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ON THE BROWNIAN RANGE AND THE BROWNIAN REVERSAL
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Abstract

This paper studies a novel Brownian functional defined as the supremum of a weighted
average of the running Brownian range and its running reversal from extrema on the unit
interval. We derive the Laplace transform for the squared reciprocal of this functional,
which leads to explicit moment expressions that are new to the literature. We show that
the proposed Brownian functional can be used to estimate the spot volatility of financial
returns based on high-frequency price observations.
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1. Introduction

On a filtered probability space (�,F , (Ft)t≥0, P), let W = (Wt)t∈[0,1] denote a standard
Brownian motion starting at W0 = 0, and denote Mt := sup0≤s≤t Ws and mt := inf0≤s≤t Ws as
its associated supremum and infimum processes. The process Rt := Mt − mt is known as the
Brownian range process, whose properties have been studied extensively in [6], [15], [18],
and [30], among others. Properties of the Brownian range process are exploited to measure
the variation of financial returns; see e.g. [3], [7], [16], [25], and [27]. Intuitively, when one
models the log-price of an asset by a scaled Brownian motion, its range process in an interval
summarizes the maximum span of the asset price during that interval, which provides more
precise measurements of the price variation than using only prices at end-points.

Nevertheless, Rt only increases its value when Wt refreshes its running extrema, and is oth-
erwise constant. Crucially, it does not reveal how much the Brownian motion has reversed back
towards W0 from the running extrema, which can contain substantial amount of information
about the variability of the Brownian path. To capture the reversal part of the Brownian path,
we define Ut and ut as the Brownian reversal processes from above and below, respectively:

Ut := Mt − W+
t , ut := mt − W−

t ,

where W+
t = (Wt ∨ 0) and W−

t = (Wt ∧ 0) are the sections of the trajectories of Wt above and
below W0. A graphical illustration is presented in Figure 1. Intuitively, Ut and ut are the pro-
portions of the Brownian paths reflected at its supremum or infimum that are above or below
W0, respectively. Whenever Wt = Mt (resp. Wt = mt), we have Ut = 0 (resp. ut = 0) so that the
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FIGURE 1. An illustration of running Brownian extrema and reversals.

Brownian motion is exactly at its supremum (resp. infimum) with zero reversal. As Wt evolves
from the extrema towards W0, the magnitudes of Ut or ut increase, and vice versa. The max-
imum reversal from above (resp. below) is attained when Wt crosses W0 from above (resp.
below), in which case we have Ut = Mt (resp. ut = mt), indicating that the Brownian motion at
time t has returned to W0 from above (resp. below).

Similar to the construction of the Brownian range which summarizes the magnitudes of the
Brownian supremum and infimum, the total reversal of Wt from both above and below can be
summarized by the following process, which we refer to as the Brownian reversal at time t:

Vt := Ut − ut ≡ Rt − |Wt|. (1.1)

It is easy to see that 0 ≤ Vt ≤ Rt for all t, as the Brownian motion cannot reverse by more than
its total range. For any t, the joint law of (Rt, Vt) can be derived from the Lévy trivariate law
of (Wt,Mt,mt), which can be found in e.g. [8] and [15].

The main contribution of this paper is to document the analytical properties of a novel
Brownian functional defined as the supremum of the weighted average of Vt and Rt on [0,1]:

S(α) := sup
t∈[0,1]

{αVt + (1 − α)Rt} ≡ sup
t∈[0,1]

s(α)
t , α ∈ [0, 1],

where s(α)
t := Rt − α|Wt| in view of (1.1). As two important special cases, S(0) ≡ R1 is the

Brownian range, and S(1) ≡ supt∈[0,1] Vt is termed the maximal Brownian reversal. According
to [29], one can usually guess whether the law of a particular Brownian functional is straight-
forward or impossible to establish, but it is not immediately clear which category S(α) belongs
to. In this paper, we shall show that the law of S(α) can be explicitly characterized. In particu-
lar, we derive the Laplace transform of the random variable T (α) := (S(α))−2 for all α ∈ [0, 1],
which reveals many interesting properties of S(α). For example, we prove that all moments
of T (α) are rational functions of α, and the maximal Brownian reversal has the first moments
E[T (1)] = 1 and E[S(1)] = √

8/π ln 2. As an application, we show that S(α) can be used to con-
struct more precise spot volatility estimators than those based on high-frequency price ranges
such as [3] and [25], where the precision gain comes from the reversal part of the Brownian
path not captured by the price range.

The remainder of the paper is organized as follows. Section 2 presents the main results of the
paper concerning the distributional properties of S(α). An application of S(α) to spot volatility
estimation is shown in Section 3, followed by the proofs to all theoretical results in Section 4.
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Brownian range and Brownian reversal 3

2. Main results

Our key result is a semi-closed-form expression for the Laplace transform of T (α), which
allows us to obtain explicit moments of S(α) and T (α) as well as their density functions. To
derive the Laplace transform, we introduce some notations that will be used in this section.
Denote the hyperbolic sine, cosine, and tangent functions as sinh [x], cosh [x], and tanh [x]
for x ∈R, respectively. The inverse function of y = tanh [x] will be denoted by x = arctanh[y]
for y ∈ (−1, 1). For a general process (At)t≥0, let Tx(A) := inf{t ≥ 0: At > x} denote the first
hitting time of A to the level x since time 0 with the convention inf {∅} = ∞. We shall use n ∈N

to denote a generic natural number (excluding 0).
We start from the following equal events:

{S(α) > x} =
{

sup
t∈[0,1]

s(α)
t > x

}
= {Tx(s(α))< 1}.

By the Brownian scaling law, we deduce that

P(S(α) > x) = P(Tx(s(α))< 1) = P(x2T1(s(α))< 1) = P(T1(s(α))−1/2 > x),

which implies that

T (α) := (S(α))−2 d= T1(s(α)).

Therefore T (α) has the same law as the first hitting time of the non-negative process s(α) to 1.
As two special cases, T1(s(0)) is the hitting time of the Brownian range process to 1, which is
studied in [6] and [18], and T1(s(1)) is the first hitting time of the Brownian reversal process Vt

to 1, whose distributional properties are unknown in the literature. For all α ∈ [0, 1], we have
Rt ≥ s(α)

t for all t ≥ 0 and it follows that T1(s(1)) ≥ T1(s(α)). The Laplace transform of T (α) is
stated in Theorem 2.1 below.

