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Let p be an odd prime and let G be a non-abelian finite p-group of exponent p2 with
three distinct characteristic subgroups, namely 1, Gp and G. The quotient group
G/Gp gives rise to an anti-commutative Fp-algebra L such that the action of Aut(L)
is irreducible on L; we call such an algebra IAC. This paper establishes a duality
G ↔ L between such groups and such IAC algebras. We prove that IAC algebras are
semisimple and we classify the simple IAC algebras of dimension at most 4 over
certain fields. We also give other examples of simple IAC algebras, including a family
related to the m-th symmetric power of the natural module of SL(2, F).
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1. Introduction

Building on earlier work by Taunt [17] and by the first and the third authors in
collaboration with Pálfy [7], we continue, in this paper, our investigation into the
structure of finite groups with a unique non-trivial and proper characteristic sub-
group. Such a group is said to be UCS. In [7], finite UCS p-groups were studied.
The exponent of a finite UCS p-group is either p or p2. If p is an odd prime and G
is a UCS p-group of exponent p2, then the Frattini quotient V = G/Φ(G) is an irre-
ducible Aut(G)-module and V is an epimorphic image of the exterior square ∧2V .
An epimorphism ∧2V → V can be viewed as an anti-commutative multiplication
on the vector space V which turns V into a non-associative and anti-commutative
algebra L(G) defined in § 3. Further, by theorem 1.1(a) below, the automorphism
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group of L(G) is induced by Aut(G), and is irreducible on V . The main results of
this paper explore the connection between G and L(G).

To state the first main theorem of the paper, let UCSp2 denote the set of isomor-
phism classes of finite UCS p-groups of exponent p2 and, for an odd prime p, let
IACp denote the set of isomorphism classes of finite-dimensional anti-commutative
algebras L over the field Fp of p elements such that Aut(L) is irreducible on L.
Such an algebra will be referred to as an IAC algebra.

Theorem 1.1. If p is an odd prime, then the map G �→ L(G) is a bijection between
UCSp2 and IACp. Further, if G ∈ UCSp2 and L = L(G) then the following hold.

(a) There is an isomorphism Aut(G)/AutC(G) ∼= Aut(L) where AutC(G)
denotes the group of central automorphisms of G.

(b) There is a bijection between the set of subalgebras of L and the set of powerful
subgroups of G that contain Φ(G).

(c) The bijection in part (b) restricts to a bijection between ideals of L and
powerfully embedded subgroups of G containing Φ(G).

(d) For k � 2, we have that G×k ∈ UCSp2 and L(G×k) ∼= L⊕k.

The first statement of theorem 1.1 follows from theorem 3.5, while parts (a), (b),
(c) and (d) follow from theorem 3.6, proposition 4.4 and from theorem 4.3.

In the second part of the paper, we prove several results about small-dimensional
IAC algebras over various fields, which can be summarized in the following theorem.

Theorem 1.2. The following are valid for a field F.

(a) A finite-dimensional IAC algebra over F is the direct sum of pairwise
isomorphic simple IAC algebras.

(b) If char(F) �= 2, then a non-abelian 3-dimensional IAC algebra over F is a
simple Lie algebra.

(c) Suppose that F is a finite field of q = pf elements where p is an odd prime.
Then the number of isomorphism types of 4-dimensional IAC algebras over
F is (i) 0 if p = 5, (ii) 1 if f is even or p ≡ ±1 (mod 5), and (iii) 2 if f is
odd and p ≡ ±2 (mod 5).

(d) If m � 2, m ≡ 2 (mod 4), and either char(F) = 0 or 2m < char(F), then
there is an (m+ 1)-dimensional IAC algebra L over F whose automorphism
group contains a subgroup isomorphic to SL(2,F) acting absolutely irreducibly
on L.

Theorem 1.2 follows from theorem 4.2, proposition 5.1, and theorems 5.3 and 8.1.
Note that pf ≡ ±2 (mod 5) holds if and only if f is odd and p ≡ ±2 (mod 5).

UCS p-groups are atypical, since finite p-groups usually have a rich structure of
characteristic subgroups, which is used in the optimization of the standard algo-
rithms for computing Aut(G); see for instance [6,19]. However, when G does
not have characteristic subgroups apart from the usual verbal subgroups, such
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optimization techniques fail. In particular, the algorithms for computing Aut(G)
that are based on orbit-stabilizer calculation would perform poorly on UCS p-
groups. Nevertheless, theorem 1.1 shows that UCS p-groups of exponent p2 have
a rigid algebraic structure that, in theory, can be exploited also in automorphism
group computations, in a way which is rather similar to the philosophy pursued by
Wilson and his collaborators in their recent work [4,5,20].

Following [7], we say that a G-module V is an ESQ module if V ∼= ∧2V/U for
some G-submodule U (see also § 5.2). IAC algebras are related to irreducible ESQ
G-modules. It was observed in [2] that a similar connection exists between Lie alge-
bra modules that satisfy the corresponding property and IAC algebras. Indeed, the
authors of [2] considered the exterior squares of some irreducible representations
of the Lie algebra sl(2) in the same way as we consider such representations for
GL(2,F) in theorem 7.1 and they defined non-associative anti-commutative alge-
bras as we do in theorem 8.1. In addition, they explicitly computed the structure
constant tables for the resulting 3, 7 and 11-dimensional algebras, noting that the
3-dimensional algebra is the simple Lie algebra sl(2) (as implied also by our propo-
sition 5.1), while the 7-dimensional algebra is the non-Lie simple Malcev algebra.
This fact is further exploited in [3] for the study of the polynomial identities of the
Malcev algebra.

In § 2, we review some known properties of UCS p-groups before we establish
in § 3 a duality between the class of UCS p-groups of exponent p2, and the class
of IAC algebras. In § 4 we prove that IAC algebras are semisimple, and that their
subalgebras correspond to powerful subgroups of UCS groups. We address the clas-
sification of simple IAC algebras of dimension at most 4 in § 5, and an infinite class
of examples of simple IAC algebras, with widely varying dimensions, is given in
§ 6. We prove a general version, which is valid also in prime characteristic, of the
Clebsch–Gordan decomposition for tensor squares, exterior squares and symmetric
squares of GL(2,F)-modules in § 7, and apply it in § 8 to construct some simple
IAC algebras related to representations of SL(2,F).

2. UCS p-groups of exponent p2

Let us start by recalling some standard notions of finite group theory. If G is a
group and k is an integer, then Gk denotes the subgroup of G generated by k-
th powers. To avoid confusion, the k-fold direct power of G is denoted by G×k.
The commutator subgroup G′ of G is the subgroup generated by all commutators
[x, y] = x−1y−1xy with x, y ∈ G. The Frattini subgroup Φ(G) is the intersection of
all the maximal subgroups of G. It is well-known that if G is a finite p-group, then
Φ(G) = G′Gp. The centre Z(G) of G is the subgroup of G consisting of elements
g ∈ G such that gx = xg holds for all x ∈ G.

A subgroup N of a group G is called characteristic if it is invariant under each
automorphism α ∈ Aut(G). For instance, the subgroups G′, Gk, Φ(G) are char-
acteristic. A group G with a unique non-trivial proper characteristic subgroup is
abbreviated as a UCS group. Finite UCS groups were studied by Taunt [17] and
later finite UCS p-groups were explored by the first and the third authors in col-
laboration with Pálfy [7]. The characteristic subgroups of a finite UCS p-group G
are 1, Φ(G) and G, and consequently the exponent of G is either p or p2.
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It is useful to review some properties of UCS groups.

Lemma 2.1 ([7, lemma 3]). Suppose that G is a finite non-abelian UCS p-group and
1 �N �G are the only characteristic subgroups of G. Then the following hold:

(a) G′ = Φ(G) = Z(G) = N and Gp = 1 or Gp = N ;

(b) the groups G/N and N are elementary abelian p-groups.

Lemma 2.2 ([7, theorem 4]). Let G be a finite p-group such that G/Φ(G) and Φ(G)
are non-trivial elementary abelian p-groups. Then G is a UCS group if and only if
Aut(G) induces an irreducible linear group on both G/Φ(G) and on Φ(G).

Consider, for a group G, the natural homomorphism G→ G/Φ(G). For g ∈ G
and for H � G we define

g = gΦ(G) and H = HΦ(G)/Φ(G).

In particular, G = G/Φ(G).

Lemma 2.3 ([7, theorem 4(iii)]). Let G be a finite UCS p-group of odd exponent
p2. Then the map ϕ : G→ Φ(G) defined by gϕ = gp is a well-defined isomorphism
between the FpAut(G)-modules G and Φ(G). In particular, |G| = |Φ(G)|.

Suppose that G is a UCS p-group of odd exponent p2 and let g ∈ G. By
lemma 2.3, defining gp = gϕ = gp, we obtain a well-defined isomorphism between
the FpAut(G)-modules G and Φ(G). If h ∈ Φ(G), then let h1/p denote the unique
preimage hϕ−1 ∈ G of h under ϕ. Thus for every g ∈ G and h ∈ Φ(G) we have

(gp)1/p = g and (h1/p)p = h. (2.1)

Theorem 2.4 [17, theorem 2.1]. Suppose that G is a UCS group, and N is its
proper non-trivial characteristic subgroup. Assume further that Aut(G) fixes no
non-trivial element of N ∪G/N . Then for all k � 1 the k-th direct power G×k is a
UCS group, and N×k is a characteristic subgroup of G×k.

