basin at TCOMS is 60 m in length, 48 m in width and the water
depth can be adjusted from 0 m to 12 m. Focusing wave groups and currents can be
generated by flap-type paddles and inflow devices, respectively. The experimental data
of the wave and current field are employed to check the model’s capability in dealing
with deep-water waves on vertically sheared currents, which cannot be treated by potential
flow-type (e.g. Boussinesq-type) models.

Three cases are considered here, namely, the pure focusing wave group, the focusing
wave group interacting with depth-uniform currents and vertically linearly sheared
currents. All the incident wave conditions are unidirectional and the currents are co-linear.
The water depth is kept as a constant of 4.2 m. Time series of free-surface elevations are
measured at three locations by an array of five wave gauges. The measurement arrays
are installed at locations upstream, downstream and in the vicinity of the designed focal
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Figure 26. (a) Comparison of spatial variations of amplitudes of six harmonics (normalised by incident wave
amplitude a = 0.02 m) between numerical results obtained from the LFE-2 model (thick line), S2 model
(dash-dotted line) and experimental data (Dingemans 1994). (b) Variations of local relative water depth (κh) for
six harmonics; see (a) for the legend. The horizontal distance is normalised by incident wavelength L = 7.72 m.

point. Similar experiments were conducted by Chen et al. (2019) in a wave–current flume,
which were used in YL20 to validate their models. The primary difference between these
two sets of experiments is the κd values. In Chen et al. (2019) κd = 0.97, whereas in the
experiments presented here κd = 2.73, representing deeper-water-wave conditions. The
SK models developed in YL20 for K < 5 are inadequate for simulating the present wave
conditions.

Currents are generated by pumping water through a set of underwater conduits along
the sidewalls of the basin and they are measured at nine vertical elevations in the
water column, using a modular acoustic velocity sensor (MAVS) current meter. Current
velocities without the presence of waves, measured in the middle of the basin, are shown
by the markers in figure 27, and the linearly interpolated results are denoted by lines, which
are used as the input current velocity in the numerical model. Mathematically, they can be
described as u = 0.1513 + 0.006σ and u = 0.0468 + 0.1485σ for nearly depth-uniform
current and nearly linearly sheared current, respectively. In the absence of current, the
incident focusing wave group follows a JONSWAP spectrum distribution and is designed
to be crest-focused, with a significant wave height (Hs) of 0.04 m and a peak wave period
(Tp) of 2.5 s, corresponding to κd = 2.73. A significant amount of energy is distributed
in the deep-water regime, i.e. κd > π (see figure 30(a–c) for the energy spectra). In the
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Figure 27. Measured current velocity (markers) and linearly interpolated results (lines) for depth-uniform
current (blue) and linearly sheared current (red), respectively.

presence of currents, although the incident waves are relatively linear, it is anticipated that
the wave group cannot reach the same focused stage as before (without current) because
of modified dispersion relation through Doppler shift effect.

The time series of free-surface elevations measured at the wave gauge closest to the
wavemaker (x = 18.447 m) are used as the input data in the numerical model for each case.
Through numerical experiments, it is observed that the converged numerical results can be
achieved for a spatial resolution of �x/Lp = 0.01 and a temporal resolution of �t/Tp =
0.02, where Lp = 9.68 m is the peak wavelength. Figure 28 shows the comparisons of
free-surface elevations (normalised by significant wave height) between experimental data
(black lines) and numerical results (red lines) obtained from the LFE-2 model (figure 28a)
and LFE-3 model (figure 28b) for focusing wave group without current. Although the
LFE-2 model already shows reasonable predictions, a better agreement is achieved by the
LFE-3 model for capturing those higher-frequency wave components, which propagate at
a slower speed compared with other wave components, because of its higher accuracy in
the dispersion relation. As a result, the highest wave crest at the focal point (x = 30 m
or x/Lp = 3.1) reaches 0.146 m or 3.65Hs. The corresponding energy spectra at three
locations are also compared and presented in figure 30(a–c). The agreement is quite
reasonable for the LFE-3 model, whereas some discrepancies (over-estimations) mainly
appear at higher frequencies for the LFE-2 model.