Theorem 2.1. Let ᾱ := α/(1 − α). For all α ∈ [0, 1) and λ> 0, it holds that

Lα(λ) := E[e−λT(α)
] = sinh [

√
2λ]−2

∫ tanh [
√

2λ]2

0
(1 − y)−1

2F1

(
1

2
, 1; 1 + ᾱ

2
; y

)
dy, (2.1)

where 2F1(a, b; c; x) is the Gauss hypergeometric function defined by

2F1(a, b; c; x) =
∞∑

k=0

(a)k(b)k

(c)kk! xk,

in which (a)k := a(a + 1) · · · (a + k − 1) is the rising factorial with (a)0 = 1. When α = 1,
L1(λ) takes the form

L1(λ) = lim
α→1

Lα(λ) = 2 sinh [
√

2λ]−2 ln cosh [
√

2λ]. (2.2)

For all λ≥ 0 and α ∈ [0, 1], it holds that

Lα(λ) ≤L0(λ) = cosh [
√
λ/2]−2 ≤ 1. (2.3)

Remark 2.1. With α= 0, we have 2F1( 1
2 , 1; 1; y) = (1 − y)−1/2, and thus the expression of

L0(λ) can be verified by carrying out the integration in (2.1), which agrees with the Laplace
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transform of the Brownian range time given in e.g. [5], [6], and [18]. When ᾱ = n, then α=
n/(n + 1) and the Gauss hypergeometric function can be evaluated explicitly by the following
recursive relation [26, eq. (15.5.16)]:

Fn+2(y) = (n + 2)(1 − (1 − y)Fn(y))

(n + 1)y
, F0(y) = (1 − y)−1/2, F1(y) = arctanh[

√
y]/

√
y,

where

Fn(y) := 2F1

(
1

2
, 1; 1 + n

2
; y

)
.

This further leads to a series of closed-form Laplace transforms by analytical integration.
Examples of the Laplace transforms for n ∈ {1, 2, 3, 4} are presented as

L1/2(λ) = 2λ sinh [
√

2λ]−2, L2/3(λ) = 8 sinh [
√

2λ]−2 ln cosh [
√
λ/2],

L3/4(λ) = 3 sinh [
√

2λ]−2(√2λ tanh [
√

2λ]−1 − 1
)
,

L4/5(λ) = 4

3
sinh [

√
2λ]−2(tanh [

√
x/2]2 + 4 ln cosh [

√
x/2]

)
,

(2.4)

and the expressions for a general n can be obtained in the same fashion. The family of Laplace
transforms appears to be new in the literature.

Remark 2.2. Interestingly, the Laplace transform of L1/2(λ) in (2.4) also shows up in [2] and
[28]. Combining equations (1.4), (1.8), and (1.9) of [2], we deduce the following unobvious
result:

T (1/2) d=
(

max
t,s∈[0,1]

|bt − bs|
)2
,

where b = (bt)t∈[0,1] is the standard Brownian bridge, that is, a Brownian motion W on [0,1]
conditioned on W0 = W1 = 0. It is intriguing to identify the probabilistic link that causes the
Laplace transforms of two completely different Brownian functionals to coincide. However,
this requires individual theoretical analysis which deviates from the main focus of this paper,
and is thus left for future research.

The expression for Lα(λ) allows us to evaluate the moments of T (α) and S(α). We begin by
summarizing some known results in the literature corresponding to the special cases α ∈ {0, 1

2 }.
Let us denote κ (α)

k := E[(T (α))k] and μ(α)
k := E[(S(α))k]. From Table 1 of [2], we deduce the

following results for all k ∈N after some straightforward simplification:

κ
(0)
k = k!(−2)k+1

(2k)!(k + 1)
(1 − 4k+1)B2(k+1), κ (1/2)

n = k!
(2k)! (1 − 2k)(−2)3kB2k,

μ
(0)
k = 4√

π
�

(
k + 1

2

)
(1 − 22−k)2k/2ζ (k − 1), μ

(1/2)
k =

√
2

π
2(1−k)/2k�

(
3 + k

2

)
ζ (k + 1),

(2.5)

where Bn is the nth Bernoulli number, �(x) = ∫ ∞
0 e−ttx−1 dt is the gamma function, and ζ (x)

is the Riemann zeta function. The moments of the Brownian range, μ(0)
k , also appear in [16]

and [27]. It is worth noting that μ(0)
2 = 4 ln 2 can be derived by taking the limit of the above
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expression using properties of the zeta function. Also, as μ(0)
k ≥μ(α)

k for all α ∈ [0, 1] due to
R1 ≥ S(α), we conclude that all moments of S(α) are finite.

We now turn to the general case with α ∈ [0, 1]. We begin with the calculation of κ (α)
k , which

have surprisingly simple forms. In detail, we shall show that κ (α)
k are finite for all k ∈N and

are rational functions of α. To this end, we define the rational sequence (Cn,k)n,k∈N through the
following recursive relation:

Cn,1 = 23n+5(1 − 4n+2)(2n + 3)B2(n+2)

(2(n + 2))! , Cn,k =
n∑

j=0

Cj,k−1Cn−j,1.

We also need the following sequence of rational functions for k ∈N∪ {0},

D(α)
k := ᾱ

ᾱ− 1

(
1 − (1/2)k+1

(ᾱ/2)k+1

)
, (2.6)

which is continuous on [0,1] with well-defined limits at α ∈ {0, 1/2, 1},

D(0)
k = 2(1/2)k+1

k! , D(1/2)
k = H2(k+1) − Hk+1/2, D(1)

k ≡ 1, (2.7)

where Hn = ∑n
k=1 k−1 is the nth harmonic number. We have the following.

Proposition 2.1. For all k ∈N and α ∈ [0, 1], we have κ (α)
k ≤ κ (1)

k <∞ with

κ
(α)
k =

k∑
n=0

(
k

n

)
κ (1/2)

n γ
(α)
k−n, (2.8)

where γ (α)
k for α ∈ (0, 1) \ {1/2} is defined as the finite sum

γ
(α)
k = (−1)kk!

k∑
n=0

D(α)
n Ck−n,n+1

2(n + 1)
, (2.9)

with the limiting cases

γ
(0)
k = (−1)kk!2k+1

(2(k + 1))! , γ
(1/2)
k = 1{k=0}, γ

(1)
k = (−1)kk!23k+2(4k+1 − 1)B2(k+1)

(k + 1)(2(k + 1))! . (2.10)

Remark 2.3. As κ (α)
k is a finite combination of γ (α)

k−n which is a rational function of α, we

conclude that κ (α)
k is a rational function of α, which implies that κ (α)

k ∈Q whenever α ∈Q∩
[0, 1]. It is also worth noting that γ (1/2)

k = 1{k=0} reduces (2.8) to the trivial identity κ (1/2)
k =

κ
(1/2)
k .

Taking α = 1, equation (2.5) and Proposition 2.1 lead to the following simpler form for κ (1)
k .

