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Introduction

1.1 Prologue

In classical seismological observation, the first task was to read P- and S-wave
onsets and maximum amplitudes of earthquake seismograms registered at stations
to determine the earthquake hypocenter and its magnitude. Those measurements are
also useful for the study of the Earth medium structure. In the 1960s, recorded direct
arrival signals were often clipped since the dynamic range of recording systems
was small. A complementary method was proposed to estimate the magnitude of
an earthquake by measuring the duration time from the P-wave onset until the seis-
mogram amplitude falls to the ground noise level (e.g., Solov’ev, 1965; Tsumura,
1967).

In the USA, Aki (1969) proposed to estimate the source spectrum phenomeno-
logically from the spectrum of coda waves following the clipped direct arrival,
where the word “coda” means the tail part of a seismogram. In the ex-Soviet
Union, Rautian and Khalturin analyzed multi-bandpass filtered seismograms of
earthquakes for a wide range of frequencies and lapse times up to more than
thousands of seconds in various regions. They found that coda amplitudes have
a common decay curve at different epicentral distances. They proposed a method
to estimate the source spectrum of an earthquake from the spectrum of coda waves
(e.g., Rautian et al., 1978, 1981). Nikolaev (1975) studied the collapse of a seismic
wavelet with increasing travel distance in relation to the degree of medium het-
erogeneity. In Japan, Tsujiura (1978) reported that bandpass-filtered coda waves
of local earthquakes have a common decay curve independent of earthquake mag-
nitudes and epicentral distances. Their studies have led to the gradual recognition
of the term “coda” in the seismological community. Seismologists often classified
seismogram envelope patterns of small earthquakes in relation to regional differ-
ences of their epicenters (e.g., Research Group for Aftershocks, 1971); however,
the physical mechanisms of complex seismogram envelope formation were not yet
clearly understood in those days.
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2 Introduction

In 1975, Aki and Chouet (1975) proposed a theoretical model to explain the exci-
tation of coda waves quantitatively based on the theory of scalar wave scattering
in random media (Chernov, 1960). Their single back-scattering model predicts that
the power spectrum of coda waves is a convolution of the source power spectrum,
the inverse square of the lapse time as a geometrical factor, and the back-scattering
coefficient. The back-scattering coefficient is related to the power spectral density
function (PSDF) of the random fractional velocity fluctuations. It was the first use
of the radar equation in seismology. They ignored phase information and dealt
with wave energy density, that is, their model is the simplest type of radiative
transfer theory (RTT). Their work was a breakthrough for studying the random
inhomogeneity of the solid Earth medium.

Many moonquake seismograms registered by the Apollo seismic network were
found to be spindle-like (Nakamura, 1977b), which also boosted the study of wave
scattering and the synthesis of seismogram envelopes in highly heterogeneous
media based on the diffusion model (Wesley, 1965).

In the mid-1970s, one of the authors (HS) was involved in seismological obser-
vation at the deep-borehole seismic station IWT of National Research Center for
Disaster Prevention (NRCDP) (currently National Research Institute for Earth Sci-
ence and Disaster Resilience (NIED)) in Japan. He routinely read the P- and S-wave
onsets and the maximum amplitude of each seismogram recorded on a paper chart;
however, many seismograms were clipped because the recording system had a
small dynamic range. He was also asked to read the duration of coda waves tF−P to
estimate the magnitude of the earthquake (see Figure 1.1 (a)). In addition to P and
S arrivals, complex wave trains appear between these direct arrivals and after the S
arrival. Although their phases are complex, the variation of the amplitude envelope
looks smooth and systematic. He also got to know that the acoustic and mass-
density well-logs measured in the borehole exhibit random fluctuations superposed
on the step-like structure (see Figure 1.1 (b)). Inspired by the coda model of Aki
and Chouet (1975), he became interested not only in coda wave excitation but also
in a wide variety of three-component velocity seismogram envelopes in relation to
random heterogeneity.