3. UCS p-groups and IAC algebras

We consider non-associative1 algebras L over a field F satisfying xx = 0 for all x ∈ L.
Our focus will be when char(F) �= 2. Such an algebra is called anti-commutative
because yx = −xy holds for all x, y ∈ L. As these algebras are more similar to Lie
algebras than to associative algebras, we henceforth write the product xy as �x, y�.
An anti-commutative algebra L for which Aut(L) acts irreducibly on L will be
called IAC algebra (for irreducible and anti-commutative).

Let p be an odd prime and let G be a UCS p-group of exponent p2. By lemma 2.3,
the map G→ Φ(G), defined by x �→ xp is an isomorphism of Aut(G)-modules.
Given λ ∈ Fp and x ∈ G, considering λ as an integer between 0 and p− 1, the

1Precisely, we assume that the binary operation L × L → L may or may not be associative.
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scalar action λx = xλ is well-defined and turns G into a vector space over Fp. It is
less obvious that the following product �x, y� for x, y ∈ G is well-defined:

�x, y� = [x, y]1/p where x, y ∈ G and [x, y] = x−1y−1xy. (3.1)

Henceforth L(G) = (G,+, �·, ·�) will denote this Fp-algebra.

Lemma 3.1. Suppose that p is an odd prime and G is a finite UCS p-group of
exponent p2. Then L(G) defined above is an IAC algebra over Fp.

Proof. We first prove that the operation �·, ·� given by equation (3.1) is well-defined.
Let v1, v2, w1, w2 ∈ G such that v1 = v2 and w1 = w2. Then v2 = v1zv and w2 =
w1zw with zv, zw ∈ Φ(G). As zv and zw are central, and G has nilpotency class 2,
we obtain that [v2, w2] = [v1, w1], and so [v2, w2]1/p = [v1, w1]1/p. Thus the value of
�·, ·� is independent of the choice of coset representatives, and �·, ·� is well-defined.

We prove next that �·, ·� distributes over the addition in G. Take u, v, w ∈ G and
note that [u, vw] = [u, v][u,w] holds since G has nilpotency class 2. Therefore

�u, v + w� = [u, vw]1/p = ([u, v][u,w])1/p = [u, v]1/p[u,w]1/p = �u, v� + �u,w�.

In addition, �v, v� = [v, v]1/p = 11/p, equals the zero element of G. Hence
�v, v� = 0 for all v ∈ G. An automorphism α ∈ Aut(G) induces an Fp-linear trans-
formation α : G→ G and a (restricted) isomorphism α↓ : Φ(G) → Φ(G). Then, by
lemma 2.3, the map ϕ : x �→ xp intertwines α↓ and α, i.e.

ϕ(α↓) = αϕ or (α↓)ϕ−1 = ϕ−1α. (3.2)

Hence

�u, v�α = [u, v]1/pα = [u, v]ϕ−1α = [u, v](α↓)ϕ−1 = [uα, vα]ϕ−1

= [uα, vα]1/p = �uα, v α�.

Thus α ∈ Aut(L(G)). By lemma 2.2, Aut(G) induces an irreducible subgroup of
GL(G). Thus Aut(L(G)) is irreducible on G, and L(G) is an IAC algebra as
claimed. �

In characteristic 2, we need not have |G/Φ(G)| = |Φ(G)| as in lemma 2.3. For
example, a non-abelian group G of order 8 is UCS and satisfies |G/Φ(G)| = 4 >
2 = |Φ(G)|. Although our construction of L(G) works more generally, namely when
p > 2 and G satisfies 1 < Φ(G) � Z(G), |G| = |Φ(G)|, and Gp2

= 1, the resulting
anti-commutative algebra L(G) need not be an irreducible Aut(L)-module when G
is not a UCS group.

Given an algebra L, the subspace �L,L� generated by all products �x, y� with
x, y ∈ L is invariant under Aut(L). Thus if L is an IAC algebra, we have �L,L� = 0
or �L,L� = L. If L = L(G) for some finite UCS p-group G of exponent p2, then
�L,L� = 0 occurs if and only if G is abelian. We will usually assume that this is not
the case; that is, �L,L� = L holds. Adopting the terminology from Lie algebras, an
anti-commutative algebra L is said to be abelian if �L,L� = 0.

The following result shows that the construction in lemma 3.1 can be reversed.
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Theorem 3.2. Given an odd prime p and a finite-dimensional IAC algebra L
over Fp, there exists a finite UCS p-group G = G(L) of exponent p2 such that
L(G) ∼= L.

In theorem 3.5 we show that G = L−1, see remark 3.4.

Proof. Suppose that L has (finite) dimension r over Fp and {v1, . . . , vr} is a basis. If
L is abelian, then we take G to be the homocyclic group (Cp2)r. Clearly, L(G) ∼= L
in this case, and so in the rest of the proof we assume that L is a non-abelian IAC
algebra.

Let H = Hp,r be the r-generator free group in the variety of groups that have
exponent dividing p2, nilpotency class at most 2 and have the property that all p-th
powers are central. Assume that c(i,j)k are the structure constants of L; that is,

�vi, vj� =
r∑

k=1

c
(i,j)
k vk (3.3)

for all 1 � i < j � r. We consider the constants c(i,j)k as elements of the field Fp

as well as integers in {0, . . . , p− 1}. Suppose that h1, . . . , hr are generators of H.
Define N � H as the subgroup

N =

〈
[hi, hj ]−1

r∏
k=1

(hp
k)c

(i,j)
k | 1 � i < j � r

〉
. (3.4)

As N � Φ(H) � Z(H), the subgroup N is normal in H. Further, considering Φ(H)
as an Fp-vector space, the given generators of N are linearly independent, and hence
|N | = p(

r
2).

Set G = H/N . Then G is a finite p-group, and so the Frattini subgroup of G is

GpG′ = (H/N)p(H/N)′ = (HpH ′N)/N = Φ(H)/N.

On the other hand, since Φ(G) = GpG′ and the relations in N imply that G′ � Gp,
we find that Φ(G) = Gp. Since Φ(G) � Z(G) and Φ(G)p = 1, the map ϕ : G→
Φ(G) defined by g �→ gp is a surjective Aut(G)-module homomorphism. Since
|Φ(H)| = pr+(r

2) by [7, p. 87], we have |G| = |Φ(G)| = pr, and the map g �→ gp

is an isomorphism.
As remarked before this theorem, G satisfies sufficient conditions for us to con-

struct the anti-commutative algebra L(G), as in lemma 3.1. Set gi = hiN for
1 � i � r, and define the linear map ξ : L→ G by viξ = gi for all i. We claim
that ξ is an isomorphism of Fp-algebras. Indeed, by (3.1) and (3.4) we have

�viξ, vjξ� = �gi, gj� = [gi, gj ]1/p =

(
r∏

k=1

(gp
k)c

(i,j)
k

)1/p

.

Using (2.1) and (3.3) this equals
r∏

k=1

((gp
k)1/p)c

(i,j)
k =

r∏
k=1

(gk)c
(i,j)
k = �vi, vj�ξ.
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Since |L| = |G| = pr and ξ is surjective, it follows that ξ is an Fp-isomorphism.
We claim thatG is a UCS p-group of exponent p2. The construction of the p-group

G ensures that G and Φ(G) are elementary abelian. By lemma 2.2, it suffices to
show that Aut(G) acts irreducibly on G and on Φ(G). Fix α ∈ Aut(L) and write

viα =
r∑

k=1

aikvk where i ∈ {1, . . . , r} and aik ∈ Fp.

As H is a relatively free group, there is a homomorphism α∗ : H → H satisfying

hiα
∗ =

r∏
k=1

haik

k where aik ∈ {0, 1, . . . , p− 1}.

By Burnside’s Basis Theorem, α∗ ∈ Aut(H).
We claim that N is invariant under α∗. Define ψ : H ′ → Hp as the linear map that

acts on the generators of H ′ by [hi, hj ]ψ =
∏r

k=1(h
p
k)c

(i,j)
k for all i < j. Note that the

subgroup N equals {h−1(hψ) | h ∈ H ′}. It suffices to show that ψα∗ = α∗ψ, since
this equality implies that (h−1(hψ))α∗ = (hα∗)−1(hα∗)ψ for all h ∈ H ′, and, in
turn, that N is invariant under α∗. Define γ : Hp → L by hp

i γ = vi and observe that
γ is a linear isomorphism. Similarly γ ∧ γ : H ′ → ∧2L defined by [hi, hj ] �→ vi ∧ vj

is a linear isomorphism onto the exterior square ∧2L of L. The map M : ∧2 L→ L
defined by (u ∧ v)M = �u, v� is an epimorphism since L = �L,L�.