Corollary 2.1. It holds that

κ
(1)
k = −

k∑
n=0

(
k

n

)
(−2)2n+1κ

(0)
n κ

(1/2)
k−n

(2n + 1)(2n + 2)
. (2.11)
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Using the closed-form Laplace transforms in (2.4), it is possible to derive a simplified
formula for κ (α)

k with α ∈ { 1
2 ,

2
3 ,

3
4 } that does not involve a double sum. Regrettably, for a

general α ∈ [0, 1], we are unable to simplify the polynomial expressions in Proposition 2.1.
Nevertheless, Proposition 2.1 allows us to iteratively construct the exact form of κ (α)

k for

all k ∈N. To provide a more concrete illustration on the functional form of κ (α)
k derived in

Proposition 2.1, we list a few expressions for k ≤ 4:

κ
(α)
1 = 1

2 − α
, κ

(α)
2 = 4

3(4 − 3α)
, κ

(α)
3 = 4(20α2 − 62α + 51)

15(2 − α)(4 − 3α)(6 − 5α)
,

κ
(α)
4 = 32(372 − 757α + 530α2 − 126α3)

105(2 − α)(4 − 3α)(6 − 5α)(8 − 7α)
.

Setting α ∈ {0, 1
2 , 1}, we obtain the values

κ
(0)
1 = 1

2
, κ

(0)
2 = 1

3
, κ

(0)
3 = 17

60
, κ

(0)
4 = 31

105
,

κ
(1/2)
1 = 2

3
, κ

(1/2)
2 = 8

15
, κ

(1/2)
3 = 32

63
, κ

(1/2)
4 = 128

225
,

κ
(1)
1 = 1, κ

(1)
2 = 4

3
, κ

(1)
3 = 12

5
, κ

(1)
4 = 608

105
,

and it is routine to verify that these values are indeed consistent with the analytical expression
in equation (2.5) and Corollary 2.1. The simple result of E[T (1)] = 1 is worth highlighting,
which means that the Brownian reversal process Vt hits 1 with a unit mean hitting time.
This coincides with the well-known result E[T1(|W|)] = 1, which is the expected time for a
standard Brownian motion to exit [−1, 1]. However, as E[e−λT1(|W|)] = cosh [

√
2λ]−1, the dis-

tribution of T1(|W|) is completely different from that of T (1) despite the identical first moment.
For example, one can verify that 2Var[T (1)] = Var[T1(|W|)] = 2

3 , so T (1) is less dispersed than
T1(|W|).

We proceed to examine μ(α)
k for k ∈N, which can be evaluated (see [9]) from the following

fractional derivative of the Laplace transform of T (α) since μ(α)
k ≡E[(T (α))−k/2]:

μ
(α)
k = 1

�(k/2)

∫ ∞

0
Lα(λ)λk/2−1 dλ, (2.12)

which converges for all k ∈N as the moments of S(α) are finite. We derive the following
representation.

Proposition 2.2. For all k ∈N and α ∈ [0, 1], it holds that

μ
(α)
k = 21−k/2

�(k/2)

∞∑
n=0

D(α)
n

n + 1

∫ 1

0
arctanh[y]k−1y2n dy. (2.13)

We obtain some more tractable formulae below using (2.13).

Corollary 2.2. For all k ∈N, it holds that

μ
(1)
k = − 21−k/2

�(k/2)

∫ 1

0
y−2 ln (1 − y2)arctanh[y]k−1 dy. (2.14)
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For α ∈ (0, 1) \ { 1
2 }, we have

μ
(α)
1 =

√
2

π

ᾱ

ᾱ − 1
(2 ln 2 −
0(ᾱ)),

μ
(α)
2 = ᾱ

ᾱ − 1

(
π2

12
+ ( ln 2 −
0(ᾱ)2/2)2 + 
1(ᾱ)

4

)
,

(2.15)

where


k(x) =ψk

(
1 + x

2

)
−ψk

(
x

2

)
,

and ψk(x) is the kth-order polygamma function, defined as the kth derivative of the digamma
function ψ0(x) := d ln �(x)/dx.

Remark 2.4. The definite integral in (2.14) can be calculated explicitly for k ∈ {1, 2, 3} via
MATHEMATICA�:

μ
(1)
1 = √

8/π ln 2, μ
(1)
2 = π2/12 + ( ln 2)2, μ

(1)
3 = π2 ln 2

3
√

2π
+ 3ζ (3)

2
√

2π
. (2.16)

This should be compared with the following values generated by (2.5):

μ
(0)
1 =

√
8

π
, μ

(0)
2 = 4 ln 2, μ

(0)
3 =

√
8

3
π3/2,

μ
(1/2)
1 = π3/2

3
√

2
, μ

(1/2)
2 = 3ζ (3)

2
, μ

(1/2)
3 = π7/2

30
√

2
.

(2.17)

Thus the moments μ(1)
k appear to be more sophisticated than the special cases in (2.17). Using

properties of polygamma functions and L’Hôpital’s rule, one can verify that the limits of the
functions in (2.15) at α ∈ {0, 1

2 , 1} are identical to those in (2.16) and (2.17). However, we
are unable to derive a general expression for k> 2, in which case the integral in (2.13) does
not simplify to elementary functions of n. In this case, it is more convenient to calculate the
moments by numerically integrating (2.12) than from (2.14), as the latter converges very slowly
when α is near zero.

Remark 2.5. The quantity
√

8/π ln 2 also appears in [11] as E[D1] =μ
(1)
1 , where D1 =

Wσ − infσ≤t≤1 Wt and σ is the time that W attains its maximum in [0,1], that is, D1 is
the maximum Brownian ‘downfall’ from its global maximum Wσ on [0,1] to the partial
minimum on [σ, 1]. The distribution of D1 is closely related to the Brownian meander, as
discussed in [12]. However, the equality E[D1] =μ

(1)
1 only holds in the first order, as we find

E[D2
1] = π2/6 �=μ

(1)
2 by integrating the density of D1.

We conclude this section with some comments on evaluating the density function of T (α),
denoted by fT (t;α), which also produces the density function of S(α) by a standard Jacobian
transform. By definition, we have Lα(λ) = ∫ ∞

0 e−λtfT (t;α) dt, so that for almost all t ≥ 0,
fT (t;α) can be recovered by the inverse Laplace transform of Lα(λ) in principle (see e.g.
[33]). However, apart from some special cases (e.g. α = 0, 1

2 ,
3
4 ,

5
6 , . . .), the inverse Laplace

transform does not seem to have analytical solutions, including the relatively simple L1(λ).
Therefore, for a general α ∈ [0, 1] we recommend calculating fT (t;α) based on numerical
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FIGURE 2. Probability density functions of T(α) for various choices of α. Each line plots fT (t;α) for the
choice of α presented in the figure legend. Apart from the α = 0 case where the expression of fT (t;0)
can be found in [6, eq. (4)], all the densities are generated by numerical inverse Laplace transforms via

MATHEMATICA�.

inverse Laplace transforms. For some selected values of α, we present the density functions
fT (t;α) in Figure 2. The figure shows that T (α) have unimodal and right-skewed distributions
across different choices of α ∈ [0, 1]. The probability mass moves towards the right tail as α
increases, which reflects the fact that T (α) is increasing in α.