There were a few number of literature discussing wave scattering in seismo-
logical fields in those days. However, since the 1960s, there have been many
studies based on the RTT in various fields of physics: on the propagation of
light/electromagnetic waves in outer space, in the turbulent atmosphere and clouds,
and the acoustic wave propagation through the turbulent atmosphere and ocean. It
would be interesting for readers to learn those developments from review works
and textbooks (e.g., Foldy, 1945; Chernov, 1960; Furutsu, 1964; Tatarskii, 1971;
Barabanenkov et al., 1971; Flatté et al., 1979; Rytov et al., 1989; Apresyan and
Kravtsov, 1996; Ishimaru, 1997). These studies were gradually introduced in the
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Figure 1.1 (a) Typical velocity seismogram of a small earthquake, where the direct
wavelet is often clipped on a paper chart. (b) Acoustic and mass density well-logs
of the IWT site of NRCDP (Shiomi et al., 1997, Fig. 3).

seismological community. Wu (1985) first proposed the use of the RTT, which can
handle multiple scattering, for the study of coda excitation. Since then, original
developments in the study of seismic wave scattering have been made in relation
to the random heterogeneity of the solid Earth medium in the framework of RTT.

1.2 Recent Seismological Observation of Earthquakes

From the 1970s to the 1980s, seismic observation networks linked by telemetry
were built in earthquake-prone countries around the world. In 1995, the Hyogo-ken
Nanbu (Kobe) earthquake of M 7.3 took place in western Japan. That earthquake
caused a major disaster and numerous deaths. Subsequently, NIED built “Hi-net,” a
nationwide network for real-time monitoring of seismic activity throughout Japan.
The average separation of stations is as short as 20–25 km. Each station has a
three-component velocity seismograph at the bottom of a borehole. The seismo-
graph has a flat response to the ground velocity for frequencies higher than 1Hz.
The digital telemetry system drastically broadened the dynamic range of the whole
seismological observation system.
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1.2.1 Coda Waves

Time Traces

The Hi-net array allows us to study how high-frequency seismic waves propagate.
Even if it is difficult to analyze the phase information, we can see the spatiotem-
poral change in the mean squared (MS) velocity amplitude, which is proportional
to the seismic energy density. Figure 1.2 (a) shows MS velocity–amplitude time
traces of a local earthquake registered at various epicentral distances. MS velocity–
amplitudes of coda waves decrease according to a common decay curve irrespec-
tive of epicentral distances. Figure 1.2 (b) shows MS velocity–amplitude time
traces of different magnitude earthquakes registered at approximately equal epi-
central distances, where each MS velocity–amplitude time trace is normalized by
that at 100 s in lapse time measured from the origin time. This procedure is known
as the coda normalized method. Coda normalized MS velocity amplitudes decrease
according to a common decay curve irrespective of earthquake magnitudes.

Spatial Distributions

Changing the viewpoint, we show snapshots of the spatial distribution of seismic
energy density in the 8–16Hz band at different lapse times. Figure 1.3 (a) shows
those of a crustal earthquake for a wide range of epicentral distances. The coda
energy density is uniformly distributed inside of the S wavefront at a lapse time of
80 s. Figure 1.3 (b) shows those of an explosive P source in a volcanic field at small
epicentral distances registered by a dense seismic array. Conversion scattering from
P to S waves due to the strong heterogeneity effectively generates S waves, which
concentrate near around the source. The excitation of coda waves strongly depends
on the degree of medium heterogeneity.
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Figure 1.2 (a) Semi-log plot of MS velocity–amplitude time traces of an M 4.7
local earthquake (closed circles in the inset) registered at different stations (closed
boxes). (b) Semi-log plot of coda normalizedMS velocity–amplitude time traces of
different magnitude earthquakes (M 4.0–4.6, closed circles in the inset) registered
at nearly equal epicentral distances (closed box), where Hi-net data of NIED are
used.
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Figure 1.3 Semi-log plot the spatial distribution of seismic energy density at dif-
ferent lapse times measured from the origin time. (a) For a crustal earthquake in
western Japan, where Hi-net data of NIED are used. S-wave radiation is domi-
nant. (b) For a chemical explosion (P source) at Asama volcano, Japan, where
gray curves are best-fit isotropic scattering model solutions (Yamamoto and Sato,
2010, Fig. 4).