Based on the above numerical experiments for focusing wave group propagation
without current, only the LFE-3 model is employed for studying the wave–current
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Figure 28. Comparisons of free-surface elevations (normalised by significant wave height) between
experimental data (black lines) and numerical results (red lines) obtained from the LFE-2 model (a) and LFE-3
model (b) for focusing wave group without current. The real time is normalised by the peak wave period
Tp = 2.5 s.

interaction cases. In the numerical simulations, the target current field, being uniform in
the x direction and shearing in the vertical direction, is initialised in the computational
domain. This is achieved by providing the targeted velocity values at the finite-element
nodes, including the bottom and surface. At the lateral (left) boundary, the free-surface
elevations are obtained from experimental data after being reconstructed using FFT,
whereas the velocities are specified by a linear summation of wave-induced horizontal
velocity calculated using the FFT results and the target current field. Figure 29 shows the
comparisons of free-surface elevations (normalised by significant wave height) between
numerical results and experimental data for focusing wave group propagating over
depth-uniform (figure 29a) and linearly sheared currents (figure 29b), respectively. First,
the agreement between cases is fairly good with slight overestimation appearing near the
focal point (x = 30 m or x/Lp = 3.1) for the depth-uniform current case. For both cases,
the crest-focused phenomena observed in the pure-wave case no longer exist at the focal
point because of the modified dispersion relation in the presence of the current field,
making smaller highest wave crests of 0.086 m (or 2.15Hs) for the uniform-current case
and 0.105 m (or 2.63Hs) for the linearly sheared current case, respectively, as compared
with 3.65Hs in the pure-wave scenario. Second, although the magnitudes of both current
fields are close, i.e. Uc/C ≈ 0.044, where Uc and C are current velocity and wave
phase velocity, respectively, the modified dispersion relations and associated free-surface
elevations are different because of their different underlying vertical profiles.
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Figure 29. Comparisons of free-surface elevations (normalised by significant wave height) between numerical
results obtained from the LFE-3 model (red line) and experimental data (black line) for waves on depth-uniform
currents (a) and waves on linearly sheared currents (b). The real time is normalised by the peak wave period
Tp = 2.5 s.

The wave energy spectra of the uniform current case and linearly sheared current
case are presented in figure 30(d–f ) and figure 30(g–i), respectively. The κd values
corresponding to each tick of the x-axis are denoted on top of figure 30(a–c). The
calculated energy E is normalised by the energy (Emax) associated with the peak wave
period at x/Lp = 2.23 in the wave-alone case. The agreement between numerical results
and experimental data is generally good except that numerical results are larger than the
experimental data at x = 30 m in the uniform-current case, which is consistent with the
observations for the surface elevations, and this maybe caused by inaccurate measurements
since energy dissipation should not be so prominent here. Lastly, the spatial variation
of energy spectra is very small for each case. However, it can be expected that wave
amplitudes decrease while wavelengths increase since waves are propagating in the same
direction as currents (Peregrine 1976). Although currents are relatively weak in these two
cases, it is observed that the wave energy corresponding to the peak wave period reduces
by approximately 10 % for wave–current cases compared with the wave-alone scenario.

5. Further discussions: shoaling process from deep to shallow water and harmonic
generation in shallow water

The capability of the present models in simulating the wave shoaling process is further
investigated in this section. First, the shoaling process of linear wave transformation from
very deep water to shallow water is considered. In the numerical simulations, regular wave
trains with a period of T = 2 s are generated by an internal wavemaker, located at x = 0 m,
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Figure 30. Comparisons of wave energy spectra at three locations between experimental data (black) and
numerical results (LFE-3 model, red; LFE-2 model, blue) for (a–c) wave-alone, (d–f ) waves on depth-uniform
current and (g–i) waves on linearly sheared current. The κd values corresponding to each x tick are denoted
above (a–c).

