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GENERALIZED ZETA INTEGRALS ON CERTAIN REAL
PREHOMOGENEOUS VECTOR SPACES

WEN-WEI LI

Abstract. Let X be a real prehomogeneous vector space under a reductive

group G, such that X is an absolutely spherical G-variety with affine open

orbit. We define local zeta integrals that involve the integration of Schwartz–

Bruhat functions on X against generalized matrix coefficients of admissible

representations of G(R), twisted by complex powers of relative invariants. We

establish the convergence of these integrals in some range, the meromorphic

continuation, as well as a functional equation in terms of abstract γ-factors.

This subsumes the archimedean zeta integrals of Godement–Jacquet, those

of Sato–Shintani (in the spherical case), and the previous works of Bopp–

Rubenthaler. The proof of functional equations is based on Knop’s results on

Capelli operators.

§1. Introduction

1.1. Main results

Prehomogeneous vector spaces are a rich source of zeta integrals with meromorphic

continuation and functional equation. The aim of this article is to extend the scope of this

construction by incorporating generalized matrix coefficients of admissible representations

of a connected reductive group over R. Let us begin by summarizing the main theorems of

this article. To put things in context, we discuss their relation to existing theories in the

next subsection.

A reductive prehomogeneous vector space over R is a triplet (G,ρ,X) where G is

a connected reductive R-group, X �= {0} is a finite-dimensional R-vector space, and

ρ : G → GL(X) is a homomorphism of algebraic groups such that X has a Zariski-

dense open G-orbit X+. By convention, GL(X) acts on the right of X, and thus acts

on the left of various spaces of functions on X. Suppose furthermore that ∂X := X \
X+ is a hypersurface. Then ∂X is defined by f1 · · ·fr = 0 where f1, . . . ,fr ∈ R[X] are

irreducible polynomials, unique up to R×, called the basic relative invariants under the

G-action. We refer to §2.1 or [14], [27] for generalities about prehomogeneous vector

spaces.

Recall that a homogeneous G-space X+ is called spherical, also known as absolutely

spherical, if there is an open Borel orbit in X+
C
:=X+×RC under GC-action. Let X

∗(G) :=

Homalg. grp./R(G,Gm). Our assumptions (Hypothesis 2.1) are:

(i) X+ is a spherical homogeneous G-space;

(ii) ∂X is a hypersurface, defined by f1 · · ·fr = 0 where f1, . . . ,fr are basic relative

invariants, with eigencharacters ω1, . . . ,ωr ∈X∗(G).
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The reductive prehomogeneous vector spaces satisfying only (i) are calledmultiplicity-free

spaces. For irreducible ρ, they have been classified by Kac [13]. The general classification is

done independently in [3], [20]. See also [16].

Let X∗
ρ(G) ⊂X∗(G) denote the subgroup eigencharacters of rational relative invariants

in R(X). It is known that X∗
ρ(G) =

⊕r
i=1Zωi. For any commutative ring A, set ΛA :=

X∗
ρ(G)⊗ZA. For λ=

∑r
i=1ωi⊗λi ∈ΛR, we write Re(λ)�

X
0 to indicate λi � 0 for all i. We

also write

|f |λ(x) :=
r∏

i=1

|fi(x)|λi , x ∈X(R).

It is convenient to employ the language of half-densities on real manifolds (see §2.2). They
are C∞-sections of a canonical line bundle L1/2 over the manifold, and can be thought as

square roots of measures. Locally, they can be represented as f |ω|1/2 where f is a C∞-

function and ω is a differential form of top degree. For example, given Ω ∈
∧max

X̌ \ {0},
we have the half-density |Ω|1/2 on X(R); it is translation-invariant and varies by |detρ|1/2
under G(R)-action. The product of two half-densities is a density, whose integration makes

sense.

Let C∞(X+) denote the Fréchet space of C∞-smooth densities. Likewise, we have

the Fréchet space of Schwartz–Bruhat half-densities S(X), which equals S0(X)|Ω|1/2 by

choosing Ω, where S0(X) is the scalar-valued Schwartz–Bruhat space. They are both smooth

G(R)-representations.

It turns out that our assumptions on (G,ρ,X) pass to its dual (i.e., contragredient)

(G,ρ̌,X̌), and X∗
ρ(G) =X∗

ρ̌(G). Upon choosing an additive character ψ of R, one can define

the Fourier transform F : S(X)
∼→ S(X̌) of half-densities, in such a way that F is G(R)-

equivariant.

Our zeta integrals are associated with admissible representations of G(R). The natural

formalism is that of smooth, admissible of moderate growth, and Fréchet (SAF; see [4])

representations, also known as Casselman–Wallach representations. The category of SAF

representations is equivalent to that of Harish-Chandra (g,K)-modules by taking K -finite

parts. For each SAF representation π realized on a Fréchet space Vπ, the C-vector space

Nπ(X
+) := HomG(R)

(
π,C∞(X+)

)
is known to be finite-dimensional where we take the continuous and G(R)-equivariant Hom-

space. For each vector v ∈ Vπ and η ∈Nπ(X
+), we call η(v) ∈Nπ(X

+) a generalized matrix

coefficient of π. It can be reduced to the usual scalar-valued generalized matrix coefficients

by trivializing L1/2 on X+(R) equivariantly (Lemma 2.6).

The generalized zeta integrals in question are

Zλ (η,v,ξ) :=

∫
X+(R)

η(v)|f |λξ,

where η ∈ Nπ(X
+), v ∈ Vπ, and ξ ∈ S(X). The goal of this article is to prove three basic

properties of these integrals, in increasing level of difficulty:

Convergence (Theorem 3.10). The integral Zλ(η,v,ξ) converges for Re(λ)≥
X
κ for some

κ ∈ ΛR depending only on π and (G,ρ,X), and it is jointly continuous in (v,ξ) in that

range.
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Meromorphic continuation (Theorem 3.12). Zλ(η,v,ξ) admits a meromorphic con-

tinuation to all λ ∈ΛC. To be precise, there exists a holomorphic function L(η,λ) on ΛC

for any given η, not identically zero, such that LZλ(η,v,ξ) := L(η,λ)Zλ(η,v,ξ) extends

holomorphically to all λ ∈ ΛC.

Functional equation (Theorem 3.13). Fix an additive character ψ and denote the

integral for (G,ρ̌, X̌) as Žλ. There is then a unique meromorphic family of C-linear

maps γ(π,λ) :Nπ(X̌
+)→Nπ(X

+), called the γ-factor, such that

Žλ (η̌, v,Fξ) = Zλ (γ(λ,π)(η̌),v,ξ)

for all η̌ ∈ Nπ(X̌
+), v ∈ Vπ and ξ ∈ S(X), where both sides are viewed as meromorphic

families in λ ∈ ΛC.

Moreover, one can obtain slightly more information on the denominator L(η,λ), and

describe the dependence of γ(λ,π) on ψ; it turns out that the γ-factor, which is actually a

linear transform, is generically invertible (Proposition 3.14). We refer to the cited theorems

for the precise statements.

Note that our formalism is nontrivial only when Nπ(X
+) �= {0}; in other words, π must

be distinguished by X+(R). Distinguished representations and their generalized matrix

coefficients are the main concerns of harmonic analysis on spherical varieties.

The same result holds for prehomogeneous vector spaces over C (see §3.4).

1.2. Background

The prototype of zeta integrals in representation theory is Tate’s thesis. His idea is

to study the L-factors by integrating Schwartz–Bruhat functions against characters by

embedding F× in F, and then interpret the functional equation in terms of Fourier

transform. There are at least two well-known extensions of Tate’s theory, both fitting into

our general scenario. We discuss only the local case F = R.

1. Godement–Jacquet theory (Example 3.17). Let D be a central simple R-algebra with

dimD = n2, and let D× ×D× act on the right of X := D by xρ(g,h) = h−1xg. This

gives a reductive prehomogeneous vector space (D××D×,ρ,D) with open orbit X+ :=

D×, which is spherical. The irreducible SAF representations π of D×(R)×D×(R) with

Nπ(D
×) �= {0} are of the form σ� σ̌, where σ̌ is the contragredient representation of σ.

In this case, Nπ(D
×) is spanned by the matrix coefficient map

v⊗ v̌ 	→ 〈v̌,σ(·)v〉 · |Nrd|−n/2|Ω|1/2,

where Nrd is the reduced norm on D, and Ω is a volume form as before. Note that

Nrd ∈ R[D] is the basic relative invariant.

Let v⊗ v̌ ∈ Vσ⊗Vσ̌. The Godement–Jacquet zeta integral in this setting is

ZGJ (λ,v⊗ v̌, ξ0) :=

∫
D×(R)

〈v̌,π(x)v〉 |Nrd(x)|λ+n−1
2 ξ0(x)d

×x,

where d×x := |Nrd|−n/2|Ω|1/2 is a Haar measure on D×(R), and ξ0 is any Schwartz–

Bruhat function on D(R)� Rn2

. It is routine to check that ZGJ(λ+ 1
2 ,v⊗ v̌, ξ0) equals

the generalized zeta integral introduced previously. Moreover, by relating X̌+ to X+

appropriately, we recover the Godement–Jacquet functional equation

ZGJ (1−λ, v̌⊗v,Fξ0) = γGJ(λ,π)ZGJ (λ,v⊗ v̌, ξ0) ,
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where the left-hand side is defined with respect to π̌, and the self-dual Haar measure on

D(R) is used. These integrals and their global avatar give rise to the standard L-factor

L(λ,π,Std), by taking the greatest common divisors over all ξ0.