1.2.2 Envelope Broadening

Another scattering effect is the envelope broadening of a seismic wavelet. Fig-
ure 1.4 (b) shows the temporal change of the root mean squared (RMS) velocity
seismogram amplitudes at different epicentral distances, where the earthquake epi-
center and stations are shown in Figure 1.4 (a). The apparent duration of the S
wavelet is broadened with increasing epicentral distance.

Figure 1.5 (a) shows a typical velocity seismogram of a small earthquake with its
bandpass-filtered RMS amplitude traces, where tp is the peak delay time from the
S onset. Figure 1.5 (b) plots tp against hypocentral distance for many earthquakes
in the magnitude range from 2.3 to 5.5. Although the scatter is significant, the peak
delay increases with increasing hypocentral distance, as shown by the regression
line (white) in each frequency band.

The envelope broadening with increasing travel distance can be explained by the
accumulation of narrow-angle ray bending around the principal ray direction due to
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Figure 1.4 (a) Hi-net stations of NIED (boxes) and anM 4.7 earthquake in the east-
ern Honshu, Japan. (b) RMS amplitudes of stacked transverse-component velocity
seismograms (2–4Hz band) at different epicentral distances, where each trace is
normalized by the maximum peak value.
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Figure 1.5 (a) Velocity seismogram (NS comp.) and bandpass-filtered RMS
amplitude time traces (horizontal component) of a small earthquake in NE-
Honshu, Japan, where tp is the peak delay from the S onset. (b) Log-log plot of
peak delay time tp versus hypocentral distance r (Takahashi et al., 2007, Figs. 2
and 3).

slowly varying velocity fluctuations (Sato, 1989; Obara and Sato, 1995; Saito et al.,
2002b). Regional studies in the Japan arc revealed that the gradient of peak delay
time against travel distance depends on frequency. When S wavelets propagate
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beneath Quaternary volcanoes, long delays are observed at stations on the back-arc
side (Takahashi et al., 2007).

1.3 Developments in Theory and Observation

Since the late 1970s, significant advances have been made in the study of seismic
wave propagation and scattering in random heterogeneities mainly on the basis of
the RTT. Aki (1982, 1984) reviewed the research status in the early 1980s, and
Aki (1991) and Sato (1991) summarized the discussion held at the 1989 IASPEI
meeting in Istanbul. In the following, we enumerate developments in theory and
observation up to recent years, where detailed explanation of terms related to
scattering will be given in Chapter 2.

• Modeling and analysis of coda waves: Aki and Chouet (1975) proposed the
single back-scattering model for synthesizing the coda-wave envelope following
the S arrival in random media. The single isotropic scattering model was devel-
oped by Kopnichev (1975) and Sato (1977); later the multiple isotropic scattering
model was developed (Zeng et al., 1991; Shang and Gao, 1988; Sato, 1993;
Paasschens, 1997). The isotropic scattering coefficient giso of S waves and coda
attenuation factor Q−1c have been measured from the coda analysis of local earth-
quakes in various regions of the world (e.g., Rautian and Khalturin, 1978; Jin
and Aki, 1988; Matsumoto and Hasegawa, 1989; Cichowicz and Green, 1989;
Nishigami, 2000; Yoshimoto and Jin, 2008; Lee and Sato, 2006; Jin and Aki,
2005; Havskov et al., 2016; Mitra et al., 2022). Measurements of those quan-
tities were also done for moonquakes and Martian events (Gillet et al., 2017;
Menina et al., 2021). S-wave giso values of granite and gabbro rock samples
were measured at an ultrasonic frequency of 1MHz (Sato, 2019a; Zhou et al.,
2021).

Wu and Aki (1988) used the RTT for the measurement of scattering atten-
uation and intrinsic absorption from coda envelope analysis. Hoshiba et al.
(1991) proposed the multiple lapse-time window analysis based on the time-
dependent RTT, which is a powerful tool for the simultaneous measurement of
giso and intrinsic absorption Q−1I from the entire S-wave seismogram envelopes
of local earthquakes (e.g., Fehler et al., 1992; Hoshiba, 1993; Mayeda et al.,
1992; Feustel, 1998; Chung et al., 2009; Carcolé and Sato, 2010; Rachman and
Chung, 2016; Eulenfeld andWegler, 2017; Shito et al., 2020; Calvet et al., 2023).
A summary of reported S-wave giso values will be shown in Figure 1.6.