while sponge layers are implemented at both ends of the computational domain to absorb
outgoing waves. The deepest part of the bathymetry has a depth of 10 m and is connected
to the shallowest depth of 0.1 m by a 1:20 slope. The first 60 m of the bathymetry, which is
equivalent to about 10 wavelengths, is flat so that the phase velocity of the incident linear
waves can be verified. The variation of local κh values calculated based on the linear wave
theory is denoted by the blue line in figure 31(c), which reduces from 10.06 to 0.32 and
covers the regime from very deep water to shallow water. The amplitude of the incident
wave A0 is specified as small enough to guarantee the entire shoaling process is linear.
Numerical simulations are carried out by using both LFE-2 and LFE-3 models, and the
calculated free-surface elevations are shown in figures 31(a) and 31(b), respectively, which
are compared with the analytical solution of linear shoaling amplitude envelope (Madsen
& Sørensen 1992), i.e.

Ax

A
= − G

(1 + G)2

[
1 + 1

2
G(1 − cosh 2κh)

]
hx

h
, (5.1)

where A is the local wave amplitude and G = (2κh)/(sinh 2κh).
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Figure 31. (a,b) Comparisons between numerical results of free-surface elevations (red lines) and the
corresponding analytical amplitude envelopes (blue lines) for linear waves shoaling over a 1 : 20 plane slope for
the LFE-2 and LFE-3 models, respectively. (c) The variation of κh values (blue line, linear wave theory; red
circles, LFE-3 model) and H/h values (black asterisks). Here A0 denotes the incident wave amplitude and H is
the local wave height. The horizontal distance is normalised by incident wavelength L = 6.245 m.

For waves in constant deep water depths, i.e. 0 < x < 60 m, the calculated phase
velocity from the LFE-2 model is 3.0133 m s−1, which is 3.5 % slower than that based
on the linear wave theory, i.e. 3.1226 m s−1. This is consistent with the theoretical
analysis of the model equations as shown in figure 5(a). In terms of wave amplitude,
even before reaching the toe of the slope, the generated wave amplitude by the LFE-2
model is already 13 % larger than the target wave amplitude. This is possibly because
the generated waves propagate at a slower speed than the phase velocity specified
in the internal wavemaker, which is based on linear wave theory. While the wave
train travels on the slope, the wave amplitude gradually decreases, which is physically
incorrect since the relative water depth is still quite large (κh > π) and the shoaling
effect should not play a role. In fact, this is consistent with the theoretical analysis as
shown in figure 5(c) for the LFE-2 model that the shoaling gradient gradually deviates
from zero to a negative value for increasing κd values. The effect of this negative
value in shoaling gradient leads to a decrease in local wave amplitude. This indicates
that the wave amplitude can modulate non-physically if the shoaling property of the
model is not accurate enough in the deep-water regime. The numerical results of the
LFE-3 model are shown in figure 31(b). The calculated phase velocity is 3.1125 m s−1,
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which is almost the same as the theoretical estimation. The agreement between
the computed free-surface amplitudes and the analytical solutions is also excellent
everywhere. The wave amplitudes in the shallowest zone finally become almost 28 % larger
than the incident wave amplitude. Lastly, the κh and H/h values of each individual wave
in the numerical results of the LFE-3 model are calculated, which are shown by red circles
and black asterisks in figure 31(c), respectively. The agreement between the calculated κh
values and linear estimations is excellent. The H/h values significantly increase because
of the shoaling process, but the largest value is still around 0.0026, indicating that the
entire process is linear. This case shows that significant improvement in terms of phase
velocity and shoaling accuracy can be achieved by using the LFE-3 model over the LFE-2
model.