These maps are illustrated in diagram (3.5):

(3.5)

Since each square piece of diagram (3.5) is commutative, it follows that ψ =
(γ ∧ γ)Mγ−1. Therefore ψα∗ = α∗ψ, as claimed, which, in turn, implies that N
is invariant under α∗. Hence α∗ induces an automorphism α̃ of G = H/N . Recall
that ξ : L→ G satisfies viξ = gi. It is straightforward to see that the following
diagram (3.6) is commutative:

(3.6)

Hence the equation α = ξ−1αξ relates α ∈ Aut(L) and α ∈ Aut(G). Therefore
ξ−1Aut(L)ξ is contained in the group induced by Aut(G) on G, and so Aut(G)
acts irreducibly on G. At the start of the proof we showed that G and Φ(G) are
isomorphic as Aut(G)-modules. Thus Aut(G) is irreducible on Φ(G) also, and by
lemma 2.2, G is a UCS p-group of exponent p2. �
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Finite p-groups are commonly expressed using polycyclic presentations, see
[9, Chapter 8].

Corollary 3.3. Let L be an IAC algebra over Fp, p odd, with basis {v1, . . . , vr} and
suppose �vi, vj� =

∑r
k=1 c

(i,j)
k vk where c(i,j)k ∈ Fp. Then the UCS group G(L) defined

in theorem 3.2 is isomorphic to the group given by the polycyclic presentation

G = 〈g1, . . . , gr, z1, . . . , zr |

gp
i = zi, zp

i = [zj , gi] = [zi, zj ] = 1, [gi, gj ] =
r∏

k=1

z
c
(i,j)
k

k , i < j〉. (3.7)

Proof. Identify the scalars c
(i,j)
k ∈ Fp in (3.7) with integers in the set

{0, 1, . . . , p− 1}. The group presentation (3.7) is called a polycyclic presentation,
and it has the property that the elements of the group defined by the presen-
tation can be expressed in the form gx1

1 · · · gxr
r z

xr+1
1 · · · zx2r

r where the exponents
satisfy 0 � xi � p− 1 for 1 � i � 2r. This shows that |G| � p2r. If equality holds,
the presentation is called consistent, see [9, page 280].

Recall in the proof of theorem 3.2 that G(L) := H/N where H = Hp,r and N is
the normal subgroup defined by (3.4). Suppose, as in the proof of theorem 3.2, that
H is generated by h1, . . . , hr. Since the map χ : G→ H/N defined by giχ = hiN
and ziχ = hp

iN preserves the relations in (3.7), it is a homomorphism. How-
ever χ is surjective, so χ is an isomorphism, and the presentation (3.7) must be
consistent. �

As introduced in the introduction, for a prime p, we let IACp denote the set of
isomorphism classes of finite dimensional IAC algebras over Fp and we let UCSp2

denote the set of isomorphism classes of finite UCS p-groups of exponent p2.

Remark 3.4. Let p be an odd prime. We have well-defined maps on isomorphism
classes UCSp2 → IACp with [G] �→ [L(G)] as per lemma 3.1 and IACp → UCSp2

with [L] �→ [G(L)] as per theorem 3.2. It is convenient to identify isomorphism
classes [G] and [L] with G and L respectively, and use = instead of ∼=. With this
abuse in mind, L and G can be viewed as mutually inverse functions.

Theorem 3.5. Let p be an odd prime.

(a) If G is a finite UCS group of exponent p2, then G(L(G)) = G.

(b) If L is a finite-dimensional IAC algebra over Fp, then L(G(L)) = L.

Therefore the maps G : IACp → UCSp2 and L : UCSp2 → IACp are bijections.

Proof. (a) Let G be a finite UCS p-group of exponent p2, say with r generators.
Suppose that {g1, . . . , gr} is a minimal generating set for G. Since G′ = Gp there
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exist constants c(i,j)k satisfying:

[gi, gj ] =
r∏

k=1

(gp
k)c

(i,j)
k where 1 � i < j � r and 0 � c

(i,j)
k � p− 1. (3.8)

Introducing redundant generators zk := gp
k we see that G has a polycyclic presenta-

tion of the form (3.7). It follows from (3.1) that �gi, gj� =
∑r

k=1 c
(i,j)
k gk. Therefore

the numbers c(i,j)k , interpreted as elements of the field Fp, are structure constants
of L := L(G). By corollary 3.3 the group G(L) has a polycyclic presentation of the
form (3.7) involving the same c(i,j)k . This proves that G(L(G)) ∼= G as desired.

(b) Let L be a finite-dimensional IAC algebra over Fp. Theorem 3.2 proves
precisely that L(G(L)) ∼= L where the minimal number of generators of G(L)
is dim(L). �

We denote the kernel of the homomorphism Aut(G) → Aut(G/Z(G)) by
AutC(G). The elements of AutC(G) are called central automorphisms of G.

Theorem 3.6. Let G be an r-generator UCS p-group of exponent p2 where p > 2,
and let L = L(G). Then Aut(G)/AutC(G) ∼= Aut(L) where AutC(G) is elementary
abelian of order pr2

.

Proof. Let G be an r-generator UCS p-group of exponent p2. Write A = Aut(G).
Each α ∈ A induces an α ∈ Aut(G) defined by gα = (gα)Φ(G) and α �→ α is a
homomorphism. The additive group of L := L(G) is G, and it was shown in the
proof of theorem 3.2 that α �→ α defines a surjective homomorphism Aut(G) →
Aut(L). The kernel K of this epimorphism comprises those α ∈ A with g α = g for
all g ∈ G. Since Φ(G) = Z(G), K is the group AutC(G) of central automorphisms.
Therefore, Aut(G)/AutC(G) ∼= Aut(L) as claimed.

Let α ∈ K be a central automorphism. Then gα = gzg for some zg ∈ Z(G) for
all g ∈ G. Since [g1α, g2α] = [g1, g2] and G′ = Z(G), we see that α acts as the iden-
tity on Z(G). Hence zg depends only on the coset gΦ(G) = g and we may write
zg = zg. This gives a function G→ Z(G) defined by g �→ zg. There is a well-known
isomorphism AutC(G) → HomFp

(G,Z(G)) taking α to the map g �→ zg. However,
HomFp

(G,Z(G)) is isomorphic to the additive group of r × r matrices over Fp. Thus
AutC(G) is elementary abelian of order pr2

. (By contrast, the group Inn(G) of inner
automorphisms, which is a subgroup of AutC(G), has order only pr.) �

4. The structure of UCS p-groups and IAC algebras

In this section, we prove that a finite-dimensional IAC algebra over an arbitrary
field is semisimple in the sense that it is a direct sum of pairwise isomorphic simple
algebras. This leads naturally to the study of simple IAC algebras in § 5. As noted
in the introduction, invariant non-associative algebra structures also appeared in
the study of finite simple groups, and a result similar to our theorem 4.2 was proved
in [12, lemma 2.4]. Since our context is somewhat different, we present our theorem
with a proof. We will also extend the group–algebra duality established in § 3. In
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proposition 4.4 we exhibit a bijection between subalgebras of L and powerful sub-
groups of G = G(L) that contain Φ(G). This is reminiscent of the duality between
field extensions and groups in Galois theory, because the substructures match.

Let V be a vector space. An irreducible subgroup H of GL(V ) is called imprim-
itive if there is an H-invariant direct sum decomposition V = V1 ⊕ · · · ⊕ V� with
	 � 2. We call the decomposition V = V1 ⊕ · · · ⊕ V� an imprimitivity decomposition
for H. If no such decomposition exists, we call H primitive. By the irreducibility
of the acting group, an imprimitivity decomposition is necessarily equidimensional;
that is dimVi = dimVj for all subspaces Vi, Vj of the decomposition.

Suppose that V = V1 ⊕ · · · ⊕ V� is an imprimitivity decomposition for an irre-
ducible subgroup H � GL(V ). Then the action of H induces a permutation group
on the set {V1, . . . , V�}. Further, H is isomorphic (as a linear group) to a subgroup
of the wreath product GL(r/	,F) �K where r = dimV and K � S� is permuta-
tionally isomorphic to the group induced by H on {V1, . . . , V�}. The structure
of GL(r/	,F) � S� is described in [16, § 15]. The following theorem is commonly
attributed to Clifford, see [16, lemma 4, § 15].

Theorem 4.1. The following hold.

(a) Given a vector space V1 over a field F, a non-trivial subgroup A1 � GL(V1)
and a transitive subgroup P � S�, the subgroup A1 � P of GL((V1)⊕�) is
irreducible if and only if A1 is irreducible on V1.

(b) Suppose that A � GL(V ) is irreducible on the vector space V and preserves
the imprimitivity decomposition V = V1 ⊕ · · · ⊕ V�. Then A is conjugate in
GL(V ) to a subgroup of GL(V1) � S�. Further, A is transitive on {V1, . . . , V�}
and the setwise stabilizer AV1 is irreducible on V1.

Using Lie theoretic notation, the centre of an anti-commutative algebra L is

Z(L) := {x ∈ L | �x, y� = 0 for all y ∈ L}.

Since Z(L) is invariant under Aut(L), we see, for a non-abelian IAC algebra L, that
Z(L) = 0.

The next theorem shows that an IAC algebra (over an arbitrary field) is
semisimple. See [12, lemma 2.4] for a similar result.

Theorem 4.2. The following hold.

(a) Suppose L0 is a simple IAC algebra, and 	 � 1 is an integer. Then the direct
sum L = (L0)⊕� is an IAC algebra. Further, if L0 is non-abelian, then L =
(L0)⊕� has precisely 	 minimal ideals namely the given direct summands, and
in particular Aut(L) = Aut(L0) � S�.