• Coda normalization method: The uniform distribution of coda energy density
at a long lapse time is the observational base for the coda normalization method.
It is a valuable tool for measuring site amplification factor, attenuation factor,
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and source radiation energy (e.g., Rautian and Khalturin, 1978; Tsujiura, 1978;
Aki, 1980a; Phillips and Aki, 1986; Yoshimoto et al., 1993; Kato et al., 1995;
Fehler and Sato, 2003; Takahashi et al., 2005).

• Modelling of Rayleigh-wave coda: The isotropic scattering model was
extended to the propagation of a Rayleigh wavelet around the spherical sur-
face of the solid Earth (Sato and Nohechi, 2001; Maeda et al., 2003). Analyzing
Rayleigh waves, Sato and Nishino (2002) estimated giso ≈ 2 × 10−6 km−1 for
0.0056–0.0125Hz. Maeda et al. (2006) interpreted that higher-mode Rayleigh
waves are uniformly distributed at a long lapse time due to large velocity disper-
sion and scattering. They dominate over the fundamental mode Rayleigh waves
because of small intrinsic attenuation in the lower mantle. Applying the isotropic
scattering model to Rayleigh coda waves excited by a mars-quake, Onodera et al.
(2023) estimated giso = 3.4 × 10−4−5.7 × 10−3 km−1 for 0.05–0.09Hz.

• Scattering attenuation: To compensate for the coda excitation, scattering atten-
uates the direct wave amplitude in randommedia. Since the 1980s, scattering has
come to be recognized as one of the physical mechanisms of attenuation. There
have been various approaches to evaluate scattering attenuation in randommedia
(e.g., Aki, 1980b; Wu, 1982; Sato, 1982a; Dubendorff andMenke, 1986; Shapiro
and Kneib, 1993; Roth and Korn, 1993; Fang and Müller, 1996) and those in
cracked media (Kikuchi, 1981; Yamashita, 1990; Benites et al., 1992; Kawahara
and Yamashita, 1992; Guo et al., 2018; Sato, 2021).

• Finite difference (FD) simulation of waves in random media: FD simula-
tions have been used for the synthesis of coda waves in random media (e.g.,
Frankel and Clayton, 1986; Frankel and Wennerberg, 1987). Furumura and Ken-
nett (2005) synthesized wave propagation through the oceanic slab composed of
a random layer to explain intensity anomalies in northern Japan.

• Envelope broadening with increasing travel distance: The apparent duration
of the S wavelet of a regional earthquake is broadened with increasing travel
distance in slowly varying random velocity fluctuations. Assuming Gaussian-
type random media, Sato (1989) synthesized the envelope broadening by
the Markov approximation theory based on the parabolic approximation. The
Markov approximation was extended to the case of von Kármán-type random
media (Saito et al., 2002b; Takahashi et al., 2007; Saito et al., 2008), and that
for a vector wavelet was also developed (Sato, 2006; Sawazaki et al., 2011). The
synthesized envelopes were compared with FD simulation results (e.g., Fehler
et al., 2000; Saito et al., 2003; Korn and Sato, 2005; Emoto et al., 2010, 2012).
Envelope broadening was measured in various areas in the world (e.g., Tripathi
et al., 2010; Petukhin and Gusev, 2003; Calvet et al., 2013).

• Synthesis of full-seismogram envelope in random media: Even if random
media are statistically homogeneous and isotropic, the Born approximation
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predicts that the scattering pattern of scalar waves is anisotropic depending
on frequency. Monte Carlo (MC) simulations have often been used to solve
the radiative transfer equation (RTE) for a given anisotropic scattering coeffi-
cient (e.g., Gusev and Abubakirov, 1987; Hoshiba, 1991; Hoshiba et al., 1991;
Yoshimoto, 2000).