Second, a nonlinear shoaling process is further investigated using the LFE-3 model.
The bathymetry is almost the same as the linear shoaling case discussed above, except
that the constant deep-water zone has been removed and the toe of the slope is located at
x = 0 (see variations of κh shown in figure 32b). The incident wave period is the same as
the linear case but the wave amplitude is A0 = 0.01 m with κA0 = 0.01, corresponding
to linear waves in very deep water. The computed free-surface elevations are shown
in figure 32(a), which are compared with linear analytical amplitude envelopes. The
shoaling process is almost linear and agrees well with linear analytical solutions for
x/L < 30, but apparent differences appear by further decreasing the water depth, which
can be observed in figure 32(c). In the meantime, because of the increase in wave height
induced by the shoaling process, the balance of the horizontal momentum equation of
the mean flow causes a decrease in the mean free surface (setdown). This mean free
surface (setdown) is calculated and shown in figure 32(c), which reaches 0.4 mm at the
end of the slope. In the constant-shallow-water region, the free-surface elevations show
significant nonlinear features with small secondary crests being generated and peaked
wave crests that are more than twice the size of the wave troughs. The κh and H/h values
of each individual wave are calculated and shown in figure 32(b). It should be noted that
the wavelength is defined as the horizontal distance between two leading wave crests,
and the wave height is calculated by the maximum difference in free-surface elevations
within one wave cycle. The computed κh values (blue circles) still agree well with linear
estimations (blue line), and the H/h values can go up to 0.37 in the shallowest water
depth.

A Fourier analysis is conducted in the time domain to obtain the spatial variation of
the first four harmonics (normalised by incident wave amplitude), which are presented in
figure 32(d). On the slope the first harmonic amplitude decreases slowly in an oscillatory
manner first and then increases as the water depth becomes shallower because of shoaling.
Before waves reach the constant shallow-water-depth zone, higher harmonic wave
components are generated due to the quadratic nonlinearity. In the constant-shallow-water
region, the nonlinear interactions among harmonic wave components are fully developed.
In the present case, while the primary wave has a κh = 0.32, the fourth harmonic
corresponds to κh = 1.72, which is still in the intermediate-water-depth regime.

Several parameters associated with waves in the shallow-water region are listed in
table 6, where ε and μ are dimensionless small parameters indicating the nonlinearity and
dispersiveness, respectively. For waves in this case, the nonlinear and dispersive effects are
equally important as ε/μ2 = 1 and the Ursell number (=1/δ = 1/1.39) = 0.72, indicating
the waves are fairly nonlinear waves in shallow water. The energy exchange between first
and second harmonics occurs within a short distance, and the amplitudes of the third and
fourth harmonics are approximately 40 % and 20 % of the first harmonic, respectively,
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Figure 32. (a) Computed free-surface elevations (red line) by the LFE-3 model and analytical amplitude
envelopes (blue lines); (b) spatial variations of κh values (blue line, linear wave theory; red circles, LFE-3
model) and H/h values (black asterisks); (c) computed free-surface elevations and mean free-surface elevations
(setdown) for 22 < x/L < 40; (d) spatial variations of normalised amplitudes (by incident wave amplitude
A0 = 0.01 m) of the first four harmonics for 22 < x/L < 40. The dashed lines in (c,d) indicate the end of the
slope. The horizontal distance is normalised by incident wavelength L = 6.245 m.

Parameters ε = A0/h κh μ = ω

√
h
g

ε/μ2 δ = 4
3

h
A0

(κh)2 Lb (m) a2 (cm)

Values 0.1 0.32 0.32 1.00 1.39 10.2 [9.10] 0.96 [1.2]

Table 6. Wave parameters in the shallow-water zone in the nonlinear shoaling case in § 5. Theoretical
estimations of beat length (Lb) and amplitude of second harmonic (a2) from Mei (1989) are shown in brackets.

see figure 32(d). Very similar patterns of amplitude variations of different harmonics
can be found in figure 4(a) in Bryant (1973), in which wave parameters were ε = 1/20,
μ2 = 1/20, and ε/μ2 = 1, respectively. The beat length (Lb) or recurrence length of first
and second harmonics of the numerical results is approximately 10.2 m, which is close
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to the theoretical estimation based on the Korteweg–de Vries equation for two harmonics
(Mei 1989), i.e. 9.10 m. Furthermore, from the present numerical results the amplitude
of the second harmonic is approximately 0.96 cm, which is smaller than the theoretical
solution from Mei (1989), i.e. 1.2 cm. These discrepancies may be attributed to two factors:
(1) the weakly dispersive and weakly nonlinear Korteweg–de Vries equation was used in
Mei (1989); (2) only two harmonics were considered in the theoretical derivations of Mei
(1989).