2. Sato–Shintani theory (Example 3.16). Consider a triplet (G,ρ,X) as in our generalized

setting, but take π to be the trivial representation of G(R). Then Nπ(X
+) is in bijection

with the G(R)-orbits O1, . . . ,Om in X+(R). The G(R)-orbits on X̌(R) turn out to be

in bijection with O1, . . . ,Om. The resulting zeta integral is, up to a shift in λ, the one

considered by Sato–Shintani [30] and completed by F. Sato [26] for the case in several

variables, following the pioneering works of M. Sato on prehomogeneous vector spaces.

They name the functional equation as the Fundamental Theorem. The condition on

sphericity of X+ can be removed in this setting.

Specifically, Sato and Shintani worked only in the global case; the local zeta integrals

are introduced later by Igusa et al. We refer to [27] for a more detailed survey for the

local integrals, and to [24], [28] for the relation between local and global integrals. Note

that the functional equation in the non-archimedean case is known only under some

assumptions on (G,ρ,X) (see [27]).

In both theories, the functional equation is the hardest part. We can make a further

comparison as follows.

• The Godement–Jacquet integrals are directly related to Langlands program since they

yield standard L-factors; however, the corresponding functional equation is proved by an

ad hoc argument, namely by reduction to Tate’s thesis (see [11]).

• On the other hand, Sato–Shintani functional equations are proved in [26], [30] by a general,

geometric reasoning. The corresponding L-factors, whenever they are identified, are highly

degenerate; this is not surprising since the zeta integrals involve only twists of the trivial

representation of G(F ). Their applicability to Langlands program is therefore limited,

despite the flexibility of choosing (G,ρ,X).

In [22], the author proposed a general framework to define zeta integrals whenever one

has a spherical homogeneous G-space X+, an equivariant embedding X+ ↪→ X together

with a reasonable notion of Schwartz space and Fourier transform. That project is largely

speculative, the only accessible case being the setting of prehomogeneous vector spaces

mentioned above. The belief behind [22] is that the three basic properties of such zeta

integrals over a local field F, namely convergence, meromorphic continuation, and functional

equation, should have a uniform proof based on general principles. Moreover, we expect some

global applications to the study of periods or sums (possibly infinite) of L-values, although

this is surely a long-term goal. In this connection, we remark that Sakellaridis [25] made

unramified computations for non-exceptional groups in Kac’s classification and concluded

that they give only “known” L-factors.

Generalized zeta integrals over R have also been studied in [6] for a specific class of

triplets (G,ρ,X) and representations π. In particular, they obtained the functional equation

via explicit computations, and obtained a more precise description of Nπ(X
+) and γ(λ,π).

Another generalization in this direction is due to F. Sato [28], [29], which puts more emphasis

on the global picture involving periods of automorphic forms and allows some nonspherical

cases. We hope to explore the possible extensions of our theory to his cases in the future.
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When the local field F is p-adic, G is split, and X+ satisfies the wavefront condition,

some positive results about generalized zeta integrals have been obtained in [22, Chap. 6],

including a functional equation under extra assumptions on ∂X.

For the archimedean case, say F = R, the convergence and meromorphic continuation

have been obtained in [21] when X+ is a finite cover of an algebraic symmetric space

under G. Many of the arguments therein are general, requiring only some expected

properties of generalized matrix coefficients as input. This article completes the archimedean

case in full generality.

1.3. About the proofs

Fix a maximal compact subgroup K ⊂ G(R) and a G(R)-equivariant trivialization of

the line bundle L1/2 on X+(R), as in Lemma 2.6. For every η ∈ Nπ(X
+), we denote by

η0 the corresponding morphism from π to C∞(X+(R);C), the space of scalar-valued C∞

functions.

The convergence for Re(λ)�
X

0 is the first and the simplest step. Grosso modo, it suffices

to show that η0(v) is of moderate growth on X+(R), uniformly in v (see Proposition 4.1).

The argument has been sketched in [21, §6.6], but the proof of moderate growth therein for

essentially symmetric spaces is unnecessarily complicated. By using available estimates for

generalized matrix coefficients, for example, those in [17] or [23], we are able to prove the

general case here. Furthermore, we show that (v,ξ) 	→ Zλ(η,v,ξ) is jointly continuous and

bounded in vertical strips in the range of convergence.

The meromorphic continuation of Zλ is achieved by the machinery of Bernstein–Sato

b-functions. The idea based on differential operators is explained in [21, §6.8], which is in

turn modeled on [8]; the technique has also been employed for Sato–Shintani zeta integrals.

The main input is the fact that for each v ∈ V K-fini
π , the DX+

C

-module generated by η0(v)

is holonomic, where DX+
C

is the sheaf of algebraic differential operators on X+
C
. In fact, we

will show that there is a holomorphic function L(η,λ) in λ ∈ ΛC, which can be taken to be

a product of inverses of Γ-functions, such that

LZλ(η,v,ξ) := L(η,λ)Zλ(η,v,ξ)

extends holomorphically to all λ∈ΛC. Moreover, LZλ(η, ·, ·) extends to a jointly continuous

bilinear form on Vπ×S(X).

The required holonomicity is furnished by [23], and one can also deduce it from the

arguments in [1]. The remaining arguments are the same as in [21].

The hardcore is the functional equation. We proceed in two steps.

1. First, we produce a uniquely determined meromorphic family of linear maps

γ(π,λ) :Nπ(X̌
+)→Nπ(X

+), λ ∈ ΛC,

verifying the weak functional equation

Žλ (η̌, v,Fξ) = Zλ (γ(λ,π)(η̌),v,ξ) , ξ ∈ C∞
c (X+), v ∈ Vπ.

Surely, here, C∞
c (X+) is valued in half-densities. The idea is simple: given v ∈ V K-fini

π ,

regard ξ 	→ LŽλ(η̌, v,Fξ) as a tempered distribution Tλ(v) on X(R). One shows that it

is Z(g)-finite and K -finite as v is, and deduce that it is C∞ on X+(R) by the elliptic
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regularity theorem. Next, one shows that v 	→ Tλ(v)|f |−λ extends to a holomorphic

family in Nπ(X
+); this yields the γ-factor after dividing by the denominator L(η̌,λ).

This step involves some finiteness properties, as well as an automatic continuity

property for v 	→ Tλ(v)|f |−λ. For this purpose, we invoke some results from [23],

although these ingredients have probably been known elsewhere. Another ingredient

is the decomposition of X+(R) in Proposition 6.1 and the accompanying Proposition

6.3, which enter in the proof of holomorphy of Tλ(·)|f |−λ.

2. Second, let λ vary in a bounded open subset U ⊂ ΛC. Observe that Δλ(η̌, v,ξ) :=

Žλ (η̌, v,Fξ)−Zλ (γ(λ,π)(η̌),v,ξ) satisfies

Δλ(η̌, v,h
Mξ) = 0, ξ ∈ S(X),

where h ∈ R[X] is an appropriate relative invariant with zero locus ∂X and M � 0.

Using the uniqueness of γ-factors in the weak functional equation, we transform this

equality into Δλ−Mθ

(
λη̌, v,ξ

)
= 0 for all ξ ∈ S(X), where

• θ is the eigencharacter of h,

• η̌ 	→ λη̌ is a holomorphic family of endomorphisms of Nπ(X̌
+), given by the action of

some (analytic) twists of a G-invariant algebraic differential operator on X̌, called the

Capelli operator.

The functional equation will follow once η̌ 	→ λη̌ is shown to be generically invertible.

We do this by first decomposing Nπ(X̌
+) into generalized eigenspaces under D(X̌+

C
)GC ,

the algebra of invariant algebraic differential operators on X̌+
C
. Then we analyze the

eigenvalues of the twists of Capelli operator via Knop’s Harish-Chandra isomorphism

[15], [16]. Eventually, the generic invertibility results from Knop’s formula in [16] for

the leading term. Here, we make crucial use of the existence of nondegenerate relative

invariants of our prehomogeneous vector spaces.

The arguments above are completely disjoint from the Godement–Jacquet case. When π

is the trivial representation, it reduces to the proof of Sato–Shintani and F. Sato, in which

case the effect of Capelli operator can be made explicit.

We also remark that the sphericity of X+
C

is necessary for both the proofs of meromorphy

and functional equation. In contrast, the convergence holds when X+ is just real spherical,

that is, when there is an open P0-orbit inX+ where P0 ⊂G is a minimal parabolic subgroup.

1.4. Organization of this article

The general conventions are presented in §1.5.
In §2, we introduce the basic notions about prehomogeneous vector spaces, density

bundles, the action of differential operators on half-densities, and the Fourier transform

for both the scalar and half-density cases. In particular, we enunciate Hypothesis 2.1 about

the prehomogeneous vector spaces.

In §3, we define the generalized matrix coefficients of an SAF representation of G(R),

define the generalized zeta integrals Zλ(η,v,ξ), and state the main Theorems 3.10, 3.12,

and 3.13. Granting these results, we also describe the inverse of γ-factor and its dependence

on ψ in Proposition 3.14. Note that there is a self-dual version of Fourier transform and

γ-factors, which are more natural in some circumstances, and are discussed in Remark 3.15.

In §3.3, the zeta integrals of Godement–Jacquet and Sato–Shintani (in the local, spherical

case), together with their functional equations, are shown to be special cases of our
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formalism. In §3.4, we state the complex case and reduce it to the real case by restriction

of scalars.

The convergence of Zλ for Re(λ)�
X

0 and the meromorphic continuation are proved in

§4. The section also records some auxiliary results for later use.

The intermezzo §5 is mainly a recapitulation of Knop’s Harish-Chandra isomorphism

for multiplicity-free spaces over C. In that section, we also define the relevant Capelli

operators and their twists, in both the algebraic and analytic setting. The upshot is the

crucial computation of leading terms in Propositions 5.7 and 5.8.