3. Spot volatility estimation with price ranges and reversals

In this section, we show that S(α) can be used to construct simple yet precise spot volatility
estimators of financial returns, which is a key economic variable of interest to investors and
policy makers. We shall adopt the setting in [3], [4], and [25], and assume that the log-price of
an asset (Pt)t≥0 follows a semi-martingale of the form

Pt = P0 +
∫ t

0
μs ds +

∫ t

0
σs dWs + Jt, t ∈ [0, T], (3.1)

where W is a standard Brownian driving the diffusive part of the price process, the drift process
μ and the volatility process σ are both càdlàg (right continuous with left limits) adapted, and
J is a pure-jump process driven by some Poisson random measure. The interval [0, T] can be
understood as the length of a trading session when the price is observed, and our inference
target can be στ or σ 2

τ at some fixed time τ ∈ (0, T), which are known as the spot volatility or
the spot variance at time τ .

Following [3] and [25], to facilitate our asymptotic analysis on spot volatility estimation,
we impose some regularity conditions on the processes above.

Assumption 3.1. For the price process P in (3.1), we assume that there exists a sequence of
diverging stopping times (Tm)m≥1 and a sequence of finite constants (Km)m≥0 such that, for all
m ≥ 1:

(i) |μt| + |σt| + |σt|−1 + Ft(R \ {0}) ≤ Km for all t ∈ [0, Tm], where Ft denotes the spot
Lévy measure of J;
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(ii) for all s, t ∈ [0, T], it holds that E[|σt∧Tm − σs∧Tm |2] ≤ Km|t − s|2κ for some constant
κ > 0.

As discussed in [3] and [25], the above assumption is very mild. It only assumes local
boundedness of various processes and that σt is κ-Hölder-continuous in the L2-norm. The
assumption encompasses almost all stylized facts of asset prices, such as stochastic volatility
with a diurnal pattern and leverage effect. In particular, by choosing κ < 1/2, we allow σt to
have a ‘rough’ path, which is advocated by recent studies in the financial mathematics literature
[13, 14, 17].

To estimate the spot quantities at some predetermined time τ , we focus on a shrinking win-
dow starting at τ , In = [τ, τ +�n] ⊂ [0, T], where n represents the stages of the statistical
experiment, and the asymptotic limit is achieved by letting �n → 0 as n → ∞. This corre-
sponds to the fixed-k asymptotics in [4] using exactly k = 1 block, and our theory naturally
extends to the case with fixed k> 1 following the procedure in [25].

We construct the following functional from the observed price path on In, which is essen-
tially the same functional as S(α) constructed from P instead of W, up to a normalization factor
of �1/2

n :
v(α)

n := �−1/2
n sup

t∈In

{wt − α|rt|}, α ∈ [0, 1],

where rt := Pt − Pτ is the log-return on the interval [τ, t] for some t ∈ In, and wt := ht − lt is
the price range on [τ, t], in which the ‘high’ and ‘low’ returns on [τ, t] are defined as ht :=
sups∈[τ,t] rs and lt := infs∈[τ,t] rs, respectively. As a comparison, a candlestick chart observed
on In consists of the open-to-close, high, and low returns on In, (rτ+�n , hτ+�n , lτ+�n ). From
here, it is clear that both v(α)

n and the candlestick data use the entire price path of P on In.
The main difference is that v(α)

n allows us to measure the maximum price reversal through the
outer supremum operator, while the candlestick data can only measure the price reversal at
the end-point of the interval, i.e. wτ+�n − |rτ+�n |. Note that in practice we only observe a
discrete price path contaminated by measurement errors. Nevertheless, as argued in [3] and
[25], we may choose �n to ‘not-too-finely’ sample the high-frequency prices, such that the
price functionals can reliably approximate those computed from the efficient price path.

In the same vein as [3], [4], [20], and [25], we show that v(α)
n is coupled with a limit

Brownian functional that has the same distribution as S(α) scaled by στ .

Theorem 3.1. Under Assumption 3.1 as n → ∞, it holds that

sup
α∈[0,1]

|v(α)
n − στS(α)

n | = op(1), (3.2)

where

S(α)
n := �−1/2

n sup
t∈In

{
sup

s∈[τ,t]
Ws − inf

s∈[τ,t]
Ws − α|Wt − Wτ |

}

satisfies S(α)
n

d= S(α), for all α ∈ [0, 1], n ∈N.

Equation (3.2) implies that the family of functionals (v(α)
n )α∈[0,1] is, up to a scaling factor,

coupled with the family of limit experiments (S(α)
n )α∈[0,1], whose distribution does not depend

on n and is identical to S(α) that we discussed in the previous section. The spot volatility στ
arises as the scale parameter of the limit experiment due to the linear design of the functional.
This naturally leads to a class of scale-equivariant estimators of σ p

τ for some p> 0 defined as
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σ̂ p(α) := Cp(α)(v(α)
n )p, where Cp(α) is some positive function of α. By the continuous mapping

theorem and the asymptotic equivalence lemma, Theorem 3.1 implies that

σ̂ p(α)/σ p
τ − Cp(α)(S(α)

n )p p−→ 0 ⇒ σ̂ p(α)/σ p
τ

d−→ Cp(α)(S(α))p for all α ∈ [0, 1],

where the limiting variable is a pivotal quantity that is invariant to the unknown (possibly
stochastic) parameter στ . This allows us to construct asymptotic confidence intervals for σ p

τ .
In detail, for a confidence level ρ, a valid confidence interval for σ p

τ can be constructed by
choosing Uρ > Lρ > 0 that satisfies the coverage constraint

lim
�n→0

P(U−1
ρ < σ̂ p(α)/σ p

τ < L−1
ρ ) = ρ⇔ P((Cp(α)Lρ)2/p < T (α) < (Cp(α)Uρ)2/p) = ρ,

which is based on the distribution of T (α) that can be evaluated from the Laplace transforms in
Theorem 2.1. The constants Uρ and Lρ can be uniquely determined by minimizing a volume
measure of the interval, such as the interval length or the ratio of end-points.