The development of vector wave scattering in random elastic media was done
by using the Born approximation (Sato, 1984; Wu and Aki, 1985). Sato (1984)
synthesized three-component RMS velocity-seismogram envelopes of a small
earthquake based on the single scattering approximation. Several theoretical
approaches to deriving the RTE have been proposed (e.g., Turner and Weaver,
1994; Ryzhik et al., 1996; Margerin et al., 2000; Margerin, 2005). Przybilla
and Korn (2008) synthesized vector wave envelopes using MC simulations and
then validated the accuracy by comparing with FD simulation results. Takeuchi
(2016) developed the differential MC method that can simultaneously com-
pute synthetic envelopes and their partial derivatives with respect to structural
parameters, which reduces the required CPU time.

• Measurement of the PSDF of random velocity fluctuations: The PSDF of the
random fractional velocity fluctuations was measured from the frequency depen-
dence of the S-wave envelope broadening (e.g., Obara and Sato, 1995; Saito
et al., 2005; Takahashi et al., 2009; Kubanza et al., 2006; Ugalde, 2013). Using
the MC simulation, Sens-Schönfelder et al. (2009) analyzed Lg-wave excitation
and blockage in a laterally inhomogeneous medium. Analyzing S and S-coda
waves registered by ocean bottom seismometers, Takemura et al. (2023) esti-
mated the random structure beneath the ocean. Combining deterministic and
statistical structures, Sanborn et al. (2017) synthesized high-frequency vector
seismograms. There were not only measurements of medium heterogeneity of
the lithosphere but also those of the mantle and the CMB region from tele-
seismic P-wave envelope analysis (e.g., Cormier, 1995; Margerin and Nollet,
2003; Margerin and Nolet, 2003; Poupinet and Kennett, 2004; Shearer and Earle,
2004; Shearer, 2015). From the fluctuation analysis of log-amplitude and travel
time of tele-seismic P waves recorded by the USArray, Cormier et al. (2022)
stochastically inverted for the precise depth variation of the RMS fractional
velocity fluctuation in the mantle. A summary of reported PSDF measurements
will be shown in Figure 1.7.

• Retrieval of Green’s function of the wave equation from coda waves and
microseisms: We can consider that late coda waves of local earthquakes are in
the equipartition state (Weaver, 1982; Hennino et al., 2001). There have been
developments in coda interferometry, which is the retrieval of Green’s function
of the wave equation from the cross-correlation analysis of coda waves or micro-
seisms registered at distant stations (e.g., Campillo and Paul, 2003; Snieder,

https://doi.org/10.1017/9781009049535.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009049535.002


10 Introduction

2004; Curtis et al., 2006; Sato, 2009; Wapenaar et al., 2010). The solution of the
RTE is used as the sensitivity kernel for imaging the distribution of scatterers
(Pacheco and Snieder, 2006; Obermann et al., 2013).

• Temporal changes in coda characteristics: The temporal changes in Q−1c and
giso have been reported in association with major earthquake occurrences and
volcanic eruptions (e.g., Fehler et al., 1988; Jin and Aki, 1986, 1989; Gusev and
Lemzikov, 1985; Sato, 1987, 1988b; Hiramatsu et al., 2000; Jin et al., 2004; Aki,
2009).

1.4 Recent Measurements of Random Velocity Inhomogeneities

1.4.1 Isotropic Scattering Coefficient of S waves

In the framework of the RTT, the isotropic scattering model is simple and mathe-
matically tractable, where the isotropic scattering coefficient giso is a quantitative
measure of scattering strength per unit volume (2.3a). It is equal to the reciprocal of
the mean free path as used in the kinetic gas theory. The excitation of coda waves
increases as the giso value increases. Since the late 1970s, the giso value of S waves
has been measured in various areas of the world. The size of the medium sampled
varies widely, from rock samples on the order of millimeters to the crust and mantle
on the order of thousand kilometers.