The functional equation is established in §6 by proving first a weak functional equation

in §6.2, which also determines the γ-factor. Then we deduce the full version by using Capelli

operators and their twists.

1.5. Conventions

1.5.1. Fields

Field extensions are written in the form E|F . The Galois group of a Galois extension

E|F will be denoted by Gal(E|F ).

The additive characters of R are nontrivial continuous homomorphisms ψ :R→{z ∈C× :

|z|= 1}. The additive characters form an R×-torsor under the action ψ
a	−→ [ψa : t 	→ ψ(at)]

where a ∈ R×.

1.5.2. Varieties and groups

Let F be a field. By an F -variety, we mean an integral separated scheme of finite type

over SpecF . If X is an F -variety and E|F is a field extension, we write XE :=X×
F
E. The

set of E -points is denoted by X(E), which carries a topology when E is a local field. The

F -algebra (resp. field) of regular functions (resp. rational functions) on X is denoted by

F [X] (resp. F (X)).

Unless otherwise specified, algebraic groups act on varieties on the right, and act on the

left of function spaces by ϕ 	→ [gϕ : x 	→ ϕ(xg)]. In particular, for any finite-dimensional

F -vector space, we let GL(X) act on the right of X, although the scalar multiplication by

F is still on the left of X. The dual of a finite-dimensional vector space X is denoted by X̌.

If ρ :G→GL(X) is a representation on X, its contragredient ρ̌ :G→GL(X̌) is defined to

render the canonical pairing 〈·, ·〉 : X̌×X → F invariant.

Let Gm be the multiplicative F -group scheme. Let G be a linear algebraic F -group

where F is any field. We set X∗(G) := Homalg.grp/F (G,Gm), which is an additive group.

The derived subgroup of an algebraic group G is denoted by Gder. The center of G is

denoted by ZG.

Suppose that G is connected reductive and the variety X is endowed with a G-action;

we say X is a G-variety. We say a normal G-variety X is spherical if XF has an open orbit

under any Borel subgroup of GF ; this is also known as absolutely sphericity since we work

over F , an algebraic closure of F.

1.5.3. Algebraic differential operators

For a smooth variety X over a field F with characteristic zero, DX will denote the Zariski

sheaf of algebraic differential operators on X. The formation of DX commutes with arbitrary
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field extensions E|F . Since we will mainly work with affine X, it is customary to consider

the algebra D(X) = Γ(X,DX) of algebraic differential operators on X.

For more backgrounds about algebraic differential operators, we refer to [2, §1.1].
If X is a G-variety where G is an algebraic group, then G acts on D(X) by transport of

structure, written as D
g	−→ gD = gDg−1.

1.5.4. Analysis

The topological vector spaces are always over C and locally convex. For a topological

vector space V, we denote by V ∨ := Homcont(V,C) its continuous dual.

The space of jointly continuous bilinear forms on V1×V2 is denoted by Bil(V,W ) where

V,W are topological vector spaces (see [32, §41]).
Let Ω be a connected complex manifold, and let V be a topological vector space. For

a map of the form Z : Ω→ V ∨, written as λ 	→ Zλ, we say that Z is holomorphic if so is

λ 	→ Zλ(v) for each v ∈ V . Now, suppose that T is only defined off a nowhere-dense subset

of Ω. We say that T is meromorphic if locally on Ω there exists a holomorphic function L,

not identically zero, such that λ 	→ L(λ)Tλ is holomorphic. Two meromorphic families on

Ω are identified if they agree off a nowhere-dense subset.

Let R be an open subset of Rn for some n. A holomorphic function f :R× iR→C is said

to be bounded on vertical strips if, for each compact C ⊂R, the restriction of f to C× iR

is bounded.

The space of scalar-valued Schwartz–Bruhat functions on X is denoted by S0(X). Our

conventions on Fourier transforms are explained in §2.3; the version for half-densities is also

introduced.

1.5.5. Representations

When a group H acts on some space V, we denote by V H the subspace of G-invariants

in V.

LetG be a connected reductive R-group. Unless otherwise specified, the representations of

G(R) are taken over C and are tacitly assumed to be continuous. The representations under

consideration in this article are mainly the SAF representations, also known as Casselman–

Wallach representations (see [4, p. 46]). We will also consider the smooth representations

of G(R), for which we refer to [9, §1] for the basic definitions.

Suppose that π is such a representation of G(R). The central character of π, if it exists,

will be denoted as ωπ : ZG(R)→ C×. The underlying topological C-vector space of π will

be denoted as Vπ.

For G as above, we let g := LieG and write Z(g) for the center of the enveloping algebra

U(g). Therefore, U(g) acts on Vπ for any smooth G(R)-representation π.

Assume that π is an SAF representation. For any maximal compact subgroup K ⊂G(R),

the space V K-fini
π of K -finite vectors in Vπ forms a (g,K)-module.

§2. Prehomogeneous vector spaces

2.1. Relative invariants and regularity

We begin by reviewing the basic setup about prehomogeneous vector spaces from [21] (see

also [22, Chap. 6] or [14], [27]). The following assumptions will remain in force throughout

this article.
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Hypothesis 2.1. Fix an additive character ψ of R. Let G be a connected reductive

R-group, let X �= {0} be a finite-dimensional R-vector space, and let ρ :G→GL(X) be an

algebraic homomorphism, through which G acts on the right of X. Assume that:

• there is a Zariski-open dense G-orbit in X, denoted hereafter as X+;

• ∂X :=X \X+ is a hypersurface in X (equivalently, X+ is affine by [14, Th. 2.28]);

• X+ is a spherical homogeneous G-space, that is, absolutely spherical by convention.

Then X+(R) is a union of finitely many G(R)-orbits. The triplet (G,ρ,X) forms a

reductive prehomogeneous vector space over R. We say that a nonzero f ∈R(X) is a relative

invariant if there exists ω ∈X∗(G) such that f(xg) = ω(g)f(x) for all (x,g) ∈X×G; the

character ω is unique, called the eigencharacter of f.

Relative invariants on an arbitrary prehomogeneous vector space are automatically

homogeneous, according to [14, Cor. 2.7].

If f ∈ R(X) is a relative invariant, then the logarithmic derivative f−1df defines a

G-equivariant morphism X+ → X̌. We say f is nondegenerate if f−1df is dominant (see

[14, Def. 2.14]).

The general theory of prehomogeneous vector spaces affords the basic relative invariants

f1, . . . ,fr ∈R[X], say with eigencharacters ω1, . . . ,ωr ∈X∗(G) under G-action, which define

irreducible codimension-one components of ∂X. Moreover,

X∗
ρ(G) := {ω ∈X∗(G) : eigencharacter of some relative invariant}

=
r⊕

i=1

Zωi.

It is known that {ω1, . . . ,ωr} is uniquely determined, whereas the fi corresponding to ωi

is unique up to R×. Call ω1, . . . ,ωr the basic eigencharacters. Every relative invariant is

proportional to fa1
1 · · ·far

r for a unique (a1, . . . ,ar) ∈ Zr. The zero loci of basic relative

invariants correspond to the irreducible components of ∂X. Therefore, fa1
1 · · ·far

r ∈ R[X] if

and only if a1, . . . ,ar ≥ 0.

When G is split, the facts above have been reviewed in [22, §6.2]. The general case follows
by Galois descent from C to R; specifically, Gal(C|R) permutes the irreducible components

of ∂XC and

X∗
ρ(G) =X∗

ρ⊗C(GC)
Gal(C|R).

Indeed, the only nontrivial part is that a priori, to each ω ∈ X∗
ρ⊗C

(GC)
Gal(C|R) ⊂ X∗(G)

corresponds only a relative invariant f ∈ C(X) that is unique up to C×, but we may take

f ∈ R(X) by the following technique: for every σ ∈ Gal(C|R), let cσ ∈ C× be such that
σf = cσf , so that σ 	→ cσ is a 1-cocycle; Hilbert’s Theorem 90 then implies that there exists

c ∈ C× such that cf is Gal(C|R)-invariant as desired. Hence, ω ∈X∗
ρ(G).

According to [14, Th. 2.28] and our assumptions, (G,ρ,X) is regular. Specifically,

• (detρ)2 ∈X∗
ρ(G) and it corresponds to a nondegenerate relative invariant in R(X);

• the dual triplet (G,ρ̌, X̌) is regular prehomogeneous as well;

• X∗
ρ(G) =X∗

ρ̌(G);

• every nondegenerate relative invariant f ∈ R(X) induces an isomorphism f−1df :X+ ∼→
X̌+ of homogeneous G-spaces (see [14, Th. 2.16]).
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Again, for split G, these properties are reviewed in [22, Th. 6.2.4], and the general case

follows by Galois descent. We summarize below.

Proposition 2.2. The dual triplet (G,ρ̌, X̌) also satisfies Hypothesis 2.1. We have

X∗
ρ(G) =X∗

ρ̌(G), and X+ � X̌+ as homogeneous G-spaces.

Proposition 2.3. The basic eigencharacters for (G,ρ̌, X̌) are ω−1
1 , . . . ,ω−1

r .

Proof. Set Λ+
ρ :=

∑
iZ≥0ωi; a similar construction for (G,ρ̌, X̌) yields Λ+

ρ̌ . According to

[14, Prop. 2.21], if ω ∈X∗
ρ(G) corresponds to a polynomial relative invariant for X, then so

is ω−1 for X̌; the result is stated over C in [14], but the case over R follows as explained

earlier, by Hilbert’s Theorem 90. Hence, −Λ+
ρ ⊂ Λ+

ρ̌ . By symmetry, −Λ+
ρ = Λ+

ρ̌ .