More importantly, we can directly assess the precision of the class of estimators σ̂ p(α)
through the properties of its scale-invariant limiting distribution, which leads to optimal
choices of Cp(α) and α. Following the classic statistical literature [23, 24, 31] and the proce-
dure in [3], we evaluate the precision of the estimator σ̂ p(α) by its scale-invariant asymptotic
mean squared error (AMSE), defined as

AMSE(̂σ p(α)) := E
[
(Cp(α)(S(α))p − 1)2] = Cp(α)2μ

(α)
2p − 2Cp(α)μ(α)

p + 1. (3.3)

Two choices of Cp(α) are common in this context, which will be our focus here: (1) by
imposing an asymptotic unbiasedness (UB) condition, we obtain the estimator σ̂ p

UB(α) :=
(v(α)

n )p/μ
(α)
p ; (2) by differentiating (3.3) with respect to Cp(α) and minimizing the AMSE, we

arrive at σ̂ p
MSE(α) := (v(α)

n )pμ
(α)
p /μ

(α)
2p . The AMSEs of the two estimators have the following

simplified expression:

AMSE(̂σ p
UB(α)) = μ

(α)
2p

(μ(α)
p )2

− 1, AMSE(̂σ p
MSE(α)) = 1 − (μ(α)

p )2

μ
(α)
2p

, (3.4)

which can be directly computed using the results in Corollary 2.2 for every α. It is natural to ask
whether we can further minimize the above AMSEs over α ∈ [0, 1]. Conveniently, it is easy to
see that AMSE(̂σ p

UB(α)) and AMSE(̂σ p
MSE(α)) share the same first-order optimality condition

with respect to α, so the solution to the first-order optimality condition α∗
p will minimize or

maximize both AMSEs. We verify graphically in Figure 3 that α∗
p is indeed a global minimizer

on α ∈ [0, 1] for p ∈ {1, 2}.
Figure 3 reveals substantial AMSE reductions when one optimally mixes the price range

and the price reversal through v(α)
n , in comparison to the estimators that only depend on the

price range. To quantify the precision gain and compare with the state-of-the-art benchmark
estimators, we present the numerical values of the AMSEs for different choices of α in Table 1,
along with the AMSEs of the optimal candlestick-based spot volatility estimators of [3], which
we shall abbreviate as the BLL estimator.

Table 1 confirms that, compared to the estimators using only price ranges (α= 0), the opti-
mal choices of α∗

p are approximately half the AMSEs. This vast AMSE reduction is consistent
with our intuition that the reversal part of the price path contains substantial information about
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FIGURE 3. AMSEs of σ̂ p
UB(α) and σ̂ p

MSE(α) for p ∈ {1, 2} as a function of α. The optimal choices α∗
p are

solved numerically by minimizing (3.4) via MATHEMATICA�.

volatility that is not captured by the price range. For the BLL estimators, their AMSEs are only
slightly better than our estimators using solely the maximal price reversal (α= 1), but still
more than 20% higher than our optimal ones. This suggests that v(1)

n alone conveys roughly
the same amount of information about the spot volatility as the candlestick data observed in
the same interval. From our previous discussion, we can view the BLL estimators as optimal
combinations of the price range wτ+�n and the price reversal wτ+�n − |rτ+�n | measured at the
end-point of In. This is enhanced by v(α)

n , which explores optimal combination for the entire
price trajectory on In through the outer supremum operator.

To reflect on the results in Figure 3 and Table 1, we argue that, in a thought experiment
where retail investors can choose to acquire either v(α)

n or the candlestick data to learn about
the spot volatility of the asset, v(α)

n would be the preferred choice due to the lower AMSEs
and the simpler functional form of the estimator. In practice, this precision gain may not be
easily achievable by retail investors, as v(α)

n requires tick-level transaction data which is costly
to obtain, while the high-frequency candlestick charts, despite also being constructed from
tick-level data, are widely available from trading platforms and apps by convention. However,
it is important to point out that the candlestick charts, which have been a prevailing technical
analysis tool over the world for centuries, can still be easily improved by the relatively simple
and analytically tractable functional v(α)

n . Further precision gains may be possible by optimally
combining the candlestick data with v(α)

n . Unfortunately this requires knowledge about the joint
law (S(α),W1,M1,m1), which seems out of reach by the methods developed in this paper.

We conclude this paper on an intriguing information design problem about high-frequency
data: on a given interval�n, which functional is the most efficient at summarizing the informa-
tion about στ from the potentially noisy price trajectory? The answer to this question allows
data vendors to provide more effective summary statistics for retail investors to monitor the
market movements and risks. We are unable to provide a definite answer here, but we hope
that the new functional S(α) presents a promising path towards this ultimate goal.

4. Proofs

Proof of Theorem 2.1. We start with the observation that, for all α ∈ [0, 1], s(α)
t ≤ Rt, for all

t. Therefore Rt must hit 1 before s(α)
t , which allows us to decompose T1(s(α)) as

T1(s(α)) = T1(R) + τ (α), (4.1)
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TABLE 1. AMSEs of spot volatility and spot variance estimators

Asymptotically unbiased Optimal AMSE

Inference target α = 0 α = α∗
p α = 1 BLL α = 0 α= α∗

p α= 1 BLL

Spot volatility (p = 1) 0.089 0.045 0.065 0.061 0.082 0.043 0.061 0.058
Spot variance (p = 2) 0.407 0.188 0.269 0.259 0.289 0.158 0.212 0.207

Note. For each p ∈ {0, 1} and α ∈ {0, α∗
p , 1} the table reports the AMSEs of the estimators σ̂ p

UB(α)

(Asymptotically unbiased) and σ̂ p
MSE(α) (Optimal AMSE), where the values of α∗

p are reported in
Figure 3. The columns headed BLL report the AMSEs of the optimal candlestick-based spot volatility
estimators of [3], where the asymptotically unbiased and the optimal AMSE estimators correspond to
their optimal estimators under Stein’s loss and the quadratic loss, respectively. The AMSEs of these
estimators are taken from Tables 1 and 2 of [3].

where τ (α) ≥ 0 is another Brownian stopping time which is identically zero if α= 0
(since by definition T1(s(0)) ≡ T1(R)), and its properties for α ∈ (0, 1] will be elaborated
in what follows. Let WT1(R) denote the value of W at the time T1(R). We shall use
the following Laplace transform of the pair (T1(R),WT1(R)), which can be found in [5,
page 242]:

E
[
e−λT1(R);WT1(R) ∈ dw

] =
√

2λ sinh [
√

2λ|w|]
sinh [

√
2λ]2

dw, |w| ≤ 1.