(b) Let L be an IAC algebra of finite dimension. Then L ∼= I⊕� for some simple
IAC subalgebra I of L and some 	 � 1. Further, if L is non-abelian, then 	 is
the number of minimal ideals of L.

https://doi.org/10.1017/prm.2018.159 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.159


UCS p-groups and anti-commutative algebras 1837

Proof. (a) If L0 is abelian, then so is L. Thus dim(L0) = 1 and Aut(L) = GL(L)
acts irreducibly. Hence L is IAC.

Suppose now that L0 is non-abelian. Let L1, . . . , L� be the summands of the
direct sum decomposition of L. Then, for i � 1, Li is a minimal ideal of L. We
claim that each minimal ideal I coincides with Li for some i � 1. Assume, seeking
a contradiction, that I �= Li for all i � 1. Then, the minimality of I implies �Li, I� ⊆
Li ∩ I = 0 for all i � 1. Thus �L, I� = 0, and so I � Z(L); this is a contradiction
as Z(L) = 0. Therefore L1, . . . , L� are all the minimal ideals of L as claimed. Now
Aut(L) contains the wreath product W = Aut(L0) � S� and W is an irreducible
subgroup of GL(L) by theorem 4.1(a). Thus L is an IAC algebra. The group Aut(L)
permutes the minimal ideals of L, and hence L = L1 ⊕ · · · ⊕ L� is an imprimitivity
decomposition of Aut(L). Further, the stabilizer of Li in Aut(L) induces a group of
automorphisms of Li, which shows, by theorem 4.1(b), that Aut(L) � Aut(L0) � S�.
Therefore, Aut(L) = Aut(L0) � S� as claimed.

(b) Let L be a finite-dimensional IAC algebra and set A = Aut(L). If L is abelian,
then L = F⊕� where 	 = dim(L), and each copy of F is a simple IAC algebra of
dimension 1. Thus in this case the assertion is valid. Suppose that L is non-abelian.
As noted above, Z(L) = 0. Let I be a minimal ideal of L and set I = {Iα | α ∈
A}. Define K =

∑
J∈I J ; then K is a non-trivial ideal of L which is invariant

under A. Thus K = L because A acts irreducibly on L. We show that the sum∑
J∈I J is direct. Given J0 ∈ I, set J0 =

∑
J∈I\{J0} J . We are required to show

that J0 ∩ J0 = 0. If J ∈ I\{J0}, then J0 ∩ J � L, and, by the minimality of J , we
have that J0 ∩ J = 0. On the other hand, �J0, J� � J0 ∩ J , and hence �J0, J� = 0.
Thus J0 centralizes each of the elements of I\{J0}, which gives that �J0, J0� = 0.
Then

�J0 ∩ J0, L� = �J0 ∩ J0, J0 + J0� = �J0 ∩ J0, J0� = 0,

which implies that J0 ∩ J0 � Z(L), and, in turn, that J0 ∩ J0 = 0. Thus L is equal
to the direct sum

⊕
J∈I J as claimed. Write L ∼= I⊕� where I is a minimal ideal of

L and 	 = |I|.
It remains to show that I is IAC. As I inherits anti-commutativity from L, we

need to show that Aut(I) is irreducible on I. Since Aut(L) permutes the elements
of I, the decomposition L =

⊕
J∈I J is an imprimitivity decomposition for Aut(L).

Let AI denote the setwise stabilizer of I in Aut(L). Then AI induces a group of
automorphisms of I that is irreducible on I by theorem 4.1(b). Hence I is an IAC
algebra. �

Theorem 4.3. Let G be a finite UCS p-group of exponent p2 for some odd prime p
and let k � 1. Then G×k is a UCS p-group of exponent p2 and L(G×k) ∼= L(G)⊕k.

Proof. The assertion of the theorem holds if G is abelian, and so we may assume
that G is non-abelian. Certainly G×k has exponent p2. Moreover,

Φ(G×k) = Φ(G)×k and G×k/Φ(G×k) ∼= (G/Φ(G))×k = G
×k
.

By lemma 2.2, Aut(G) is irreducible on G and on Φ(G). Further, since G is
non-abelian, G and Φ(G) are non-trivial Aut(G)-modules. Since Aut(G) � Sk �
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Aut(G×k), it follows from theorem 4.1(a) that Aut(G×k) acts irreducibly on
G×k/Φ(G×k) and on Φ(G×k), and thus G×k is a UCS p-group, by lemma 2.2.

We now prove that L(G×k) ∼= L(G)⊕k. Let Gi denote the i-th copy of G
in the direct product G×k. Set L = L(G×k) and, for i = 1, . . . , k, let Li =
GiΦ(G×k)/Φ(G×k). We claim that Li � L. First, if u, v ∈ Li with u, v ∈ Gi,
then �u, v� = [u, v]1/p ∈ Li. Hence Li � L. If gi ∈ Gi and gj ∈ Gj with i �= j, then
[gi, gj ] = 1, and so �gi, gj� = 0. This shows that Li is an ideal of L for each
i ∈ {1, . . . , k}. Since

L(G×k) = G×k/Φ(G×k) =
k⊕

i=1

GiΦ(G×k)/Φ(G×k) =
k⊕

i=1

Li,

and each Li is isomorphic to L(G), we obtain that L(G×k) = L(G)⊕k. �

Powerful p-groups were introduced by Lubotzky and Mann [15]. A finite p-group
G is said to be powerful if G′ � Gp when p > 2, and G′ � G4 when p = 2. A sub-
group N of a p-group G is said to be powerfully embedded in G if [N,G] � Np

when p > 2 and [N,G] � N4 when p = 2. A powerfully embedded subgroup of G is
always normal in G.

Proposition 4.4. Let G be a finite UCS p-group of odd exponent p2, and L =
L(G).

(a) There is a bijection between the set of subalgebras of L and the set of powerful
subgroups of G that contain Φ(G).

(b) The ideals of L correspond, via part (a), to powerfully embedded subgroups
of G.

Proof. There is a bijection H ↔ H := H/Φ(G) between the set of subgroups of G
that contain Φ(G), and the set of subgroups of the quotient G = G/Φ(G). The
subgroups of G are precisely the linear subspaces of L. We show first that H is a
powerful subgroup of G if and only if H is a subalgebra of L which we henceforth
denote as H � L.

Suppose that H � L and let h1, h2 ∈ H. Then �h1, h2� ∈ H, and so �h1, h2� = h
with h ∈ H. The definition in (3.1) of the product in L implies that [h1, h2] = hp,
which shows that H ′ � Hp, and hence H is powerful. Conversely, suppose that H is
powerful. Suppose h1, h2 ∈ H. Then (h1h2)p = hp

1h
p
2 since p > 2, so the subgroup

Hp = 〈hp | h ∈ H〉 equals the subset {hp | h ∈ H}. Since H ′ � Hp, it follows that
[h1, h2] = hp for some h ∈ H. Thus �h1, h2� = [h1, h2]1/p = h ∈ H by (3.1), and so
H � L .

Suppose now that H is powerfully embedded in G. We have, for every h ∈ H and
g ∈ G, that [h, g] = hp

0 for some h0 ∈ H, and so �h, g� = [h, g]1/p = h0 ∈ H. Hence
H � L. On the other hand, suppose I � L. Then I = H for some H � G with
Φ(G) � H. Since H is an ideal, for every h ∈ H and g ∈ G we have �h, g� = h0 for
some h0 ∈ H. Hence, [h, g]1/p = h0, and so [h, g] = hp

0. Thus [H,G] � Hp and H is
powerfully embedded in G. �
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By theorem 4.2, every non-trivial proper ideal of an IAC algebra is a direct
summand. Now we state and prove a corresponding result for UCS p-groups of
exponent p2.

Corollary 4.5. Let G be a finite UCS p-group with odd exponent p2. There exists
a subgroup H of G satisfying the following conditions:

(a) H is powerfully embedded in G and Φ(G) < H, and

(b) H is minimal among the subgroups of G satisfying (a).

There exists a UCS subgroup H0 of G of exponent p2 such that G = (H0)k for some
k � 1, and H0Φ(G) = H.

Proof. A subgroup H satisfying conditions (a) and (b) does exist because G′ � Gp

and G satisfies condition (a). Set L = L(G) and L0 = H/Φ(G). By lemma 3.1, L is
an IAC algebra, and L0 � L by proposition 4.4. Since L0 is minimal, and hence sim-
ple, L = (L0)⊕k for some k � 1 by theorem 4.2(b). However, H0 = G(L0) is a UCS
group of exponent p2 by theorem 3.2, and so too is (H0)×k by theorem 4.3. How-
ever, L((H0)×k) = L(H0)⊕k = L(G(L0))⊕k = (L0)⊕k = L. Therefore L((H0)×k) =
L(G). We obtain, by theorem 3.5, that (H0)×k = G(L((H0)×k)) = G(L(G)) = G,
and similarly L0 = L(G(L0)) = L(H0). Finally, since L0 = H0/Φ(H0) = H/Φ(G),
we have H = H0Φ(G). �

By theorem 2.4 (also by theorem 4.3), if G is a UCS p-group of exponent p2,
then G×k is also a UCS p-group of exponent p2. Hence in the class UCSp2 , the
groups that cannot be decomposed non-trivially as direct powers can be viewed as
basic building blocks. The final result of this section gives sufficient and necessary
conditions for a UCS p-group of exponent p2 to be indecomposable as a direct
power of a smaller such group. The corollary follows easily from theorem 4.3 and
corollary 4.5.