Figure 1.6 plots the reported giso values of S waves against frequencies from
0.1Hz to 1MHz, where the appropriate intrinsic absorption Q−1I value is assumed
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Figure 1.6 Log-log plot of reported isotropic scattering coefficients of S-waves
measured in various regions of the solid Earth over a wide frequency range
(modified from Sato, 2019a, Fig. 4, references therein).
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in each measurement. Although there is a large scatter of data, reported giso values
linearly increase with increasing frequency. Dotted and dashed lines show the trans-
port scattering coefficient gBtr predicted by the Born approximation (3.23c) from
the spectral envelope of observed PSDFs of random fractional velocity fluctua-
tions 0.01 m−3 (thick gray broken line in Figure 1.7), where m is the wavenumber
(Sato, 2019a). We note that gBtr functions equivalently to giso in the diffusion regime
(see Subsection 4.1.3). Reported giso values beneath volcanoes and on the Moon
are much larger than those in the lithosphere, which indicates a possible scatter-
ing contribution of voids and cracks in addition to the random fractional velocity
fluctuations.

1.4.2 PSDF of Random Fractional Velocity Fluctuations

As the most probable source of seismic wave scattering, we easily imagine random
fractional velocity fluctuations, as seen in well-log data (see Figure 1.1 (b)). We
assume that the inhomogeneous velocity is given by V (x) = V0(1 + ξ (x)), where
ξ (x) is the fractional velocity fluctuation around the average velocity V0. Using the
PSDF of ξ (x) is appropriate for characterizing the randomness statistically. There
are several analytical models, among which the von Kármán-type PSDF (3.20a) is
often used for practical analysis:

P(m) =
8π

3
2 Γ(κ + 3

2 )ε2a3

Γ(κ)(1 + a2m2)κ+
3
2

, (1.1)

where m, ε2 and a−1 are the wavenumber, the MS fractional velocity fluctua-
tion, and the corner wavenumber, respectively. The power-law decay characteristic
m−2κ−3 at large wavenumbers is preferable to the Gaussian-type PSDF with a fast
drop-off.

Various measurements of P- and S-wave velocity fluctuations have been con-
ducted on different portions of the solid Earth:

• Photo-scan of small rock samples (e.g., Sivaji et al., 2002; Fukushima et al.,
2003)

• Well logs in boreholes (e.g., Suzuki et al., 1981; Wu et al., 1994; Holliger, 1996;
Shiomi et al., 1997)

• Seismic array analysis (e.g., Aki, 1973; Capon, 1974; Powell and Meltzer, 1984;
Flatté and Wu, 1988; Cormier et al., 2020, 2022)

• Envelope analysis of seismograms based on the RTT: cross-hole experiments
(da Silva et al., 2018) local and regional earthquakes (e.g., Yoshimoto et al.,
1997b; Petukhin and Gusev, 2003; Hock et al., 2004; Saito et al., 2005; Przybilla
et al., 2009; Sens-Schönfelder et al., 2009; Emoto et al., 2017; Takahashi et al.,
2009; Calvet and Margerin, 2013; Kobayashi et al., 2015; Sanborn et al., 2017;
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Figure 1.7 Log-log plot of reported PSDFs of the fractional velocity fluctuations
of the solid Earth over a wide wavenumber range (Sato, 2019b, Fig. 9, references
therein).

Morioka et al., 2017; Wang and Shearer, 2017); and teleseismic events (e.g.,
Cormier, 1999; Margerin and Nolet, 2003; Shearer and Earle, 2004; Mancinelli
et al., 2016b)

• Velocity tomography (e.g., Chevrot et al., 1998; Nakata and Beroza, 2015)
• FD simulation (e.g., Furumura and Kennett, 2005; Takemura et al., 2023)

Figure 1.7 plots reported PSDF measurements against wavenumber m across a
wide range of wavenumbers in various portions of the solid Earth. In most cases,
random media are assumed to be isotropic and von Kármán type.

• Each PSDF is proportional to m−3∼−4 at wavenumbers higher than each corner,
and many of them show the power-law decay close to m−3.

• The reported ε values are of the order of 0.01∼0.1 in the crust and the upper
mantle, smaller in the lower mantle, and larger beneath volcanoes.