Let V be the R-vector space generated by the lattice X∗
ρ(G) = X∗

ρ̌(G) of rank r. Both

R≥0Λ
+
ρ and R≥0Λ

+
ρ̌ are cones in V generated by r extremal rays (see, e,g., [7, Prop. 1.20]).

The foregoing result implies that ω−1
1 , . . . ,ω−1

r generate the r extremal rays of R≥0Λ
+
ρ̌ . On

the other hand, they are indivisible in X∗
ρ(G) =X∗

ρ̌(G); hence, they must be the minimal

lattice points in these extremal rays, that is, the basic eigencharacters for (G,ρ̌, X̌).

Corollary 2.4. There exist nondegenerate polynomial relative invariants f ∈ R[X]

and f̌ ∈ R[X̌] such that:

(i) f, f̌ ≥ 0 on R-points;

(ii) ∂X = {x : f(x) = 0} and ∂X̌ = {x̌ : f̌(x̌) = 0};
(iii) f, f̌ have opposite eigencharacters.

Proof. Take (a1, . . . ,ar) ∈ Zr
≥1 and relative invariants f, f̌ with eigencharacters

∏r
i=1ω

ai
i

and
∏r

i=1ω
−ai
i . Proposition 2.3 says that they are polynomials with zero loci ∂X and ∂X̌,

respectively. To ensure (i), one can replace f, f̌ by f2, f̌2.

2.2. Density bundles

Below is a review of the formalism of densities, following [22, §3.1].
Let Y be any real smooth manifold. Roughly speaking, the densities on Y are objects

which can be integrated. More generally, for each t ∈ R, there is a real line bundle Lt of

t-densities on Y, with L := L1. Denote by Cc(Y,Lt) the space of continuous sections of Lt

over Y of compact support. Likewise, we have the space C∞(Y,Lt) of C∞-sections of Lt.

Remark 2.5. Although Lt are real line bundles, we will mostly work with complex-

valued sections and their integrations. We will also write Lt
Y to indicate the reference to Y.

The line bundles Lt come with:

• canonical pairings

Ls⊗Lt →Ls+t, s, t ∈ R,

and a trivialization of L0, subject to the unity, associativity, and commutativity

constraints;

• the integration as a linear functional∫
Y

: Cc(Y,L)→ C, ξ 	→
∫
Y

ξ.
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These data can be constructed by the following recipe. Denote by ΩY the line bundle of

differential 1-forms on Y. To
∧max

ΩY corresponds the R×-torsor G on Y, whose local

sections are nonvanishing differential forms of top degree. Let t ∈ R. Using the group

homomorphism | · |t : R× → R×
>0 ⊂ R, we form the following real line bundle on Y :

Lt := G
|·|t
× R.

Specifically, let U ⊂ Y be an open subset and let ω be a nonvanishing continuous section

of
∧max

ΩY over U. It yields a section |ω|t of G
|·|t
× R×

>0, whence a section of Lt. In general,

sections of
∧max

ΩY can be locally expressed as fω where f is a continuous function on Y ;

one defines unambiguously the section

|fω|t := |f | · |ω|t

of Lt. We have |ω|s+t = |ω|s|ω|t, and so forth. The integration of ξ ∈ Cc(Y,L) is then

performed via local charts and partition of unity, reducing everything to Lebesgue integrals.

In particular, every continuous section of L gives rise to a Radon measure on Y.

Consequently, it makes sense to define the Lp-space of sections of L1/p as the completion

of Cc(Y,L1/p) with respect to ‖ξ‖Lp :=
(∫

Y
|ω|p

)1/p
, where 1≤ p≤+∞.

Below are some further properties of Lt.

• Pullback: this is compatible with the pullback of differential forms. Given a morphism

ν : Y → Z and a section ξ of Lt
Z , we write ν∗ξ for the resulting section of Lt

Y .For t= 0, it

is the pullback of functions, and for any differential form ω of top degree on Z, we have

ν∗|ω|t = |ν∗ω|t.
• For any open subset U ⊂ Y , we have Lt

Y |U � Lt
U ; for any real analytic manifolds Y1,Y2,

we have Lt
Y1×Y2

� Lt
Y1

�Lt
Y2
. Both isomorphisms are canonical.

• Integration of densities satisfies the formula of change of variables∫
Y

ν∗ξ =

∫
X

ξ, ξ ∈ Cc(Y,L).

• If a Lie group H acts on the right of Y, then the bundles Lt have canonical H -equivariant

structures.

Now, let (G,ρ,X) as in Hypothesis 2.1. Every Ω∈
∧max

X̌ affords a translation-invariant

t-density |Ω|t. For every g ∈GL(X), we have g∗|Ω|t = |g∗Ω|t = |detg|t|Ω|t. Most often, we

will encounter the case t = 1
2 , that is, the half-densities. If necessary, one can get rid of

half-densities by the following observation.

Lemma 2.6. Let φ ∈ R(X) be a relative invariant with eigencharacter (detρ)2, and

let Ω ∈
∧max

X̌ \{0}. Then |φ|−1/4|Ω|1/2 is a G(R)-invariant and nowhere vanishing half-

density over X+(R). Consequently, L1/2 can be equivariantly trivialized over X+(R).

Proof. This is just a restatement of [21, Lem. 6.6.1].

We caution the reader that for homogeneous G-spaces in general, the density bundles

are not necessarily equivariantly trivializable.
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2.3. Fourier transform on Schwartz spaces

Given (G,ρ,X) be as in Hypothesis 2.1, we follow the paradigm of §2.2 to define the

following spaces.

• C∞(X+) := C∞ (
X+,L1/2

)
: the space of C∞ half-densities. It is a Fréchet space with

respect to the standard topology as prescribed in [22, §4.1] (see also [32, §10, Exam. I]

for the scalar-valued case).

The seminorms in question involve a continuous metric on L1/2, whose choice is

immaterial since we consider only its supremum over compact subsets. In our case, one

can even trivialize L1/2 to get a more canonical choice.

• L2(X+): the Hilbert space of L2 half-densities on X+(R). It is the same as L2(X).

• S(X): the Fréchet space of Schwartz–Bruhat sections in L2(X). The relation of S(X)

to the usual scalar-valued Schwartz–Bruhat space S0(X) is straightforward: S(X) =

S0(X)|Ω|1/2 for any Ω ∈
∧max

X̌ \{0}. In particular, S(X) is a nuclear Fréchet space.

The topology on S0(X) is described in [32, §10, Exam. IV].

The spaces C∞(X+) and S(X) are smoothG(R)-representations and L2(X+) is a unitary

G(R)-representation.

Define the Fourier transform for half-densities Fψ : S(X)
∼→ S(X̌) as in [22, §6.1]: it is

an isomorphism between Fréchet spaces, and extends to an isomorphism L2(X)
∼→ L2(X̌)

satisfying ‖Fξ‖ =
√
A(ψ)‖ξ‖ for some constant A(ψ) > 0 (see Definition 2.8). Below is a

recap of the formulas.

Let 〈·, ·〉 : X̌ ×X → R be the canonical pairing between X̌,X, and similarly for 〈·, ·〉 :∧max
X̌×

∧max
X → R. Given Ω ∈

∧max
X̌ \{0}, we take the Ψ ∈

∧max
X with 〈Ω,Ψ〉 = 1

and define the Fourier transforms

Fψ,|Ω| : S0(X) S0(X̌)

ξ0

[
x̌ 	→

∫
x∈X(R)

ξ0(x)ψ(〈x̌,x〉)|Ω|
]
,

Fψ : S(X) S(X̌)

ξ = ξ0|Ω|1/2 Fψ,|Ω|(ξ0)|Ψ|1/2.

∈ ∈

∈ ∈

(2.1)

It is readily seen that Fψ is independent of the choice of Ω. By working with half-densities, F
becomes G(R)-equivariant (see [22, Th. 6.1.5]) and we do not have to choose Haar measures.

When there is no confusion about additive characters, we shall write F instead of Fψ.

Every f ∈ R[X] induces a continuous endomorphism ξ 	→ fξ on S(X), namely by

pointwise multiplication. On the other hand, every f̌ ∈R[X̌] can be viewed as a differential

operator of constant coefficients on X(R), which can act on S(X) as follows: express

ξ ∈ S(X) as ξ = ξ0|Ω|1/2 as before. Hence, f̌ ξ0 make sense, and we put

f̌ ξ :=
(
f̌ ξ0

)
|Ω|1/2 ∈ S(X),

and the same for ξ ∈ C∞(X+), and so on.
(2.2)

This is clearly continuous in ξ and independent of the choice of Ω.
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A key observation is that the G-action on R[X̌] coincides with the G-action on differential

operators: indeed, it suffices to compare these actions on R[X̌]deg=1.

The same constructions also apply to the dual side. In particular, R[X] acts on S(X̌)

via differential operators of constant coefficients. In order to fix notations, we record the

following common sense.

Lemma 2.7. There exists a constant c(ψ) ∈
√
−1 ·R×, depending only on ψ, such that

for every homogeneous f ∈ R[X] and every ξ ∈ S(X), we have

F(fξ) = c(ψ)degf ·fF(ξ).

Proof. Choose volume forms and use (2.1) and (2.2) to reduce to classical Fourier

analysis.