Corollary 4.6. The following are equivalent for a non-abelian finite UCS p-group
of odd exponent p2:

(a) G cannot be written as a direct product H×k where H is a UCS p-group and
k � 2;

(b) G does not contain a powerfully embedded proper subgroup N such that
Φ(G) < N ;

(c) L(G) is a simple algebra.

5. Simple IAC algebras of dimension at most 4

For an anti-commutative algebra of dimension r we have dim�L,L� �
(
r
2

)
. Thus

an r-dimensional IAC algebra is abelian and simple if r = 1, and abelian and non-
simple if r = 2. In this section, we classify simple IAC algebras of dimension 3 and 4
in proposition 5.1 and theorem 5.3, respectively.
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5.1. 3-dimensional IAC algebras

The proof of the following proposition uses ideas from the proof of [7, lemma 9].

Proposition 5.1. If L is a non-abelian 3-dimensional IAC algebra over a field F
of characteristic different from 2, then L is a simple Lie algebra and Aut(L) ∼=
SO(3,F).

Proof. Suppose that L is a non-abelian 3-dimensional IAC algebra. Let e = {e1, e2,
e3} be a basis for L and set f1 = �e2, e3�, f2 = �e3, e1� and f3 = �e1, e2�. Since
�L,L� = L, we have that f = {f1, f2, f3} is also a basis for L. Write fi =

∑3
j=1 aijej

where aij ∈ F and i ∈ {1, 2, 3}, and consider the 3 × 3 invertible matrix A = (aij).
We claim that L satisfies the Jacobi identity if and only if A is symmetric. Since L
is 3-dimensional, L satisfies the Jacobi identity if and only if the following equation
holds:

0 = �e1, �e2, e3�� + �e2, �e3, e1�� + �e3, �e1, e2�� = �e1, f1� + �e2, f2� + �e3, f3�.

Using the linear combinations for the fi, we obtain the equivalent equation:

a12�e1, e2� + a13�e1, e3� + a21�e2, e1� + a23�e2, e3� + a31�e3, e1� + a32�e3, e2� = 0.

Finally, the last equation is equivalent to the statement that A is a symmetric
matrix.

We now prove that A is a symmetric matrix. Let g ∈ Aut(L) and let [g]e and [g]f
denote the matrices that represent g in the bases e and f , respectively. We claim
that [g]f = det[g]e([g]e)−t where (·)−t denotes the inverse transpose operation. Let
[g]e = (gij) and [g]f = (fij). As g ∈ Aut(L), we have

f1g = �e2, e3�g = �e2g, e3g� = �g21e1 + g22e2 + g23e3, g31e1 + g32e2 + g33e3�

= (g22g33 − g23g32)�e2, e3� + (g23g31 − g21g33)�e3, e1�

+ (g21g32 − g22g31)�e1, e2�.

This gives the first of the following equations, the others follow by cyclic
permutations:

f1g = (g22g33 − g23g32)f1 + (g23g31 − g21g33)f2 + (g21g32 − g22g31)f3;

f2g = (g32g13 − g33g12)f1 + (g33g11 − g31g13)f2 + (g31g12 − g32g11)f3; (5.1)

f3g = (g12g23 − g13g22)f1 + (g13g21 − g11g23)f2 + (g11g22 − g12g21)f3.

By Cramer’s Rule, the 3 × 3 system (5.1) has coefficient matrix det([g]e)([g]e)−t.
Therefore, [g]f = det([g]e)([g]e)−t, as claimed. For v ∈ L, let [v]e and [v]f denote
vector representations of v in the bases e and f , respectively. The matrix A =
(aij) acts as a basis transformation matrix from the basis e to the basis f
and [v]f = [v]eA. Therefore, [g]e = A[g]fA−1 and so [g]e = Adet([g]e)([g]e)−tA−1,
which implies that [g]eA[g]te = det([g]e)A. This says that g preserves the bilinear
form (u, v) �→ [u]eA([v]e)t up to a scalar multiple. In the next paragraph, we prove
that At = A.
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Consider the group G(A) := {B ∈ GL(3,F) | BABt = det(B)A}. The previous
paragraph shows that g ∈ Aut(L) implies [g]e ∈ G(A). Let J be the skew-symmetric
matrix A−At, and define G(J) = {B ∈ GL(3,F) | BJBt = det(B)J} similarly.
Clearly G(A) is a subgroup of G(J). Note that if w ∈ ker(J) and B ∈ G(J), then

wBJ = wBJBtB−t = det(B)wJB−t = 0.

Hence G(J) fixes the subspace

ker(J) = {v ∈ F3 | vJ = 0}.
Since Aut(L), considered as a subgroup of GL(3,F), is contained in G(A) and
G(A) � G(J) and Aut(L) acts irreducibly on L, we see that ker(J) must be 0 or L.
Further, since the matrix J = A−At is skew-symmetric, we obtain that

det(J) = det(J t) = det(−J) = (−1)3 det(J), and so 2 det(J) = 0.

Thus, since char(F) �= 2, det(J) = 0. Therefore, ker(J) �= 0, and hence ker(J) = L.
Thus A−At = J = 0, and A is symmetric, as claimed. As explained in the first
paragraphs of this proof, we obtain that L is a Lie algebra. Since L is non-abelian
and IAC, theorem 4.2 implies that L is the direct sum of pairwise isomorphic simple
IAC algebras. As dimL = 3 and an IAC algebra of dimension 1 is abelian (see the
paragraph before proposition 5.1), the algebra L must be simple.

Let g ∈ Aut(L). Since [g]e � G(A) we see that [g]eA([g]e)t = det(g)A. However,
A is an invertible 3 × 3 matrix, so taking determinants gives det(g)2 det(A) =
det(g)3 det(A). Hence det(g) = 1, and g preserves the symmetric bilinear form
defined by A. Hence we have shown that Aut(L) lies in the subgroup SO(3,F)
of G(A). Suppose g ∈ SO(3,F). The steps in the second paragraph of the proof are
reversible, so it follows that g ∈ Aut(L). Thus we conclude that Aut(L) ∼= SO(3,F),
as desired. �

Proposition 5.1 can be reversed: a 3-dimensional simple Lie algebra is IAC. This
follows from the fact that the automorphism group of a 3-dimensional simple Lie
algebra is isomorphic to the irreducible group SO(3,F) stabilizing its Killing form.
If F is a finite field or an algebraically closed field of characteristic different from 2,
then the only 3-dimensional simple Lie algebra over F, up to isomorphism, is the
classical Lie algebra sl(2,F) which is IAC. More generally, if n � 2, and F is a field
of characteristic 0 or of characteristic p such that p � n, then the group GL(n,F) acts
on the simple Lie algebra sl(n,F) by the adjoint action g : x �→ xg = g−1xg for all
x ∈ sl(n,F) and g ∈ GL(n,F). Since this action is irreducible (see [1, lemma 5.4.10]),
the simple Lie algebra sl(n,F) is IAC. It would be interesting to study whether all
known finite-dimensional simple Lie algebras are IAC, but this problem goes beyond
the scope of this paper. By [8, Hauptsatz], if L is a finite-dimensional Chevalley-type
simple Lie algebra in characteristic different from 2, then L is IAC.

Interesting examples of IAC algebras can also be found among Malcev algebras.
For a field F of characteristic different from 2, the algebra O(F) of octonions can be
viewed as an anti-commutative algebra under the multiplication �a, b� = ab− ba.
If char(F) �= 3, then the algebra (O(F),+, �·, ·�) is not a Lie algebra, since O(F) is
not associative. Further, the algebra (O(F),+, �·, ·�) can be written as F ⊕M where
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M is a 7-dimensional anti-commutative algebra and the simple exceptional group
G2(F) acts irreducibly on M (see [21, § 4.3]). Hence M is an IAC algebra. By [14,
theorem 3.11], non-Lie central simple Malcev algebras over fields of characteristic
different from 2 or 3 are 7-dimensional and can be defined similarly to the algebra
M above. By [14, theorem 3.11], over a finite field of characteristic different from
2, there is a unique isomorphism type of central simple non-Lie Malcev algebras;
namely, the algebra M defined above.

5.2. 4-dimensional IAC algebras

In [7, theorem 17], the authors classified 4-generator UCS p-groups with exponent
p2. The bijection in theorem 3.5 gives a classification of 4-dimensional simple IAC
algebras over Fp where p is an odd prime. Using the ideas of the proof of [7,
theorem 17], this classification is extended in theorem 5.3 to all finite fields of
characteristic different from 2.

The concept of ESQ-modules was defined in [7]. Let us recall the definition.

Definition 5.2. For a group H and a field F, an FH-module V is called an ESQ-
module (for exterior self-quotient) if there exists an FH-submodule U of ∧2V such
that ∧2V/U ∼= V . In this case, H is called an ESQ subgroup of GL(V ).