• The reported corner wavenumber a−1 values are widely distributed; however,
each one seems to be restricted by the dimension of the measurement system or
the sample length. The number of measurements at wavenumbers smaller than
a−1 is very few in each report.

• Roughly speaking, the spectral envelopes of these PSDFs are well approximated
by a power-law decay curve 0.01m−3 (thick gray broken line) for a wide range
of wavenumbers.
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Other Examples of Power-law Spectra in Geophysics

There are some examples having power-law spectra in geophysical fields. A good
example is the fractal nature of various kinds of surface topographies: Sayles and
Thomas (1978) reported the one-dimensional PSDF P1(m) ∝m−2 for wavelengths
10−5 m∼102 m; Brown and Scholz (1985) reported P1(m) ∝m−1.64∼−3.36 for wave-
lengths 10−5 m∼1m, especially for the topography of natural rock surfaces and
faults.

Another example is the Kolmogorov spectrum of the refractive index of weak
turbulence air. The refractive index is the ratio of light velocity in a vacuum to that
in the medium. The Kolmogorov spectrum is modified from the von Kármán-type
with κ = 1/3 (e.g., Ishimaru, 1997, p. 360):

PAir (m) ∝ e−m2/km2

(m2 + kM2)11/6
. (1.2)

The energy is introduced into the turbulence due to wind shear and temperature gra-
dients in the input range (m < kM); the kinetic energy of the eddies dominates over
the dissipation due to viscosity, where the turbulence is isotropic, and the PSDF is
proportional to m−11/3 in the inertial subrange (kM < m < km). The cascade physi-
cally produces the Kolmogorov spectrum in the turbulent flow of low-viscosity air:
large eddies break up to form smaller eddies, which dissipate energy by viscosity;
the dissipation of energy due to viscosity dominates over the kinetic energy in the
dissipation range (m > km).

1.5 Chapter Structure

The main objective of this book is to introduce the mathematical basics of wave
scattering in random media. Then, we provide the flowcharts and mathematics
required to code the MC simulation programs for wavelet propagation in the
framework of RTT. We put our focus on the spatiotemporal variation of energy
density for impulsive radiation from a source in randommedia. Using simple model
random media, we validate MC simulation results by comparison with analytic
solutions of the RTE and the ensemble average of FD simulation results. Especially
for the scalar wave case, the essential scheme is illustrated by the diagram in Figure
1.8. We hope that these studies using simple random media models will help in the
development of MC simulations for more realistic random media models. Below is
a brief summary of each chapter:

• Chapter 2 introduces the isotropic scattering model, which is mathematically
tractable. We introduce the basic concepts of the probability density function
(PDF) of scattering angles and the inverse transform sampling method for
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Figure 1.8 Basic scheme for the scalar wave case.

constructing the corresponding pseudo-random number generator (PRNG) of
scattering angles. We then present the MC simulation of the space–time dis-
tribution of energy density for isotropic radiation from a point source, which is
compared with the analytic solution of the RTE.

• Chapter 3 investigates the applicable range of the Born and Eikonal approxi-
mations for scalar wave scattering in random velocity fluctuations characterized
by the PSDF. The Born approximation leads to the anisotropic scattering coef-
ficient, which represents the directional scattering power per unit volume. The
Eikonal approximation leads not only to the angular spectrum function (ASF)
that governs narrow-angle ray bending but also to the travel distance fluctuation
per travel time.

• Chapter 4 phenomenologically introduces the RTE of the directional distribu-
tion of energy density for a given anisotropic scattering coefficient of scalar
waves in random media. We analytically solve the RTE by using the Legendre
expansion for the isotropic radiation from a point source. Probabilistically inter-
preting the Born scattering coefficient and the Eikonal ASF for scalar waves,
we construct the corresponding PRNGs of scattering angles, where the rejection
sampling method is introduced. We then synthesize the space–time distribution
of the energy density for isotropic radiation from a point source using the MC
simulation and compare it with the analytic solution of the RTE.

• Chapter 5 presents the realization of random media for a given PSDF for the FD
simulation of scalar wavelet propagation. We verify MC simulation results with
the ensemble average of FD simulation results.