The next issue is the dependence on ψ. For a∈R×, write ψa(t) =ψ(at) and let νa : X̌ → X̌

be the map y 	→ ay. We have ν∗a |Ψ|1/2 = |ν∗aΨ|1/2 = |a|dimX/2|Ψ|1/2 for all Ψ ∈
∧max

X. One

infers from (2.1) that

(Fψa,|Ω|ξ0)(x̌) = (Fψ,|Ω|ξ0)(ax̌), x̌ ∈ X̌,

Fψaξ = |a|−dimX/2ν∗a (Fψξ) .
(2.3)

To ψ and |Ω| is associated the dual Haar measure |Ψ|′ on X̌ characterized by∫
X̌

∣∣Fψ,|Ω|ξ0
∣∣2|Ψ|′ =

∫
X

|ξ0|2|Ω|.

• If |Ω| is replaced by t|Ω| where t ∈ R>0, then |Ψ|′ gets multiplied by t−1.

• If ψ is replaced by ψa, then |Ψ|′ gets multiplied by |a|dimX .

Definition 2.8. Let Ω ∈
∧max

X̌ \ {0}; take the Ψ ∈
∧max

X such that 〈Ψ,Ω〉 = 1.

Define the |Ψ|′ as before, with respect to |Ω| and ψ. Set

A(ψ) :=
|Ψ|
|Ψ|′ ∈ R>0.

By the foregoing discussions, A(ψ) depends only on ψ and X. Furthermore,

A(ψa) = |a|−dimXA(ψ), a ∈ R×.

Example 2.9. The classical Plancherel’s identity says that ψ(t) = e2πit satisfies

A(ψ) = 1.

Using the dual Haar measures |Ω| and |Ψ|′, the Fourier inversion formula reads

F−ψ,|Ψ|′Fψ,|Ω| = idS0(X).

Proposition 2.10. For every choice of ψ, we have F−ψFψ =A(ψ) · idS(X).

Proof. Take Ω, Ψ, |Ψ|′ as above. Let ξ = ξ0|Ω|1/2 ∈ S(X). Apply (2.1) twice to see

F−ψFψξ = F−ψ

(
Fψ,|Ω|ξ0 · |Ψ|1/2

)
=
(
F−ψ,|Ψ|Fψ,|Ω|ξ0

)
· |Ω|1/2

=
|Ψ|
|Ψ|′ ·

(
F−ψ,|Ψ|′Fψ,|Ω|ξ0

)
· |Ω|1/2 =A(ψ)ξ,

as asserted.
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Remark 2.11. These properties motivate us to define the self-dual version of Fψ,

namely,

F sd
ψ :=A(ψ)−1/2Fψ.

It satisfies F sd
−ψF sd

ψ = idS(X) and extends to a G(R)-equivariant isometry L2(X)
∼→ L2(X̌).

§3. Desiderata

Throughout this section, (G,ρ,X) is as in Hypothesis 2.1.

3.1. Coefficients of representations

Let π be an SAF representation in the sense of [4], also known as Casselman–Wallach

representation; note that Vπ is nuclear. Following [22, §4.1], we set

Nπ(X
+) := HomG(R)(π,C

∞(X+)),

where the HomG(R) is the continuous and G(R)-equivariant Hom-space between continuous

representations.

For η ∈Nπ(X
+) and v ∈ Vπ, we call η(v) ∈ C∞(X+) a generalize matrix coefficient of π

on X+(R), with values in half-densities.

Remark 3.1. Let C∞(X+;C) denote the usual topological vector space of C∞-

functions on X+(R). It is more common to consider scalar-valued generalized matrix

coefficients arising from HomG(R)(π,C
∞(X+;C)), yet there is little difference: Lemma 2.6

furnishes the isomorphism

HomG(R)(π,C
∞(X+))

∼→HomG(R)(π,C
∞(X+;C))

η 	→ η0 := η · |φ|1/4|Ω|−1/2

with φ, Ω as in Lemma 2.6.

Recall the following.

Theorem 3.2. The C-vector space Nπ(X
+) is finite-dimensional.

Proof. It suffices to show that HomG(R)(π,C
∞(O)) is finite-dimensional for each G(R)-

orbit O, which is closed and open in X+(R). This property is covered by [18, Th. A] if π

is irreducible. For the general case, one can fix a maximal compact subgroup K, replace

C∞(O) by its scalar version C∞(O;C) (see above), and pass to the Harish-Chandra module

V K-fini
π ; the main result of [19] then implies finiteness.

Let C∞
c (X+) := C∞

c (X+,L1/2). As explained in [22, §4.1] or [32, §13], C∞
c (X+) carries

a natural topology through

C∞
c (X+) = lim−→

Ω⊂X+(R)
compact

C∞
Ω (X+),

where C∞
Ω (X+) := {u ∈ C∞

c (X+) : Supp(u)⊂ Ω} carries the seminorms given by suprema

of derivatives, using any continuous metric on L1/2. It then becomes a smooth G(R)-

representation on an LF-space (= strict inductive limit of Fréchet spaces). The inclusion

C∞
c (X+) ↪→S(X) is equivariant and continuous. Upon choosing a volume form, these facts

reduce to the well-known setting of scalar-valued functions. Elements of C∞
c (X+)∨ are
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nothing but distributions on the open subset X+(R) of X(R), which fits into the classical

picture if we choose volume forms.

Notice that G(R) acts linearly on C∞
c (X+)∨, and the inclusion map C∞(X+) ↪→

C∞
c (X+)∨ is G(R)-equivariant.

Since dimCNπ(X
+) is finite, one can talk about holomorphic or meromorphic families

inside Nπ(X
+) unambiguously. Fix a maximal compact subgroup K ⊂G(R).

Definition 3.3. For any commutative ring A, set ΛA :=X∗
ρ(G)⊗ZA.

Lemma 3.4. Let {ηω}ω∈Ω be a family of elements in Nπ(X
+), where Ω is a connected

complex manifold. Let λ ∈ ΛC. The following are equivalent:

(i) {ηω}ω∈Ω is a holomorphic family in Nπ(X
+).

(ii)
∫
X+(R)

ηω(v)|f |λξ is holomorphic in ω for all v ∈ V K-fini
π and ξ ∈ C∞

c (X+).

Proof. Clearly, (i) implies (ii). Now, assume (ii) and write Zλ(η,v,ξ) :=
∫
X+(R)

η(v)|f |λξ
(temporarily, but see Proposition 6.5). Observe that if η ∈ Nπ(X

+) satisfies Zλ(η,v,ξ) = 0

for all (v,ξ) ∈ V K-fini
π ×C∞

c (X+), then η(v) = 0 for all v ∈ V K-fini
π ; hence, η = 0 by its

continuity.

Since dimCNπ(X
+) is finite, these linear functionals generate Nπ(X

+)∨ and there is a

finite subset F ⊂ V K-fini
π ×C∞

c (X+) such that

Nπ(X
+) ↪→ CF

η 	→ (Zλ(η,v,ξ))(v,ξ)∈F .

As ω 	→ Zλ(ηω,v,ξ) is holomorphic for each (v,ξ), the property (i) follows at once.

Corollary 3.5. Let {ηω}ω∈Ω be a holomorphic family of elements inside Nπ(X
+),

where Ω is a connected complex manifold. For every λ ∈ ΛC, the family {ηω|f |λ}ω∈Ω inside

Nπ⊗|ω|λ(X
+) is also holomorphic.

Proof. Apply the characterization (ii) in Lemma 3.4.

Using the embedding X+ ↪→X, we let D(X+) act on the left of C∞(X+) as follows.

Definition 3.6. Let u= u0|Ω|1/2 ∈C∞(X+) where u0 ∈C∞(X+;C) and Ω∈
∧max

X̌ \
{0}. For D ∈ D(X+), set

Du := (Du0) · |Ω|1/2.

This makes C∞(X+) into a left D(X+)-module, independently of the choice of Ω. The

recipe is compatible with (2.2).

Write D 	→ gD= gDg−1 for the left action of g ∈G on differential operators, and similarly

for functions, volume forms, and so forth. It is routine to see that gu= gu0 · |gΩ|1/2 and

g(Du) = g(Du0) · |gΩ|1/2 = (gD)(gu0) · |gΩ|1/2

= (gD)(gu).

The case of real-analytic differential operators is completely analogous.

Definition 3.7. Make Nπ(X
+) into a left D(X+)G-module by setting Dη to be v 	→

D(η(v)), for all η ∈ Nπ(X
+) and D ∈ D(X+)G. More generally, Nπ(X

+) is a left module

under the ring of G(R)-invariant real-analytic differential operators on X+(R).

https://doi.org/10.1017/nmj.2022.21 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.21


GENERALIZED ZETA INTEGRALS ON CERTAIN REAL PREHOMOGENEOUS VECTOR SPACES 65

All the foregoing constructions apply to the dual triplet (G,ρ̌, X̌) as well. By Proposi-

tion 2.2 and the canonicity of density bundles, for any given π, we can take a nondegenerate

relative invariant f to obtain an isomorphism

Nπ(X
+) Nπ(X̌

+)

η (f−1df)∗ ◦η,

∼

where (f−1df)∗ : C∞(X+)
∼→ C∞(X̌+) is the transport of structure applied to half-

densities.

3.2. Statement of the main theorems

The following constructions and statements are extracted from [21], [22].

Definition 3.8. Choose basic relative invariants f1, . . . ,fr ∈ R[X] as in §2.1, with

eigencharacters ω1, . . . ,ωr. For every λ=
∑r

i=1ωi⊗λi ∈ ΛC, we write

|f |λ :=
r∏

i=1

|fi|λi , |ω|λ :=
r∏

i=1

|ωi|λ,

so that |f |λ :X(R)→ R≥0 has G(R)-eigencharacter |ω|λ.