If A is a non-abelian finite-dimensional IAC algebra over a field F, then the
product map ψ : ∧2 A→ A, defined by (u ∧ v)ψ = �u, v�, is an epimorphism of
Aut(A)-modules. Hence ∧2A/ kerψ ∼= A, and so A is an irreducible ESQ FAut(A)-
module. Conversely, let V be an irreducible ESQ-module for a group H over a
field F and let U � ∧2V such that ∧2V/U ∼= V . Assume that ψ : ∧2 V → V is an
epimorphism with kernel U . Then we can define an anti-commutative product on
V by setting �u, v� = (u ∧ v)ψ and we obtain that (V,+, �·, ·�) is an IAC algebra
whose automorphism group contains H as a subgroup.

Theorem 5.3. Let Fq be a finite field of q elements and assume that the
characteristic of Fq is not 2. Then the following are valid.

(a) If char(Fq) = 5, then there exists no 4-dimensional simple IAC algebra
over Fq.

(b) If q ≡ ±1 (mod 5), then there exists, up to isomorphism, a unique
4-dimensional simple IAC algebra over Fq. Further, this algebra is isomorphic
to the algebra given by the presentation

〈e1, e2, e3, e4 | �e1, e2� = e1 + e2 + 5e3 + 3e4,

�e1, e3� = −4e1 − 4e2 + 0e3 − 2e4,

�e1, e4� = 2e1 + 4e2 − 4e3 − 2e4,

�e2, e3� = −3e1 − 1e2 + 1e3 + 3e4

�e2, e4� = 2e1 + 0e2 + 4e3 + 4e4,

�e3, e4� = −3e1 − 5e2 − e3 − e4〉.
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(c) If q ≡ ±2 (mod 5), then, up to isomorphism, there are exactly two
4-dimensional simple IAC algebras over Fq; one of these algebras is given
by the presentation in statement (b).

Moreover, the automorphism group of the algebra presented in (b) is AGL(1, 5),
while the automorphism group of the second algebra in (c) is C5.

Proof. Since the proof follows the ideas in [7, theorem 17], we only give a sketch;
the details can be filled in by the reader consulting [7, theorem 17].

(a) It follows from [7, theorem 16] that no irreducible ESQ subgroup of
GL(4, q) exists if 5 | q, and hence over finite fields of characteristic 5, there are
no 4-dimensional simple IAC algebras. This proves (a).

Suppose q = pk where p �= 5 is a prime and k � 1. By quadratic reciprocity, 5 ∈
(F×

q )2 if and only if q ≡ ±1 (mod 5). To see this note first that q ≡ ±2 (mod 5)
implies p ≡ ±2 (mod 5) and k is odd, so 5 �∈ (F×

p )2 and 5 �∈ (F×
q )2. On the other

hand, if 5 ∈ (F×
q )2, then either k is even and 5 ∈ (F×

p2)2 � (F×
q )2, or k is odd and

p ≡ ±1 (mod 5) and so 5 ∈ (F×
p )2 � (F×

q )2.
(b) Let L be a 4-dimensional simple IAC algebra over Fq and set A = Aut(L). By

the discussion preceding this theorem, A is an irreducible ESQ-subgroup of GL(4, q).
We can argue, as in the proof of [7, theorem 17], thatA � AGL(1, 5) contains C5 and
that if A = AGL(1, 5), then L is isomorphic to the algebra presented in (b). By [7,
theorem 16], 5 ∈ (F×

q )2 if and only if no proper subgroup of AGL(1, 5) is irreducible.
Hence in this case the algebra L presented in statement (b) is, up to isomorphism,
the unique simple IAC algebra of dimension 4 over Fq, and Aut(L) = AGL(1, 5).

(c) Assume now that q ≡ ±2 (mod 5). One possibility by [7, theorem 17] is
that a simple 4-dimensional IAC algebra L is given by the presentation (b), and
Aut(L) = AGL(1, 5). Suppose now that A �= AGL(1, 5). The cyclic subgroup C5

of AGL(1, 5) is contained in A, and it is irreducible since q ≡ ±2 (mod 5). Let V
be a 4-dimensional vector space over Fq. Let a ∈ GL(4, q) be an element of order
5, which is unique up to conjugacy. Then the 〈a〉-module ∧2V can be written as
∧2V = W ⊕ C where W ∼= V and C is the 2-dimensional fixed-point space of a.
An IAC algebra structure on V is determined by an epimorphism ϕ : ∧2 V → V .
As in the proof of [7, theorem 17], there is a bijection between the set of such
linear epimorphisms and the set of subspaces N of V ⊕ ∧2V such that dimN = 4,
N ∩ V = 0, and N ∩ ∧2V = C. If fact, identifying V and W with the field Fq4 , we
may define, for each w ∈W\{0} such a subspace Nw exactly as in [7, theorem 17].
Now using the argument in [7, theorem 17], the multiplicative group of Fq4 acts
on the set of subspaces Nw, inducing isomorphisms between the associated IAC
algebras, with 5 orbits corresponding to the cosets of the multiplicative subgroup
(F×

q4)5. Then Gal(Fq4 : Fq) ∼= C4 also acts on the set of these subspaces Nw, also
inducing isomorphism between the associated algebras, fusing the 4 orbits that cor-
respond to non-trivial cosets and leaving the fifth orbit invariant. Therefore, there
are two F×

q4 � Gal(Fq4 : Fq)-orbits on the set of subspaces Nw, and there are two
isomorphism types of simple 4-dimensional IAC algebras. �

The IAC algebras given in theorem 5.3(b,c) are members of an infinite family:
take t = 5 in the following theorem and note that AΓL(1, 5) = AGL(1, 5).
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Theorem 5.4. If t and q are powers of distinct primes such that t > 3, then
there exists a (t− 1)-dimensional IAC algebra over Fq whose automorphism group
contains AΓL(1, t) acting in its irreducible representation of dimension t− 1.

Proof. By [7, theorem 18] the (t− 1)-dimensional module for AΓL(1, t) over Fq is
irreducible and ESQ. The result now follows from the preamble to theorem 5.3. �

6. r-dimensional simple IAC algebras

In this section, we construct an infinite family of finite-dimensional simple IAC
algebras. We will work under the following hypothesis.

Hypothesis 6.1. Fix an integer b � 2. Let n > 1 be a divisor of b2 + b− 1. Since
b(b+ 1) ≡ 1 (mod n), b is invertible modulo n, and let r be the multiplicative order
of b modulo n. Suppose that r > 1 and let q be a prime power such that n | (q − 1).
Let V = (Fq)r have basis e0, e1, . . . , er−1.

There are infinitely many choices for a prime-power q with q ≡ 1 (mod n) by
Dirichlet’s Theorem on primes in an arithmetic progression.

Let ζ be an n-th root of unity in Fq and let G be the subgroup of GL(r,F)
generated by the matrices

A =

⎡⎢⎢⎢⎣
0 1 0

. . .
0 0 1
1 0 . . . 0

⎤⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎣
ζ 0 . . . 0
0 ζb 0

. . .
0 0 . . . ζbr−1

⎤⎥⎥⎥⎦ .
Direct calculation shows that Ar = Bn = 1 and BA = ABb−1

where b−1 denotes
the inverse of b modulo n. Let V = (Fq)r, and consider V and its exterior square
∧2V as G-modules. Since B is a diagonal matrix with pairwise distinct eigenvalues,
and A cyclically permutes the 1-dimensional eigenspaces of B, we obtain that G
acts irreducibly on V .

Proposition 6.2. Assume hypothesis 6.1 and let

U1 = 〈ei ∧ ej | j − i ≡ 1 mod r〉 = 〈e0 ∧ e1, e1 ∧ e2, . . . , er−2 ∧ er−1, er−1 ∧ e0〉;
U2 = 〈ei ∧ ej | j − i �≡ 1 mod r〉.

Then the following are valid:

(a) ∧2V = U1 ⊕ U2 is a G-invariant decomposition;

(b) the map ψ : V → U1 defined by eiψ = ei+1 ∧ ei+2 reading subscripts modulo r
is a G-module isomorphism; and

(c) V is an ESQ G-module.

Proof. (a) Reduce the indices i modulo r if i � r. Then {ei ∧ ei+1 | 0 � i � r − 1}
is a basis of U1. Since (ei ∧ ei+1)A = ei+1 ∧ ei+2, we see that U1A = U1. A similar
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argument shows that U2A = U2. Since B is a diagonal matrix, we see that 〈ei ∧
ej〉B = 〈ei ∧ ej〉 for all i < j, and hence U1B = U1 and U2B = U2. Thus ∧2V =
U1 ⊕ U2 is a G-invariant decomposition, as claimed.

(b) Note first that b2 + b ≡ 1 mod n implies ζb2+b = ζ and ζbi+2+bi+1
= ζbi

. Let
us verify that ψ commutes with A and with B:

eiAψ = ei+1ψ = ei+2 ∧ ei+3 = (ei+1 ∧ ei+2)A = eiψA;

eiBψ = ζbi

eiψ = ζbi

(ei+1 ∧ ei+2) = ζbi+1+bi+2
(ei+1 ∧ ei+2)

= (ei+1 ∧ ei+2)B = eiψB.