Furthermore, the Markov property of the Brownian motion implies that τ (α) is independent of
T1(R) conditional on WT1(R). Therefore the key to deriving the density of T1(s(α)) is to study the
density of τ (α) conditional on WT1(R), and without loss of generality we may take WT1(R) ≥ 0
by the symmetry of the Brownian motion.

To study the conditional density of τ (α), let us consider the path of Wt on t ∈
[T1(R), T1(s(α))]. Define the re-centred Brownian motion W̃h := WT1(R)+h − WT1(R) on h ∈
[0, τ (α)] with the time T1(R) normalized to 0, i.e. h = t − T1(R). Since T1(s(α)) ≤ inf{t ≥
T1(R) : Wt ≤ 0} or equivalently τ (α) ≤ inf{h ≥ 0: W̃h ≤ −WT1(R)}, it is not hard to see that
W̃0 = 0 and W̃h ≥ −WT1(R) on h ∈ [0, τ (α)]. Denoting M̃h := sups∈[0,h] W̃s, one can show that,
for all t ∈ [T1(R), T1(s(α))] or h ∈ [0, τ (α)],

s(α)
t = Rt − α|Wt| = 1 + M̃t−T1(R) − α(W̃t−T1(R) + WT1(R)) = 1 + M̃h − α(W̃h + WT1(R)).

Therefore, with WT1(R) ≥ 0, we see that

τ (α) = inf{h ≥ 0: M̃h − αW̃h ≥ αWT1(R)}.
Thus τ (α) is the first hitting time of the non-negative process M̃h − αW̃h to the level αWT1(R).

To derive the Laplace transform of τ (α), we start with a well-known identity due to Lévy
(see e.g. [22, eq. (6.34)], which holds almost surely:

(M̃h − W̃h, M̃h) = (|Bh|, Lh) for all h> 0,
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where Bh is a standard Brownian motion starting at zero and Lh is its associated Brownian local
time process at level 0. This implies that almost surely we have

M̃h − αW̃h = α|Bh| + (1 − α)Lh for all h> 0,

which further leads to the observation that

τ (α)|WT1(R)
d= TWT1(R) (�

(ᾱ)),

where
�

(ᾱ)
h := |Bh| + ᾱ−1Lh, ᾱ = α

1 − α
.

As α ∈ (0, 1] ⇔ ᾱ ∈ (0,∞], the process �(ᾱ)
h is well-defined. Conditional on WT1(R), the

Laplace transform of TWT1(R) (�
(ᾱ)) for α < 1 can be found in [10, page 235] based on the

calculations in [1] (see also [21]):

E
[
e−λτ (α) | WT1(R) = w

] =E
[
e
−λTWT1(R) (�(ᾱ)) | WT1(R) = w

]
= ᾱ

√
2λ

sinh [w
√

2λ]ᾱ

∫ w

0
sinh [y

√
2λ]ᾱ−1 dy

= ᾱ

2

∫ 1

0

tᾱ/2−1

(1 + sinh [w
√

2λ]2t)1/2
dt

= 2F1

(
1

2
,
ᾱ

2
; 1 + ᾱ

2
; − sinh [w

√
2λ]2

)
,

where the third equality is derived by a change of variable t = sinh [y
√

2λ]2/ sinh [w
√

2λ]2,
and the final result follows from the integral representation [26, eq. (15.6.1)] of the Gauss
hypergeometric function. Now, by the conditional independence of τ (α) and T1(R), we arrive
at the Laplace transform of T1(s(α)) by integrating out WT1(R):

Lα(λ) =
∫ 1

−1
E

[
e−λT1(R);WT1(R) ∈ dw

]
E

[
e−λτ (α) | WT1(R) = w

]

=
∫ 1

0

2
√

2λ sinh [w
√

2λ]

sinh [
√

2λ]2 2F1

(
1

2
,
ᾱ

2
; 1 + ᾱ

2
; − sinh [w

√
2λ]2

)
dw

=
∫ 1

0

2
√

2λ tanh [w
√

2λ]

sinh [
√

2λ]2 2F1

(
1

2
, 1; 1 + ᾱ

2
; tanh [w

√
2λ]2

)
dw

= sinh [
√

2λ]2
∫ tanh [

√
2λ]2

0
(1 − y)−1

2F1

(
1

2
, 1; 1 + ᾱ

2
; y

)
dy, (4.2)

where a factor of 2 is added to account for the case WT1(R) ∈ [−1, 0], the second equality can
be derived from 2F1(a, b; c; z) = (1 − z)−a

2F1(a, c − b; c; z/(1 − z)) in [26, eq. (15.8.1)], and
the last equality follows from the change of variable y = tanh [w

√
2λ]2. This proves (2.1).

We now verify (2.2) and show that L1(λ) can be obtained from Lα(λ) by letting α→ 1. We

shall start with a direct derivation of L1(λ). Notice that when α= 1, we have τ (1) | WT1(R)
d=
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TWT1(R) (|B|). In this case, the conditional Laplace transform of TWT1(R) (|B|) takes a simple form
[5, page 355]:

E
[
e−λτ (1) | WT1(R) = w

] = cosh [|w|√2λ]−1.

Plugging the above into (4.2) and simplifying the integral yields the same Laplace transform
as in (2.2). To show that L1(λ) ≡ limα→1 Lα(λ), we note that

2F1

(
1

2
, 1; 1 + ᾱ

2
; y

)

is monotonically increasing on [0, 1] and satisfies, for all real ᾱ > 1,

1 = 2F1

(
1

2
, 1; 1 + ᾱ

2
; 0

)
< 2F1

(
1

2
, 1; 1 + ᾱ

2
; y

)
< 2F1

(
1

2
, 1; 1 + ᾱ

2
; 1

)
= ᾱ

ᾱ− 1
,

by the Gauss summation theorem. Since α→ 1 ⇔ ᾱ→ ∞, we deduce that

lim
α→1

2F1

(
1

2
, 1; 1 + ᾱ

2
; y

)
= 1

uniformly on y ∈ [0, 1]. Thus one can interchange the limit with the integration in the last line
of (4.2) to derive

lim
α→1

Lα(λ) = sinh [
√

2λ]−2
∫ tanh [

√
2λ]2

0
(1 − y)−1 dy = 2 sinh [

√
2λ]−2 ln cosh [

√
2λ] ≡L1(λ),

as desired. Finally, to verify (2.3), note that by (4.1) we have T (α) ≥ T1(R) pathwise for
all α ∈ [0, 1], which implies that for all λ≥ 0 and α ∈ [0, 1], e−λT(α) ≤ e−λT1(R) and hence
Lα(λ) ≤L0(λ) by taking expectation. The analytical expression of L0(λ) is well-known (see
e.g. [6], [18]), from which one immediately concludes that L0(λ) ≤L0(0) = 1 for all λ≥ 0.
This completes the proof. �

Proof of Proposition 2.1. We begin with the observation that T (α) ≤ T (1) pathwise, and thus
κ

(α)
k ≤ κ (1)

k for all k ∈N. Therefore all moments of T (α) exist if κ (1)
k <∞ for all k ∈N. As

L1(λ)<∞ for all λ≥ 0 from Theorem 2.1, by differentiating under the integral sign, the
dominated convergence theorem implies that

κ
(1)
k = lim

λ→0
E[(T (1))ke−λT(1)

] = lim
λ→0

(−1)kL(k)
1 (λ), (4.3)

where L(k)
α (λ) is the kth derivative of Lα(λ) with respect to λ. Therefore it suffices to show that

lim
λ→0

(−1)kL(k)
1 (λ) = (−1)kL(k)

1 (0)<∞,

and the above quantity is guaranteed to be non-negative by the Bernstein–Widder theorem [32,
Theorem 12a]. To prove this, we shall write

L1(λ) =L1/2(λ)G1(λ), (4.4)

where L1/2(λ) is given in (2.4), and G1(λ) = λ−1 ln cosh [
√

2λ]. We thus have, by the general
Leibniz rule,

lim
λ→0

(−1)kL(k)
1 (λ) =

k∑
n=0

(
k

n

)
κ (1/2)

n (−1)k−n lim
λ→0

G(k−n)
1 (λ),
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where L(n)
1/2(0) = limλ→0 L(n)

1/2(λ) = (−1)−nκ
(1/2)
n holds since L1/2(λ) is the Laplace transform

of T (1/2) with all moments finite (see equation (2.5) and [2]). Therefore the above quantity is
finite for all k ∈N if

(−1)k lim
λ→0

G(k)
1 (λ) = (−1)kG(k)

1 (0)<∞.

The Maclaurin series of G1(λ) is known [34]:

G1(λ) =
∞∑

k=0

23k+2(4k+1 − 1)B2(k+1)

(k + 1)(2(k + 1))! λk =
∞∑

k=0

(−1)−k

k! γ
(1)
k λk, (4.5)

where γ (1)
k is defined in (2.10). From the above, we immediately see that (−1)kG(k)

1 (0) = γ
(1)
k <

∞, and in fact also γ (1)
k > 0 as Bn(−1)n > 0, for all n. We thus conclude that all moments of

T (1), and hence T (α) for α ∈ [0, 1], are finite.
The above result allows us to deduce κ (α)

k = (−1)kL(k)
1 (0) in view of (4.3) and the existence

of the limit. To derive an explicit formula for κ (α)
k , we consider the following decomposition

of Lα(λ) similar to (4.4):
Lα(λ) =L1/2(λ)Gα(λ), (4.6)

where Gα(λ) takes the form

Gα(λ) = (2λ)−1
∫ tanh [

√
2λ]2

0
(1 − y)−1

2F1

(
1

2
, 1; 1 + ᾱ

2
; y

)
dy.

By the general Leibniz rule again, and since we know that the moments exist,

κ
(α)
k = (−1)kL(k)

α (0) = (−1)k
k∑

n=0

(
k

n

)
L(n)

1/2(0)G(k−n)
α (0).

Comparing the above to (2.8), we only need to show that γ
(α)
k in (2.9) satisfies

γ
(α)
k ≡ (−1)kG(k)

α (0) for all k ∈N and α ∈ [0, 1]. It suffices to show that Gα(λ) has the following
Maclaurin series:

Gα(λ) =
∞∑

k=0

(−1)kγ
(α)
k

k! λk. (4.7)

The case with α = 1 is already proved in (4.5), and the case α = 1/2 is trivial since G1/2(λ) ≡ 1,

so we simply have γ (1/2)
k ≡ 1{k=0}. For α= 0, we have G0(λ) = λ−1( cosh [

√
2λ] − 1) with the

following Maclaurin series:

G0(λ) =
∞∑

k=0

2k+1

(2(k + 1))!λ
k =

∞∑
k=0

(−1)kγ
(0)
k

k! λk,

where γ (0)
k and γ (1/2)

k correspond to those provided in (2.10), as desired.
For the general case α ∈ (0, 1) \ { 1

2 }, we start with the claim that

tanh [
√

2x]2k = xk
∞∑

n=0

Cn,kxn, k ∈N.

https://doi.org/10.1017/jpr.2024.95 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.95


16 Y. LI

This easily follows by induction from the Maclaurin series of tanh [
√

2x]2 below and the
recursive relation of Cn,k by a Cauchy sum argument,

tanh [
√

2x]2 = x
∞∑

n=0

Cn,1xn,

which can be derived from the Maclaurin series of tanh (x) provided in [35].
We are now ready to derive the Maclaurin series of Gα(λ). Using the geometric series

expansion and the Maclaurin series of the Gauss hypergeometric function, we deduce

Gα(λ) = (2λ)−1
∫ tanh [

√
2λ]2

0

∞∑
s=0

ys
2F1

(
1

2
, 1; 1 + ᾱ

2
; y

)
dy

= (2λ)−1
∫ tanh [

√
2λ]2

0

∞∑
s=0

∞∑
n=0

(1/2)n

(1 + ᾱ/2)n
yn+s dy

= (2λ)−1
∫ tanh [

√
2λ]2

0

∞∑
k=0

D(α)
k yk dy

= (2λ)−1
∞∑

k=0

D(α)
k

tanh [
√

2λ]2(k+1)

k + 1
, (4.8)

where the third equality follows from a change of index and the identity

D(α)
k := ᾱ

ᾱ− 1

(
1 − (1/2)k+1

(ᾱ/2)k+1

)
=

k∑
n=0

(1/2)n

(1 + ᾱ/2)n
,

which can be easily proved via induction, and is well-defined for all ᾱ ∈ (0,∞) \ {1} (the
limiting cases with ᾱ ∈ {0, 1,∞} given in (2.7) can be easily verified). The interchange of sum
and limit in the last equality of (4.8) is justified by the fact that all the summands are positive.
Plugging in the Maclaurin series of tanh [

√
2x]2k and reordering, we arrive at the Maclaurin

series of Gα(λ):

Gα(λ) =
∞∑

k=0

D(α)
k

∞∑
n=0

Cn,k+1λ
k+n

2(k + 1)
=

∞∑
k=0

k∑
n=0

D(α)
n Ck−n,n+1

2(n + 1)
λk.