For λ =
∑r

i=1ωi⊗λi ∈ ΛC and κ =
∑r

i=1ωi⊗κi ∈ ΛR, the notation Re(λ) ≥
X
κ signifies

that Re(λi)≥ κi for all i ; the notation Re(λ)�
X

0 signifies that Re(λi)� 0 for all i.

Definition 3.9 (Generalized zeta integral). Let π be an SAF representation of G(R).

For all η ∈ Nπ(X
+), v ∈ Vπ, ξ ∈ S(X), and λ ∈ ΛC with Re(λ) �

X
0 (see the discussion

below), set

Zλ(η,v,ξ) :=

∫
X+(R)

η(v)|f |λξ.

The integrand is a density on X+(R); hence, the integral makes sense. If we write ξ =

ξ0|Ω|1/2 and η(v) = η0(v)|φ|−1/4|Ω|1/2 (as in Remark 3.1), arrange that |φ|1/4 = |f |λ0 for

some λ0 ∈ 1
4ΛZ, and consider the invariant measure dμ := |φ|−1/2|Ω| on X+(R), then

Zλ(η,v,ξ) =

∫
X(R)

η0(v)|f |λ−λ0ξ0|Ω|

=

∫
X+(R)

η0(v)|f |λ+λ0ξ0dμ.

We will also view Zλ(η, ·, ·) as a family of bilinear forms in (v,ξ). Implicit in the definition

above is the convergence of Zλ(η,v,ξ) for Re(λ)�
X

0. This is made precise in the following

main result.

Theorem 3.10. There is a constant κ= κ(π) ∈ΛR, depending only on π and (G,ρ,X),

such that the integral in Definition 3.9 converges whenever Re(λ) ≥
X

κ, for all v,ξ, and

η ∈Nπ(X
+). Inside this range of convergence,
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(i) Zλ(η,v,ξ) is jointly continuous in (v,ξ);

(ii) λ 	→ Zλ(η,v,ξ) is holomorphic, when viewed as a function valued in Bil(Vπ,S(X)) �(
Vπ⊗̂S(X)

)∨
;

(iii) Zλ(η,v,ξ) is bounded in vertical strips as a function in λ for any pair (v,ξ).

Here, Bil(Vπ,S(X)) stands for the space of jointly continuous bilinear forms, ⊗̂ stands

for the completed tensor product for nuclear spaces, and (· · ·)∨ stands for the continuous

dual.

For the meaning of holomorphy for
(
Vπ⊗̂S(X)

)∨
-valued functions, see §1.5.

Remark 3.11. The theory is vacuous unless Nπ(X
+) �= {0}, that is, unless the

representation π is distinguished by X+.

Theorem 3.12. The zeta integrals Zλ extend meromorphically to all λ ∈ ΛC. More

precisely, fix η ∈Nπ(X
+) and a ∈ ΛZ with a >

X
0, then there exist

• t ∈ Z≥1 and affine hyperplanes H1, . . . ,Ht in ΛC whose vectorial parts �Hi are all

Q-rational;

• a holomorphic function λ 	→ L(η,λ) on ΛC, not identically zero;

such that

• the function in λ

LZλ(η,v,ξ) := L(η,λ)Zλ(η,v,ξ), (v,ξ) ∈ Vπ×S(X),

initially defined only for Re(λ)≥
X
κ, extends to a holomorphic function

[λ 	→ LZλ(η, ·, ·)] : ΛC → Bil(Vπ,S(X))�
(
Vπ⊗̂S(X)

)∨
,

which yields the meromorphic continuation of Zλ;

• the polar set of Zλ is a union of translates Hi−ma, for various 1≤ i≤ t and m ∈ Z≥1.

Furthermore:

(i) one can take L(η,λ) =
∏m

i=1Γ(αi(λ))
−1 where α1, . . . ,αm are certain affine functions

on ΛC, whose gradients are among �H1, . . . , �Ht;

(ii) the jointly continuous bilinear form LZλ(η, ·, ·) on (π⊗|ω|λ)×S(X) is G(R)-invariant

for all λ ∈ ΛC.

Note that we do not assert that L(η,λ) is the greatest common divisor of the zeta

integrals.

In view of the results above, Zλ(η,v,ξ) may now be viewed as a meromorphic family

of trilinear forms in (η,v,ξ) on the whole ΛC, which are jointly continuous (recall that

dimCNπ(X
+)<+∞).

For the dual triplet (G,ρ̌, X̌), we also form the space Nπ(X̌
+). Since X∗

ρ(G) = X∗
ρ̌(G),

the same ΛC parameterizes both zeta integrals Zλ (on X ) and Žλ (on X̌). Fix basic relative

invariants f̌1, . . . , f̌r for (G,ρ̌,X̌) and write |f̌ |λ :=
∏r

i=1 |f̌i|λi , by which we define the zeta
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integrals Žλ. Observe that |ω|λ : G(R) → R×
>0 does not depend on the eigencharacters

ω1, . . . ,ωr: it is determined by λ ∈ ΛC ⊂X∗(G)⊗C, and thus the notation works uniformly

for both (G,ρ,X) and (G,ρ̌, X̌).

Now comes the local functional equation. For π as above and η ∈Nπ(X
+), put

ηλ : v 	→ η(v)|f |λ, (3.1)

which belongs to Nπ⊗|ω|λ(X
+) for all λ ∈ ΛC. The same definition applies to X̌+ as well.

Theorem 3.13. Assume that π is an SAF representation with central character. There

is a meromorphic family of linear maps γ(π,λ) :Nπ(X̌
+)→Nπ(X

+) (i.e., its matrix entries

are meromorphic in λ), depending on ψ, such that

Žλ (η̌, v,Fξ) = Zλ (γ(λ,π)(η̌),v,ξ) ,

for all η̌ ∈Nπ(X̌
+), v ∈ Vπ, ξ ∈ S(X), and all λ ∈ ΛC off the poles of Zλ and Žλ.

Moreover:

(i) γ(π,λ) is uniquely characterized by this equality;

(ii) if L(η̌,λ) is as in Theorem 3.12, then L(η̌,λ)γ(π,λ) is holomorphic in λ;

(iii) γ(π,λ+μ)(η̌)λ = γ(π⊗|ω|λ,μ)(η̌λ) for all μ,λ, η̌ (see (3.1)).

Theorems 3.10, 3.12, and 3.13 are stated as axioms in [22, Chap. 4] in an abstract setting;

as to the special case of prehomogeneous vector spaces, see also [22, Chap. 6]. Theorems

3.10 and 3.12 have also appeared in [21] when X+ is an essentially symmetric homogeneous

G-space. It is routine to see that these assertions are unaffected by the choice of basic relative

invariants f1, . . . ,fr (see [22, Lem. 4.5.4] for a precise statement).

The proofs of the theorems above will occupy the rest of this article.

We close this subsection by addressing the dependence of γ-factors on the additive

character ψ of R. Let a ∈ R× and define:

• d(λ) =
∑r

i=1λi ·deg f̌i for all λ=
∑r

i=1ωi⊗λi ∈ ΛC;

• ma : C∞(X̌+) → C∞(X̌+) is the pullback along the automorphism νa−1 : y 	→ a−1y of

X̌+(R), so that ma is G(R)-equivariant.

We write γ(π,λ) = γ(π,λ;ψ), F =Fψ, and so forth. Denote the γ-factor defined relative to

(G,ρ̌,X̌) and ψ by γ̌(π,λ;ψ).

Proposition 3.14. For any a ∈ R×, let ψa be the additive character x 	→ ψ(ax) of R.

Then:

(i) γ̌(π,λ;ψ−1)γ(π,λ;ψ) = A(ψ) · idNπ(X̌+) as meromorphic families in λ, where A(ψ) ∈
R>0 is as in Definition 2.8;

(ii) γ(π,λ;ψa) = |a|−d(λ)− 1
2 dimXγ(π,λ;ψ) ◦ma for all a ∈ R×, as meromorphic families

in λ.

Proof. Both assertions rely on the uniqueness of γ-factors in Theorem 3.13. Assertion

(i) results from Proposition 2.10. As to (ii), we apply (2.3) to see that when Re(λ) �̌
X

0,
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Žλ (η̌, v,Fψaξ) = |a|−dimX/2

∫
X̌+(R)

η̌(v)|f̌ |λν∗a(Fψξ)

= |a|−dimX/2

∫
X̌+(R)

ν∗a−1

(
η̌(v)|f̌ |λ

)
Fψξ (∵ change of variables)

= |a|−d(λ)−(dimX/2)

∫
X̌+(R)

ma(η̌(v)) · |f̌ |λ ·Fψξ

= Zλ

(
|a|−d(λ)−(dimX/2)γ(λ,π;ψ)◦ma(η̌),v,ξ

)
.

The equality extends by meromorphic continuation, and (ii) follows.

Remark 3.15. If we define γsd(π,λ;ψ) := A(ψ)−1/2γ(π,λ;ψ), that is, by replacing Fψ

by its self-dual version F sd
ψ := A(ψ)−1/2Fψ (Remark 2.11) in the characterization of γ-

factors, the conclusions become:

(i) γ̌sd(π,λ;ψ−1)γ
sd(π,λ;ψ) = idNπ(X̌+),

(ii) γsd(π,λ;ψa) = |a|−d(λ)γsd(π,λ;ψ)◦ma,

where in (ii) we used A(ψa) = |a|−dimXA(ψ). In particular, γsd(π,0;ψa) = γsd(π,0;ψ)◦ma.

This mirrors the behavior of local root numbers over R described in [31, (3.6.6)], which is

also formulated in terms of self-dual Haar measures. See also Remark 3.18.