Since ψ is surjective and dim(V ) = dim(V ψ) = dim(U1), we obtain that ψ is a
bijection. Thus ψ is an isomorphism of G-modules.

(c) This follows from (b) and the above fact that V is an irreducible
G-module. �

Using the ESQ G-module V constructed before proposition 6.2, we can construct
an IAC algebra L that corresponds to V .

Corollary 6.3. Assume hypothesis 6.1. Let L be the vector space V = (Fq)r with
an anti-commutative product defined on the basis {e0, e1, . . . , er−1} by

�e0, e1� = er−1,

�ei−1, ei� = ei−2 for i = 2, 3, . . . , r − 1,

�er−1, e0� = er−2,

�ei, ej� = 0 if j − i �= ±1 (mod r).

Then L is an r-dimensional simple IAC algebra.

Proof. It follows from proposition 6.2 that L is IAC. Let us show that L is simple.
Suppose that I � L and let v ∈ I\{0}. Write v = v0e0 + · · · + vr−1er−1 with vi ∈
Fq. Suppose without loss of generality that v0 �= 0. Then using the multiplication
table of L, we obtain that

��v, e1�, e0� = �v0er−1 − v2e0, e0� = v0er−2.

Hence er−2 ∈ I. Multiplying er−2 with the elements er−1, e0, . . . er−3, we obtain
that ei ∈ I for all i ∈ {0, . . . , r − 1}. Thus I = L, and so L is simple as claimed. �

7. The Clebsch–Gordan formula for the exterior square

The aim of § 8 is to present a class of ESQ modules for the group SL(2,F). In this
section, we prove a general version of the Clebsch–Gordan Formula for the exterior
squares of the representations of GL(2,F) on spaces of homogeneous polynomials
that is valid over fields of characteristic p. Such results are usually proved for
SL(2,F), but generalizing to GL(2,F) does not require much more effort.
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Let F be a field of characteristic different from 2 and let F[X,Y ] be the algebra
of polynomials over F in two indeterminates. An action of GL(2,F) on F[X,Y ] is
given by (∑

λijX
iY j
)
A =

∑
λij(a11X + a12Y )i(a21X + a22Y )j (7.1)

where A =
[
a11 a12

a21 a22

]
. For each integer m � 0, the subspace of homogeneous poly-

nomials of degree m is invariant under this action. This space has dimension m+ 1
since {XiY m−i | 0 � i � m} is a basis. When char(F) = 0 this space is denoted Vm,
and it is an irreducible FG-module for each m � 0. However, if F = Fq is a finite
field, say with char(Fq) = p, we use a different definition when p � m < q. In this
case, the homogeneous polynomials of degree p have a proper submodule, namely
〈Xp, Y p〉. The irreducible SL(2,Fq)-modules in characteristic p were determined
by Brauer and Nesbitt, and described clearly in [1, theorem 5.2.3]. There are q
pairwise non-isomorphic and absolutely irreducible FG-modules which we denote
V0, V1, . . . , Vq−1. If m < p, then Vm denotes the subspace of homogeneous polyno-
mials of degree m as above. If p � m < q, the definition of Vm depends on the
p-adic expansion m = m0 +m1p+ · · · +mkp

k of m where mi ∈ {0, 1, . . . , p− 1}
and k := �logpm�. We set Vm = Vm0 ⊗ V φ

m1
⊗ · · · ⊗ V φk

mk
where V φ denotes the FG-

module obtained from V by twisting by the field automorphism φ : F → F with
λφ = λp, see [10, definition VII.1.13].

We are interested in irreducible ESQ-modules, i.e. irreducible modules V which
are a quotient of their exterior square. The decomposition of Vm ⊗ Vn as a mod-
ule over SL(2,C) was described by Clebsch and Gordan, see [13, theorem 2.6.3].
Our primary interest is in GL(2,F)-module decompositions when F is finite. In
the following theorem, Vm is the GL(2,F)-module of homogeneous polynomials of
degree m and Vdet is the 1-dimensional GL(2,F)-module on which GL(2,F) acts by
the rule vg = (det g)v for all v ∈ Vdet and g ∈ GL(2,F). For a G-module V , we let
S2V denote the symmetric square of V .

Theorem 7.1. Let F be a field of characteristic different from 2 and let G =
GL(2,F). Then the following decompositions hold where the summands are irre-
ducible FG-modules.

(a) If m+ n < char(F) or char(F) = 0, then

Vm ⊗ Vn
∼=

min(m,n)⊕
i=0

V ⊗i
det ⊗ Vm+n−2i.

(b) If 0 � 2m < char(F) or char(F) = 0, then

∧2Vm
∼=

m⊕
i=1

i odd

V ⊗i
det ⊗ V2m−2i and S2Vm

∼=
m⊕

i=0
i even

V ⊗i
det ⊗ V2m−2i.

Proof. (a) Assume, without loss of generality, that m � n. We prove the result by
induction onm. The case whenm = 0 is clearly true. We view F[X1, Y1,X2, Y2] as an
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FG-module, by adapting the action (7.1) separately for the indeterminates X1, Y1

and for X2, Y2. Let Vm(X1, Y1) be the submodule of F[X1, Y1] comprising the
degree m homogeneous polynomials, and define Vn(X2, Y2) � F[X2, Y2] similarly.
The product set

Vm,n := Vm(X1, Y1)Vn(X2, Y2)

is an FG-module. Further, Vm(X1, Y1) ∼= Vm and Vn(X2, Y2) ∼= Vn. The multiplica-
tion map ψ : Vm(X1, Y1) ⊗ Vn(X2, Y2) → Vm,n defined by

(f(X1, Y1) ⊗ g(X2, Y2))ψ = f(X1, Y1)g(X2, Y2)

is a well-defined surjective FG-module homomorphism as an easy calculation shows
that

((f ⊗ g)A)ψ = (f ⊗ g)ψA for all A ∈ GL(2,F).

Comparing dimensions shows that ψ is an FG-isomorphism, and Vm ⊗ Vn
∼= Vm,n.

We now show Vm,n and Vm−1,n−1 ⊕ Vm+n are isomorphic FG-modules.
Towards this end we will define an epimorphism π and a monomorphism δ.

Every element of Vm,n has the form
∑m

i=0

∑n
j=0 λijX

i
1Y

m−i
1 Xj

2Y
n−j
2 where λij ∈

F. The evaluation homomorphism X2 �→ X1, Y2 �→ Y1 gives rise to the following
map

π : Vm,n → Vm+n(X1, Y1) : Xi
1Y

m−i
1 Xj

2Y
n−j
2 �→ Xi+j

1 Y m+n−i−j
1 . (7.2)

It is straightforward to see that π is an FG-epimorphism. We now show that the
FG-submodule W := (Xm

1 X
n
2 )FG of Vm,n generated by Xm

1 X
n
2 is isomorphic to

Vm+n. If m+ n < char(F) or char(F) = 0, then Vm+n is an irreducible FG-module.
Since Wπ is a non-zero submodule of Vm+n, we have Wπ = Vm+n and dim(W ) �
m+ n+ 1. Conversely, suppose g =

(
a b
c d

)
∈ GL(2,F). The Binomial Theorem

gives

(Xm
1 X

n
2 )g = (aX1 + bY1)m(aX2 + bY2)n

=
m∑

i=0

(
m

i

)
(aX1)i(bY1)m−i

n∑
j=0

(
n

j

)
(aX2)j(bY2)n−j .

Collecting terms involving akbm+n−k, where k = i+ j, gives

(Xm
1 X

n
2 )g =

m+n∑
k=0

akbm+n−khk

where hk is the polynomial
∑

i+j=k

(
m
i

)(
n
j

)
Xi

1Y
m−i
1 Xj

2Y
n−j
2 . This shows that W

is spanned by h0, h1, . . . , hm+n. Therefore, dim(W ) � m+ n+ 1. Hence dim(W ) =
m+ n+ 1, and π restricted to W gives an FG-isomorphism W → Vm+n.

Note that F[X1, Y1,X2, Y2] is an integral domain, and multiplying by a non-zero
element in an integral domain is an injective map. Multiplying by r := X1Y2 − Y1X2
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gives the map

δ : Vdet ⊗ Vm−1,n−1 → Vm,n, 1 ⊗ h(X1, Y1,X2, Y2) �→ r · h(X1, Y1,X2, Y2). (7.3)

Observe first that rA equals

(a11X1 + a12Y1)(a21X2 + a22Y2)

− (a21X1 + a22Y1)(a11X2 + a12Y2) = (detA)r (7.4)

where A =
(
a11 a12

a21 a22

)
. It follows from (7.4) that rA = det(A)r for A ∈ GL(2,F),

and hence 〈r〉 = Vdet. Let h = h(X1, Y1,X2, Y2) ∈ Vm−1,n−1. We show that δ is an
FG-homomorphism:

((1 ⊗ h)A)δ = (det(A)(hA))δ = det(A)(hA)r and

((1 ⊗ h)δ)A = (hr)A = (hA) det(A)r.