• Chapter 6 studies vector wave scattering in random elastic media. The Born
approximation leads to PP, PS, SP, and SS scattering coefficients, from each
of which we construct the corresponding PRNG of scattering angles. For a given
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PSDF, we synthesize three-component RMS velocity amplitude time traces for
radiation from a point shear dislocation (PSD) source using MC simulations and
compare them with the ensemble average of FD simulation results in realized
random elastic media.

• In von Kármám-type random media, when the center wavenumber is higher
than the corner wavenumber and the square of the phase shift across the cor-
relation length is not small enough, the conventional Born approximation is not
applicable. To overcome this difficulty, Chapter 7 presents an ongoing study of
a hybrid MC simulation using the spectrum division method for scalar/vector
wavelet propagation. Taking the center wavenumber as a reference, we divide
the PSDF into two parts, then we serially use the Born wide-angle scattering
for the high-wavenumber component and the Eikonal narrow-angle ray-bending
and travel-distance fluctuation for the low-wavenumber component. Synthesized
three-component RMS velocity amplitude time traces are compared with the
ensemble average of FD simulation results in realized random elastic media for
a given PSDF.

• In Epilogue, we discuss unsolved problems and possible developments in the
future.

1.6 Mathematical Symbols

We briefly summarize some mathematical symbols frequently used in this book.

• A math symbol in bold u represents a vector. In 3D space, we often write u =
(ux,uy,uz) or (u1,u2,u3) in Cartesian coordinates and u = (uθ ,uφ ,ur) in spherical
coordinates.

• The inner product of vectors is written as a · b = ajbj, by using the Einstein
summation convention.

• The symbol dx = dxdydz denotes an infinitesimal volume element in Cartesian
coordinates, and dx = r2drdΩ in spherical coordinates, where dΩ = sin θdθdφ is
a solid angle element.

• A hat and a tilde denote the Fourier transform with respect to time and space,
respectively:

̂f (x,ω) =
∫ ∞

−∞
dt eiωt f (x, t), and˜f (k, t) =

� ∞

−∞
dx e−ik·x f (x, t). (1.3)

Only in Section 4.2, a tilde refers to the spherical Bessel transform (4.9b).
• We define the inverse Fourier transform in 3D space and time using the plane-

wave expansion:
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f (x, t) =
1

(2π)4

� ∞

−∞
dω dk ei(k·x−ωt)˜̂f (k,ω),

˜

̂f (k,ω) =
� ∞

−∞
dt dx e−i(k·x−ωt) f (x, t). (1.4)

• Convolution is symbolically written as follows:

A ⊗st B ≡
� ∞

−∞
dx′dt′ A(x − x′, t − t′)B(x′, t′),

A ⊗t B ≡
∫ ∞

−∞
dt′ A(t − t′)B(t′),

A ⊗s B ≡
� ∞

−∞
dx′ A(x − x′)B(x′). (1.5)

• Angular brackets 〈· · · 〉mean the average over the ensemble of random functions.
• The symbol RGθ,φ means a PRNG of angles (θ, φ).

1.7 Recommended Reference Textbooks

The following textbooks are useful for reading this book:

• Mathematical Physics (Mathews and Walker, 1970; Arfken et al., 2013; Snieder
and Kasper, 2015)

• Special Functions and Integral Formulas (Gradshteyn and Ryzhik, 2007; DLMF,
2022; Wolfram-Research, 2023)

• Scattering in Quantum Mechanics (Landau and Lifshitz, 2003)
• Numerical Simulation for Seismology (Moczo et al., 2014; Igel, 2017; Maeda

et al., 2017)
• Earthquake Seismology (Aki and Richards, 2002; Shearer, 2019)
• Radiative Transfer Theory in Random miedia (Chandrasekhar, 1960; Chernov,

1960; Frisch, 1968; Barabanenkov et al., 1971; Ishimaru, 1997; Rytov et al.,
1989; Apresyan and Kravtsov, 1996)

• Wave Propagation through Random Media in Geophysics (Flatté et al., 1979;
Sato and Fehler, 2008; Sato et al., 2012; Shearer, 2015)
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