An equivalence way is to keep the formula for Fψ, but renormalize the Haar measure on

R to be self-dual with respect to ψ; this also normalizes the integration of densities. See

[22, Lem. 6.1.4].

3.3. Examples

In all the examples below, we fix Ω ∈
∧max

X̌, Ψ ∈
∧max

X with 〈Ω,Ψ〉= 1.

Example 3.16 (Sato–Shintani). Let (G,ρ,X) be as in Hypothesis 2.1, but take π = 1,

the trivial representation. Decompose X+(R) into G(R)-orbits
⊔k

i=1Oi. For 1 ≤ i ≤ k, let

ci be the function on X+(R), which is 1 on Oi and zero elsewhere. Take an invariant half-

density |φ|−1/4|Ω|1/2 as in Lemma 2.6, with |φ|1/4 = |f |λ0 where λ0 ∈ 1
4ΛZ (see Definition

3.9). Then

Ck N1(X
+),

(0, . . . , 1
ith

, . . . ,0) ηi := ci|φ|−1/4|Ω|1/2.

∼

By choosing a nondegenerate relative invariant to obtain X+ ∼→ X̌+, the G(R)-orbits in

X+(R) and X̌+(R) are in bijection, both labeled by {1, . . . ,k}. In particular, we can define

η̌1, . . . , η̌k.

For φ, λ0 as above, 1≤ i≤ k and Re(λ)�
X

0, we obtain

Zλ (ηi,1, ξ) =

∫
Oi

|f |λ−λ0ξ0|Ω|.

By recalling the definition of λ0 and identifying ΛC with Cr by the basis ω1, . . . ,ωr, we

see that Zλ (ηi,1, ξ) equals the archimedean local zeta integral Zi(λ+λ0, ξ0) defined in [27,

§1.4].
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For X̌, we have Ži(· · ·) as well. Observe that:

• the avatar of λ0 for X̌ is −λ0;

• X∗
ρ(G)⊗C=X∗

ρ̌(G)⊗C, but their isomorphisms to Cr induced by basic eigencharacters

differ by −1, by Proposition 2.3.

Use the standard additive character ψ in Example 2.9 to perform Fourier transform.

Together with the observations above, the theorem R in [27, p. 471] gives meromorphic

functions (Γij)1≤i,j≤k such that for all ξ = ξ0|Ψ|1/2 ∈ S(X̌),

Zi (λ,Fξ0) =

k∑
j=1

Γij(λ−2λ0)Žj (λ−2λ0, ξ0) .

This can be rewritten as

Zλ−λ0 (ηi,1,Fξ) =
k∑

j=1

Γij(λ−2λ0)Žλ−λ0 (η̌j ,1, ξ) .

In our framework, γ̌(λ,1;ψ) is thus represented by the matrix (Γij(λ−λ0))1≤i,j≤k of

meromorphic functions, with respect to the bases {ηi}i and {η̌j}j . Proposition 3.14 implies

that γ(λ,1;ψ) = γ(λ,1,ψ−1)◦m−1 is represented by the matrix (Γij(λ−λ0))
−1
1≤i,j≤k ·P−1,

where P−1 is the matrix corresponding to the permutation of the G(R)-orbits in X̌+(R)

induced by y 	→ −y.

Example 3.17 (Godement–Jacquet). Let D be a central simple R-algebra of dimension

n2, and let G=D××D× act on X :=D, by

x h−1xg.
(g,h)

This is a regular prehomogeneous vector space with X+ =D×, which is spherical (in fact,

the group case of a symmetric space). The relative invariants are generated by the reduced

norm Nrd, up to R×. Accordingly, X∗
ρ(G) is generated by (g,h) 	→Nrd(h)−1Nrd(g).

We may identify X with X̌ via the perfect pairing (x,y) 	→Trd(xy) on X×X, where Trd

is the reduced trace. As discussed in [22, Lem. 6.4.1], (G,ρ̌, X̌) then becomes X with the

flipped action x
(g,h)	−−−→ g−1xh, and (G,ρ,X) is regular. In fact, Nrd is nondegenerate, and

the induced equivariant isomorphism X+ ∼→ X̌+ is x 	→ x−1 (cf. [22, Prop. 6.4.2]). We still

write X+ and X̌+ in order to distinguish the G-actions. Note that Nrd is a basic relative

invariant for both X and X̌, but with opposite eigencharacters.

The irreducible SAF representations π with Nπ(X
+) �= {0} take the form σ� σ̌, where

σ is an irreducible SAF representation of D×(R). Ditto for Nπ(X̌
+). Note that |det |−n|Ω|

defines a Haar measure on D×(R). The spaces Nσ�σ̌(X
+) and Nσ�σ̌(X̌

+) are spanned,

respectively, by matrix coefficient maps

ηΩ : v⊗ v̌ 	→ 〈v̌,π(·)v〉|det |−n/2|Ω|1/2,
η̌Ψ : v⊗ v̌ 	→ 〈π̌(·)v̌, v〉|det |−n/2|Ψ|1/2.

With these choices, we write ξ = ξ0|Ω|1/2 ∈ S(X), ξ̌ = ξ̌0|Ψ|1/2 ∈ S(X̌), and let ZGJ(· · ·)
(resp. γGJ(· · ·)) stand for the usual Godement–Jacquet zeta integrals in [11, (15.4.3)] (resp.

the usual Godement–Jacquet γ-factors). Here, we choose the standard additive character
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ψ as in Example 2.9. It turns out that

Zλ (ηΩ,v⊗ v̌, ξ) = ZGJ

(
λ+

1

2
,〈v̌,π(·)v〉, ξ0

)
,

Žλ (η̌Ψ,v⊗ v̌, ξ) = ZGJ

(
−λ+

1

2
,〈π̌(·)v̌, v〉, ξ0

)
,

γ(σ� σ̌,λ)(η̌Ψ) = γGJ

(
λ+

1

2
,σ

)
(ηΩ),

so that functional equation in Theorem 3.13 reduces to the usual Godement–Jacquet

functional equation. We refer to [22, §6.4] for detailed explanations when D is split; the

general case is analogous.

Remark 3.18. In the Godement–Jacquet case, the automorphism η̌ 	→ ma ◦ η̌ of

Nπ(X̌
+) (Proposition 3.14) is given by ωσ(a)

−1 · id, for all a ∈ R×.

Remark 3.19. If a general additive character ψ is used, one has to use the self-dual

versions F sd
ψ and γsd (Remark 3.15) in the functional equation to regain compatibility with

Godement–Jacquet.

3.4. The complex case

Hypothesis 2.1 and the main theorems in §3.2 can all be formulated over C. The complex

case can be reduced to the previous case over R as follows.

Let us write Res := ResC|R for the functor of restriction of scalars à la Weil along C|R,
applied to C-varieties, and so forth. If a triplet (G,ρ,X) over C satisfies Hypothesis 2.1,

so does (ResG,Resρ,ResX); recall that (ResX)(R) = X(C), (ResX+)(R) = X+(C), and

(ResG)(R) =G(C). There are canonical isomorphisms

X∗(ResG) X∗(G)

X∗
Resρ(ResG) X∗

ρ(G).

∼

∼

⊂ ⊂

If f ∈ C(X) is a relative invariant of eigencharacter ω ∈ X∗
ρ(G), then its norm f · f ∈

R(ResX) has the eigencharacter in X∗
Resρ(ResG) corresponding to ω.

Taking contragredient commutes with Res, since the pairing trC|R ◦〈·, ·〉 :X(C)×X̌(C)→
R is perfect. Fix an additive character ψ of R and take the additive character ψC :=ψ◦trC|R
of C. The Schwartz spaces for X(C) and (ResX)(R) can be identified, and so do the Fourier

transforms.

Finally, an SAF representation π of G(C) is the same as an SAF representation of

(ResG)(R) on the same Fréchet space. The recipes above identifies Nπ(X
+) (over C) with

Nπ(ResX
+) (over R). Hence, the generalized matrix coefficients on X+(C) are the same as

those on (ResX+)(R). All in all, the generalized zeta integral (Definition 3.9) for (G,ρ,X)

reduces immediately to the case for (ResG,Resρ,ResX), and the theorems in §3.2 carry

over verbatim.

§4. Convergence and meromorphic continuation

Throughout this section, we fix a triplet (G,ρ,X) as in Hypothesis 2.1 and an SAF

representation π of G(R).
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4.1. Proof of convergence

Fix η ∈ Nπ(X
+) and write η = η0|φ|−1/4|Ω|1/2 for some chosen Ω ∈

∧max
X̌ \{0}.

The argument for Theorem 3.10 is the same as that of [21, Th. 6.6.4]. It is based on the

following result. Some terminologies from real algebraic geometry such as Nash functions

will be needed; we refer to [5, Chap. 8] for details.

Proposition 4.1. There exist a continuous seminorm q :Vπ →R≥0 and a Nash function

p :X+(R)→ R≥0, such that

|η0(v)(x)| ≤ q(v)p(x), v ∈ Vπ, x ∈X+(R).

Proof. First, by [23, Th. 10.5], there exists a weight function w :X+(R)→R≥1 together

with a continuous seminorm q : Vπ → R≥0 such that:

• w is continuous and subanalytic,

• {x ∈X+(R) : w(x)≤B} is compact for all B > 0,

• |η0(v)(x)| ≤ w(x)q(v) for all v ∈ Vπ and x ∈X+(R).

In fact, this can be deduced from the moderate growth of SAF representations. It is also

deducible from the finer results in [17].

Next, we embed X as an open dense subset of a smooth projective R-variety X and

let ∂X := X \X+. By [23, Prop. 7.5], 1/w extends uniquely to a subanalytic continuous

function X(R)→ R≥0, still denoted as 1/w, whose zero locus is exactly ∂X(R).