6. Concluding remarks

In this study, we first derived a set of depth-integrated continuity and momentum equations
in terms of the horizontal velocity components and the free-surface displacement. These
equations are exact equations and the boundary conditions on the free surface and the
seabed are also satisfied exactly. However, the unknown variables (the horizontal velocity
components) still depend on the vertical coordinate. By adopting the finite-element
approach, i.e. dividing the water column into finite elements and approximating the
horizontal velocity components in each element as a linear function, a set of nonlinear
partial differential equations written in terms of the unknown horizontal velocity evaluated
at the finite-element nodes and the free-surface displacement can be obtained by
the weighted residual method. These resulting model equations depend on time and
2-DH coordinates. To find the solutions for the initial boundary value problem, lateral
boundary conditions and initial conditions must be specified. Once the horizontal velocity
components and the free-surface displacement are known, the vertical velocity component
and the pressure field can be obtained from the exact expressions relating them to the
horizontal velocity and free-surface displacement.

A general derivation of the mathematical model has been presented in § 2, which results
in the linear-finite-element-M model (LFE-M), which can incorporate M number of linear
elements. A theoretical analysis has been conducted on the LFE-M models up to four linear
elements. The mesh configurations (locations of the nodes) can be optimised to obtain
more accurate solutions. While the LFE-2 model can be applied up to κd ≈ 10.9 with 2 %
relative error in linear phase velocity, the LFE-4 model is accurate up to κd ≈ 127.9, which
is practically an infinite water depth. Their capability of reproducing the vertical profiles of
velocity and pressure fields, second-order nonlinear effects and Doppler-shift effects has
also been verified. In terms of wave-alone problems, the present models also show superior
properties compared with Green–Naghdi-type models with the same number of horizontal
velocity unknowns. In terms of linear wave frequency dispersion, the applicability of the
LFE-2, LFE-3 and LFE-4 models is 7 %, 109 % and 410 % larger than the S3, S4 and S5
models developed in YL20, respectively. The advantage of the multi-element approach in
achieving better model performance is clearly demonstrated. However, the velocity and
pressure profiles are continuous but not necessarily smooth in present models.

The LFE-2 and LFE-3 models have been numerically implemented using a five-point
finite-difference method for 1-DH spatial discretisation and a fourth-order Runge–Kutta
method for time integration. The results have been validated by either laboratory
experiments or theoretical results for several benchmark problems, including the evolution
of nonlinear Stokes wave propagation in deep water over a long distance, bichromatic wave
group propagation in deep water, sideband instability of deep water waves, regular wave
transformation over a submerged shoal and focusing wave group interacting with linearly
sheared currents in deep water. Good agreement is found between numerical results and
experimental data, demonstrating models’ high accuracy in linear and nonlinear (up to
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the third order) properties in deep water. New numerical experiments have also been
conducted to demonstrate models’ capability in simulating the linear and nonlinear wave
shoaling process from deep water to shallow water, including the harmonic generation
in shallow water. The improvement from the LFE-2 to LFE-3 model has been clearly
demonstrated with moderate extra computational time (approximately 10 %).

However, it remains a challenging problem for depth-integrated models to simulate
flows with large velocity gradients in the vertical direction, e.g. strongly sheared flows
interacting with deep-water waves. To consider such flows using the present models, the
number of elements must be increased and the finite-element mesh must be optimised
so that more elements are clustered in the areas with large velocity gradients. Several
immediate extensions of the present models can be carried out in the future. First,
higher-order shape functions in the finite-element discretisations of the horizontal velocity
components can be implemented. Second, the dissipation mechanism induced by wave
breaking and/or bottom friction can be incorporated. Third, the extension of the 1-DH to
the 2-DH model and the introduction of wet and drying boundary algorithms are necessary
for practical applications.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.604.
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Appendix A. Constant coefficients in the linearised LFE-2 model