The subspaces imδ = (X1Y2 − Y1X2)Vm−1,n−1 and W = (Xm
1 X

n
2 )FG of Vm,n inter-

sect trivially. Thus Vm,n has a submodule isomorphic to (Vdet ⊗ Vm−1,n−1) ⊕ Vm+n.
However,

dim((Vdet ⊗ Vm−1,n−1) ⊕ Vm+n) = mn+ (m+ n+ 1)

= (m+ 1)(n+ 1) = dimVm,n,

and this implies

(Vdet ⊗ Vm−1,n−1) ⊕ Vm+n
∼= Vm,n

∼= Vm ⊗ Vn.

The decomposition (a) now follows by induction onm. Observe that when char(F) =
p, then hypothesis m+ n < p clearly implies that (m− 1) + (n− 1) < p.

(b) Denote the symmetric and exterior squares of Vm by S2Vm and ∧2Vm,
respectively. Since char(F) �= 2 we have Vm ⊗ Vm = S2Vm ⊕ ∧2Vm. Our proof uses
induction on m. The formulas are true for m = 0 because ∧2V0 = 0 (here the sum is
empty), and S2V0 = V0. Suppose m = 1. A calculation similar to (7.4) shows that
(X ⊗ Y − Y ⊗X)A = det(A)(X ⊗ Y − Y ⊗X), and hence

∧2V1 = 〈X ∧ Y 〉 ∼= Vdet, and S2V1 = 〈X �X,X � Y, Y � Y 〉 ∼= V2,

where u ∧ v := (u⊗ v − v ⊗ u)/2 and u� v := (u⊗ v + v ⊗ u)/2. Thus the stated
decompositions of ∧2Vm and S2Vm are valid for m = 1. Suppose now that m � 2.
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Recall the definitions in part (a) of the monomorphism δ, and the epimorphism π.
Let f(X1, Y1) ∈ Vm(X1, Y1) and g(X2, Y2) ∈ Vm(X2, Y2) be arbitrary. Then

Vm,m = Vm(X1, Y1)Vm(X2, Y2) ∼= Vm ⊗ Vm
∼= ∧2Vm ⊕ S2Vm

where

∧2Vm = 〈f(X1, Y1)g(X2, Y2) − g(X1, Y1)f(X2, Y2)〉, and (7.5)

S2Vm = 〈f(X1, Y1)g(X2, Y2) + g(X1, Y1)f(X2, Y2)〉. (7.6)

The following calculation may be used to show that (S2Vm−1)δ � ∧2Vm:

(X1Y2 − Y1X2)(f(X1, Y1)g(X2, Y2) + g(X1, Y1)f(X2, Y2))

= f(X1, Y1)X1g(X2, Y2)Y2 − g(X1, Y1)Y1f(X2, Y2)X2

− [f(X1, Y1)Y1g(X2, Y2)X2 − g(X1, Y1)X1f(X2, Y2)Y2].

The left side lies in (S2Vm−1)δ by (7.5), and the right side lies in ∧2Vm by (7.6).
Thus Vdet ⊗ (S2Vm−1) ∼= (S2Vm−1)δ � ∧2Vm. This containment, however, is an
equality because

dim(S2Vm−1)δ = dim(S2Vm−1)

=
(

dim(Vm−1) + 1
2

)
=
(
m+ 1

2

)
= dim(∧2Vm).

The inductive decomposition for S2Vm−1 and the isomorphism Vdet ⊗ (S2Vm−1) ∼=
∧2Vm together imply the desired decomposition for ∧2Vm.

A similar argument using (7.5) and (7.6) shows that (∧2Vm−1)δ � S2Vm:

(X1Y2 − Y1X2)(f(X1, Y1)g(X2, Y2) − g(X1, Y1)f(X2, Y2))

= f(X1, Y1)X1g(X2, Y2)Y2 + g(X1, Y1)Y1f(X2, Y2)X2

− [f(X1, Y1)Y1g(X2, Y2)X2 + g(X1, Y1)X1f(X2, Y2)Y2].

Thus Vdet ⊗ (∧2Vm−1) ∼= (∧2Vm−1)δ � S2Vm is an FG-submodule of S2Vm. By
part (a), V2m is an FG-submodule of Vm ⊗ Vm. Our hypotheses imply that V2m

is irreducible. Since V2m �� ∧2Vm, we see that V2m � S2Vm and it intersects
(∧2Vm−1)δ ∼= Vdet ⊗ ∧2Vm−1 trivially. Therefore, (Vdet ⊗ ∧2Vm−1) ⊕ V2m � S2Vm.
Comparing dimensions shows that (Vdet ⊗ ∧2Vm−1) ⊕ V2m = S2Vm. The inductive
decomposition for ∧2Vm−1 implies the desired decomposition for S2Vm. This proves
part (b). �

When char(F) = p, the hypothesism+ n < p in theorem 7.1(a) is necessary essen-
tially because 〈Xp, Y p〉 is a proper submodule of the homogeneous polynomials of
degree p. Nevertheless, it is possible to relax the hypothesis m+ n < p when the
number of carries when adding m to n in base-p is zero.

Corollary 7.2. Suppose Fq has characteristic p where q = pe. Let m,n be integers
with 0 � m,n < q and with p-adic expansions m =

∑
j�0mip

j and n =
∑

j�0 nip
j.

https://doi.org/10.1017/prm.2018.159 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.159


1850 S. P. Glasby, F. A. M. Ribeiro and C. Schneider

If mj + nj < p for each j � 0, then the following GL(2,Fq)-decomposition holds
where the modules are twisted by powers of the automorphism λφ = λp, as per [10,
definition VII.1.13]:

Vm ⊗ Vn =
⊗
j�0

min(mj ,nj)⊕
i=0

(V ⊗i
det ⊗ Vmj+nj−2i)φj

.

Proof. This follows from Vm ⊗Vn =
⊗

j�0 V
φj

mj
⊗⊗j�0 V

φj

nj
=
⊗

j�0(Vmj
⊗Vnj

)φj

,
and theorem 7.1(a). �

8. Simple IAC algebras associated to SL(2, F)

Since V0 is a trivial SL(2,F)-module, theorem 7.1(b) may be used to determine
when Vm is an ESQ-module. We need 2m− 2i = m to have a solution with i odd.
Thus i = m/2 and m ≡ 2 (mod 4).

Theorem 8.1. Let Vm be the above SL(2,F)-module where m ≡ 2 (mod 4) and
where the field F satisfies char(F) = 0 or 2m < char(F). Then Vm is an absolutely
irreducible ESQ-module. Further, if |F| � 5, the corresponding IAC algebra L is
simple.

Proof. We know that Vm is an absolutely irreducible SL(2,F)-module both
when char(F) is zero or prime, c.f. [1, theorem 5.2.3], [13, theorem 2.6.3] and
[18, pp. 57–59]. The preamble to this theorem showed that Vm is a quotient of
∧2Vm. Thus we may turn L = Vm into an anti-commutative algebra satisfying
�L,L� = L, as in § 1. Since SL(2,F) acts irreducibly on L = Vm, we see that L
is an IAC algebra.

It remains to prove that L is a simple IAC algebra. By theorem 4.2(b), L =
I1 ⊕ · · · ⊕ I� where I1, . . . , I� are the minimal ideals of L and 	 � 1. The group
SL(2,F) permutes the set X = {I1, . . . , I�} transitively. Since Z = Z(SL(2,F)) acts
as the identity on this set, the projective linear group PSL(2,F) acts on X. Further,
L ∼= I⊕�

1 where I1 is a simple IAC algebra, and so dim I1 � 3, which implies that
	 = dim(Vm)/dim(I1) � (m+ 1)/3.

It is well-known that PSL(2,F) is a simple group for |F| � 5. Suppose 	 > 1.
The homomorphism PSL(2,F) → S� is faithful, and the image is transitive on 	
points. This is impossible if F is infinite, as S� is finite and PSL(2,F) is not. Thus
|F| = q is finite. Set p = char(F). The minimal degree d of a transitive permutation
representation of PSL(2,Fq) is q + 1 except for q = 5, 7, 9, 11 in these cases d =
5, 7, 6, 11, respectively [11, Table 5.2.A, p. 175]. In all the cases we have 2q/3 � d.
Our hypothesis 2m < p implies

2p
3

� 2q
3

� d � 	 � m+ 1
3

<
p/2 + 1

3
.

This is false for all primes p, so we conclude that 	 = 1, and L is simple. �
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Remark 8.2. Theorem 8.1 can be generalized to include ESQ H-modules where
SL(2,Fq) < H � GL(2,Fq). For example, if m ≡ 2 (mod 4) and i = m/2 is a mul-
tiple of |H : SL(2,Fq)|, then V ⊗i

det is a trivial H-module and L = Vm can be turned
into an IAC algebra with H � Aut(L).

Combining the special case of F = Fp in theorem 8.1 with the bijection in
theorem 3.5 gives the following corollary stating the existence of another infinite
family of UCS p-groups of exponent p2.

Corollary 8.3. Let p � 3 be a prime, and let m be a natural number such that
2m < p. Then there exists an (m+ 1)-generator UCS p-group G with exponent p2

such that the subgroup induced by Aut(G) on G contains SL(2, p) acting in its
absolutely irreducible representation of dimension m+ 1 over the field Fp. Further,
G cannot be written as a direct product (G0)×k where G0 is a smaller UCS p-group.
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