It is now clear that by setting

γ
(α)
k = (−1)kk!

k∑
n=0

D(α)
n Ck−n,n+1

2(n + 1)
,

we recover (4.7) as desired. This completes the proof. �

Proof of Corollary 2.1. In view of Proposition 2.1 and equation (2.5), the corollary follows
from the observation

γ (1)
n = (−1)nn!23n+2(4n+1 − 1)B2(n+1)

(n + 1)(2(n + 1))! = − (−2)2n+1κ
(0)
n

(2n + 1)(2n + 2)
,
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and the final expression in (2.11) can be obtained by

κ
(1)
k =

k∑
n=0

(
k

n

)
κ

(1/2)
k−n γ

(1)
n ,

which is equivalent to (2.8). This completes the proof. �

Proof of Proposition 2.2. We start with the following infinite series representation of Lα(λ):

Lα(λ) =
∞∑

n=0

D(α)
n

n + 1
tanh [

√
2λ]2n(1 − tanh [

√
2λ]2), (4.9)

which follows from (2.4), (4.6), and (4.8) after some straightforward simplification. Since D(α)
n

is defined for all α ∈ [0, 1] by (2.6) and (2.7), there are no ambiguities in the above definition
for α ∈ {0, 1

2 , 1}. By Theorem 2.1, (4.9) is convergent on λ≥ 0 for all α ∈ [0, 1]. We use (2.13)
to deduce that

μ
(α)
k = 1

�(k/2)

∞∑
n=0

D(α)
n

n + 1

∫ ∞

0
tanh [

√
2λ]2n(1 − tanh [

√
2λ]2)λk/2−1 dλ,

= 21−k/2

�(k/2)

∞∑
n=0

D(α)
n

n + 1

∫ 1

0
arctanh[y]k−1y2n dy, (4.10)

where the exchange of sum and integration is permitted in the first line due to the fact that all
integrands are positive, and the second line follows by change of variables x = tanh [

√
2λ]2

and then y = √
x. This completes the proof. �

Proof of Corollary 2.2. When α = 1, from (2.7) we learn that D(1)
n ≡ 1. Plugging this into

(4.10) and exchanging the order of integration with the infinite sum, (2.14) follows from the
identity

∞∑
n=0

y2n

n + 1
= −y−2 ln (1 − y2).

Now, for (2.15), we note that the integral in (2.13) can be solved in closed form,

∫ 1

0
y2n dy = 1

2n + 1
,

∫ 1

0
arctanh[y]y2n dy = Hn + 2 ln 2

2(2n + 1)
,

and recall that Hn is the nth harmonic number. The expressions in (2.15) are derived by substi-
tuting the above into (4.10) and simplifying the infinite sums using MATHEMATICA�. This
completes the proof. �

Proof of Theorem 3.1. By a standard localization procedure (see [19, Section 4.4.1]), we
can without loss of generality work under a strengthened version of Assumption 3.1 by assum-
ing that the bounds in Assumption 3.1(i) hold with T1 = ∞. Also, we can assume that Pt is
continuous on In, following the discussion in the proof of Theorem 1 of [25].
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To prove (3.2), we start with the following normalized statistics defined for t ∈ In:

wn,t := �−1/2
n wt, rn,t := �−1/2

n rt,

Rn,t := �−1/2
n

(
sup

s∈[τ,t]
Ws − inf

s∈[τ,t]
Ws

)
, Wn,t := �−1/2

n (Wt − Wτ ).

Thus it is understood that v(α)
n ≡ supt∈In

{wn,t − α|rn,t|} and similarly for S(α)
n ≡ supt∈In

{Rn,t −
α|Wn,t|}. Intuitively, (Rn,t,Wn,t) is the counterpart of (wn,t, rn,t) constructed from W instead of
P. We have the following observation:

sup
α∈[0,1]

|v(α)
n − στS(α)

n | ≤ sup
α∈[0,1]

∣∣∣∣sup
t∈In

{wn,t − α|rn,t|} − στ sup
t∈In

{Rn,t − α|Wn,t|}
∣∣∣∣

≤ sup
α∈[0,1]

sup
t∈In

∣∣wn,t − α|rn,t| − στRn,t + στα|Wn,t|
∣∣

≤ sup
α∈[0,1]

{
sup
t∈In

|wn,t − στRn,t| + α sup
t∈In

∣∣|rn,t| − στ |Wn,t|
∣∣}

≤ sup
t∈In

|wn,t − στRn,t| + sup
t∈In

∣∣|rn,t| − στ |Wn,t|
∣∣. (4.11)

Thus it suffices to prove that both terms in the last line above are of order op(1).
Recall that J ≡ 0 on In. For the first term,

sup
t∈In

|wn,t − στRn,t| =�−1/2
n sup

t∈In

∣∣∣∣ sup
s∈[τ,t]

Ps − στ sup
s∈[τ,t]

Ws − inf
s∈[τ,t]

Ps + στ inf
s∈[τ,t]

Ws

∣∣∣∣
≤�−1/2

n sup
t∈In

∣∣∣∣2 sup
s∈[τ,t]

|Ps − Pτ − στ (Ws − Wτ )|
∣∣∣∣

≤ 2�−1/2
n sup

t∈In

|Pt − Pτ − στ (Wt − Wτ )|

= 2�−1/2
n sup

t∈In

∣∣∣∣
∫ t

τ

μs ds +
∫ t

τ

(σs − στ ) dWs

∣∣∣∣
≤ 2�−1/2

n

∫ τ+�n

τ

|μs| ds + 2�−1/2
n sup

t∈In

∣∣∣∣
∫ t

τ

(σs − στ ) dWs

∣∣∣∣
= Op(�1/2

n ) + Op(�κn ) = op(1),

where the first inequality is due to a reverse triangle inequality applied to the supremum norm,
and note that the infimum can be interpreted as the supremum norm applied to the negative pro-
cess. The last two estimates follow from Assumption 3.1 which are proved in [25]. Similarly,
for the second term in (4.11), we have

sup
t∈In

∣∣|rn,t| − στ |Wn,t|
∣∣ =�−1/2

n sup
t∈In

∣∣∣|Pt − Pτ | − στ |Wt − Wτ |
∣∣∣

≤�−1/2
n sup

t∈In

∣∣∣Pt − Pτ − στ (Wt − Wτ )|
∣∣∣

= Op(�1/2
n ) + Op(�κn ) = op(1),
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as desired. Finally, by the Brownian scaling law, it is not hard to see that (Wn,t)t∈In

d= (Wt)t∈[0,1]
for arbitrary choice of �n > 0. Since [τ, τ +�n] ⊂ [0, T] for all n by assumption, we have

S(α)
n

d= S(α) for all α ∈ [0, 1] and n, and the proof is complete. �
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