The coefficients in the linearised LFE-2 model are as follows:

A11 = 2, A12 = 1, A13 = 0, A21 = 1
2 c2, A22 = 1,

A23 = 1
2 (1 − c2), A31 = 0, A32 = 1, A33 = 2,

}
(A1)

B11 = 1
10 c2(7c2 − 15), B12 = 1

20(c2
2 + 10c2 − 20), B13 = −1

2(c2 − 1)2,

B21 = 1
40 c2(c2

2 + 10c2 − 20), B22 = 1
20(c2

2 + 4c2 − 8),

B23 = − 1
40(c2 − 1)2(c2 + 9), B31 = 1

2 (c2 − 1)c2,

B32 = 1
20(c2 − 1)(c2 + 9), B33 = − 3

10(c2 − 1)2.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A2)

D1 = 3, D2 = 3/2, D3 = 3. (A3a–c)
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Appendix B. Coefficients in the linear dispersion relation for the LFE-3 model

The coefficients in the linear dispersion relation for the LFE-3 model are as follows:

P1 = −((3c2 + 1)c3
2 − 2c2(c2 + 3)c2

2 + (3c3
2 + c2

2 − 3c2 − 1)c2

+ 4c2(−c2
2 + c2 + 1))(10(c2(3c2 + 1) − 4c2)), (B1)

P2 = ((3c2 + 1)c5
2 − 4c2(c2 + 2)c4

2 + (9c3
2 + 4c2

2 − 12c2 − 4)c3
2

+ c2(−4c3
2 − 15c2

2 + 21c2 + 24)c2
2 + c2

2(3c3
2 + c2

2 − 11c2 − 8)c2

+c2
2(−4c3

2 + 8c2
2 + 11c2 − 15))(400(c2(3c2 + 1) − 4c2)), (B2)

P3 = −(c2(c2 − 1)(2(5c2
2 + 4c2 + 1)c4

2 + c2(10c2
2 − 29c2 − 16)c3

2

+ c2
2(10c2

2 − 41c2 + 16)c2
2 + c2

2(−28c2
2 + 68c2 + 15)c2

+5c3
2(4c2 − 9)))(8000(c2(3c2 + 1) − 4c2)), (B3)

Q1 = −((9c2 + 3)c3
2 − 6c2(c2 + 3)c2

2 + (9c3
2 + 3c2

2 − 39c2 − 13)c2

+ 4c2(−3c2
2 + 3c2 + 13))(30(c2(3c2 + 1) − 4c2)), (B4)

Q2 = ((9c2 + 3)c5
2 − 12c2(c2 + 2)c4

2 + 4(13c3
2 + 3c2

2 − 39c2 − 13)c3
2

− 12c2(c3
2 + 10c2

2 − 14c2 − 26)c2
2 + 3(3c5

2 + c4
2 − 26c3

2 − 38c2
2 + 15c2 + 5)c2

− 12c2(c4
2 − 2c3

2 − 14c2
2 + 15c2 + 5))((1200(c2(3c2 + 1) − 4c2)), (B5)

Q3 = ((−15c3
2 + 3c2

2 + 39c2 + 13)c5
2 + 2c2(5c3

2 + 48c2
2 − 36c2 − 52)c4

2

− 3(5c5
2 − 13c4

2 + 36c3
2 − 38c2

2 + 15c2 + 5)c3
2

+ 2c2(21c4
2 − 117c3

2 + 46c2
2 + 60c2 + 45)c2

2 + 10c2
2(22c2

2 − 24c2 − 3)c2

− 10(c2 − 1)2c2
2(4c2 + 5))(12000(c2(3c2 + 1) − 4c2)), (B6)

Q4 = (c2(c2 − 1)2((5c3
2 + 25c2

2 + 15c2 + 3)c4
2

− 12c2(5c2 + 2)c3
2 + 12c2

2(2 − 5c2)c2
2

+4c2
2(28c2 + 5)c2 − 60c3

2))(96000(c2(3c2 + 1) − 4c2)). (B7)
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