Note that X(R) is affine in the real sense (see [5, Th. 3.4.4]). Therefore, ∂X(R) is also

the zero locus of some polynomial function p0 :X(R)→R≥0 (see [5, Prop. 2.1.3]). We claim

that there exist constants a ∈ Z≥1 and C ∈ R>0 such that

p0 ≤ C · (1/w)a overX(R).

Indeed, this is due to the compactness of X(R) and 	Lojasiewicz’s inequality for subanalytic

functions (see [23, Th. 6.4]).

All in all, we have

|η0(v)(x)| ≤ w(x)q(v)≤
(
Cp−1

0

)1/a
q(v), x ∈X+(R).

Notice that Cp−1
0 and its ath root are positive Nash functions on X+(R). This completes

the proof.

The notations below are the same as those in Theorem 3.10.

Proof of Theorem 3.10. As in Definition 3.9, we write

Zλ(η,v,ξ) =

∫
X(R)

η0(v)|f |λ−λ0ξ0|Ω|,

where ξ0 ∈ S0(X).

By [21, Lem. 6.6.5], whose proof applies under our Hypothesis 2.1, there exist μ ∈ ΛR

and a Nash function p1 on X(R) such that |f |μp≤ p1. Hence,

|f |Re(λ)−λ0p≤ |f |Re(λ)−λ0−μp1.

Therefore, Proposition 4.1 implies∣∣η0(v)|f |λ−λ0ξ0
∣∣≤ q(v)|f |Re(λ)−λ0−μp1|ξ0|. (4.1)
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We claim that, when Re(λ) is constrained in some compact subset C ⊂ ΛR satisfying

θ ≥
X
λ0+μ for all θ ∈ C, the function |f |Re(λ)−λ0−μ is uniformly bounded by a polynomial

function. To see this, take λ∗ =
∑r

i=1 2λ
∗
i ⊗ωi ∈ 2ΛZ such that λ∗ ≥

X
θ−λ0−μ for all θ ∈C.

Then

|f |Re(λ)−λ0−μ ≤
r∏

i=1

(
1+ |fi|2λ

∗
i

)
.

On the other hand, p1 is Nash over X(R), and by [5, Prop. 2.6.2], every Nash function

on X(R) is bounded by some polynomial. It follows that the right-hand side of (4.1) is

integrable over X(R) after multiplied by |Ω|, when Re(λ)�
X

0. The implied lower bound κ

of Re(λ) depends only on π and η. As dimCNπ(X
+) is finite, κ can even be made uniform

in η.

When (v,ξ) is fixed, the holomorphy in λ and the boundedness in vertical strips in the

range of convergence follow from (4.1) and the bound on |f |Re(λ)−λ0−μ just obtained.

In view of the topology on S(X), the continuity of Zλ(η,v,ξ) in ξ follows easily from

(4.1). The continuity in v follows from that of q(·). Since Vπ and S(X) are Fréchet, joint

continuity in (v,ξ) follows.

4.2. Proof of meromorphic continuation

Consider the sheaves DX+ on X+ and DX+
C

on X+
C

(recall §1.5). Any distribution u on

X+(R) generates a DX+-module DX+ ·u, which complexifies into DX+
C

·u on X+
C
. We refer

to [21], [23] for more a more detailed review of algebraic D-modules, including especially

the notion of holonomicity.

Fix a maximal compact subgroup K ⊂G(R).

Proposition 4.2. Let η ∈Nπ(X
+), written as η= η0|Ω|1/2 for some Ω∈

∧max
X̌ \{0},

and let v ∈ V K-fini
π . Then DX+

C

·η0(v) is a holonomic DX+
C

-module on X+
C
.

Proof. Since η0(v) is K -finite and Z(g)-finite, while X+
C

is a spherical homogeneous

space, the holonomicity is assured by [23, Prop. 10.4]. As remarked in [23], this can also be

proved via the arguments of [1].

The notations below are the same as those in Theorem 3.12.

Proof of Theorem 3.12. The argument for meromorphic continuation is exactly the

same as [21, Ths. 6.8.2 and 6.8.4]. It proceeds in two stages.

First, for v ∈ V K-fini
π , one employs the method of Bernstein–Sato b-functions as explained

in [8, Appendice]. The sole input here is the holonomicity established in Proposition 4.2.

This step corresponds to [21, Th. 6.8.2]; it also produces the holomorphic function L(η,λ).

Second, let S(G) be the algebra of Schwartz measures on G(R), which acts on S(X) and

also on any SAF representation of G(R). One uses Vπ = π(S(G))V K-fini
π to treat general

v ∈ Vπ. This corresponds to [21, Th. 6.8.4], the main analytic device being the Gelfand–

Shilov principle of [21, Prop. 6.8.3]. Specifically, the recipe is

v =

m∑
i=1

π(Ξi)vi =⇒ LZλ (η,v,ξ) :=

m∑
i=1

LZλ

(
η,vi, Ξ̌iξ

)
,
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where vi ∈ V K-fini
π , Ξi ∈ S(G), and Ξ̌i(g) = Ξi(g

−1). In [21], this is shown to be well defined

and compatible with the original definition in the range of convergence.

The joint continuity and G(R)-invariance of the bilinear form LZλ(η, ·, ·) are also

established in [21].

Corollary 4.3. Let λ ∈ ΛC and ξ ∈ S(X).

(i) Define η 	→ ηλ as in (3.1), then

Zμ+λ(η,v,ξ) = Zμ (ηλ,v,ξ)

as meromorphic families in μ ∈ ΛC.

(ii) Suppose that λ ∈ΛZ and h ∈R[X] is a relative invariant of eigencharacter λ satisfying

h= |f |λ on X(R), then

Zμ+λ(η,v,ξ) = Zμ (η,v,hξ) .

Proof. For both (i) and (ii), we begin with the case that μ and λ+μ are both in the

range of convergence for zeta integrals. Then the equalities hold by Definition 3.9. The

general case follows by meromorphic continuation.

4.3. Order of tempered distributions

The results below will be applied to prove the functional equation.

Choose a basis for the R-vector space X. This gives rise to the dual basis of X̌, the

standard volume form Ω, and the standard norm ‖ · ‖ on X(R) � Rn. The elements of

S(X)∨ � S0(X)∨ can be viewed as tempered distributions on X(R).

Recall that the topology on S0(X) is determined by the seminorms

‖ξ0‖a,b := sup
|α|≤a
|β|≤b

sup
x∈X(R)

∣∣xβ ·∂αξ(x)
∣∣ , a,b ∈ Z≥0,

where α= (α1, . . . ,αn), β = (β1, . . . ,βn), |α| :=
∑

iαi, and ∂α = ∂α1
1 · · ·∂αn

n , xβ = xβ1

1 · · ·xβn
n

are the standard terminologies of multi-indices.

Definition 4.4. Consider (a,b) ∈ Z2
≥0. We say that a tempered distribution Z on X

has order ≤ (a,b) if there exists a constant C > 0 such that |Z(ξ0)| ≤ C‖ξ0‖(a,b) for all

ξ0 ∈ S0(X).

Some basic facts:

• Every tempered distribution has order ≤ (a,b) for sufficiently large a,b.

• If a′ ≥ a and b′ ≥ b, then having order ≤ (a,b) implies having order ≤ (a′, b′).

The following is also well known.

Proposition 4.5 (See, e.g., [32, Th. 25.1] and its proof). Suppose that Ž ∈ S(X̌)∨ has

order ≤ (a,b). Then Ž ◦F ∈ S(X)∨ has order ≤ (b,a+n+1).

Next, consider the tempered distributions Zλ(η,v, ·) for λ in the range of convergence.

Proposition 4.6. Let η ∈Nπ(X
+) and v ∈ Vπ. For κ as in Theorem 3.10, there exists

b ∈ Z≥0 such that Zλ(η,v, ·) has order ≤ (0, b) for all v ∈ Vπ and all λ ∈ ΛC with Re(λ)≥
X
κ.
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Proof. This stems from the estimate (4.1) in the proof of Theorem 3.10 and the

subsequent discussions: with the notations therein, it suffices to take an even b such that

|f(x)|Re(λ)−λ0−μp1(x)≤ C(1+‖x‖2)b/2

for all x ∈X(R), where C is some constant.

For the next proposition, take a holomorphic function L(η,λ) and define LZλ(η, ·, ·) as

in Theorem 3.12. We shall also fix a maximal compact subgroup K ⊂G(R).

Proposition 4.7. Let η ∈ Nπ(X
+) and v ∈ V K-fini

π . For every c ∈ ΛR, there exists

(a,b) ∈ Z2
≥0 such that LZλ(η,v, ·) has order ≤ (a,b) for all λ ∈ ΛC with Re(λ)≥

X
c.

Proof. Recall from [21, Prop. 6.4.3] or [8, Prop. A.1] that the meromorphic continuation

of Zλ(η,v, ·) is achieved by applying certain algebraic differential operators to η(v)|f |λ, with
the effect of shifting the domain of Zλ(η,v, ·) leftward, and possibly creates poles. Starting

from {λ : Re(λ) ≥
X

κ} on which Zλ(η,v, ·) has order ≤ (0, b′) for some b′ ≥ 0, one covers

{λ : Re(λ) ≥
X
c} after a finite number of such shifts. This procedure increases the order by

some pair of positive integers. Our assertion follows.

§5. Invariant differential operators

5.1. On certain Capelli operators

In this subsection, we take G to be a connected reductive C-group, and the algebraic

varieties are taken over C. For any smooth G-variety Z, there is a natural homomorphism

U(g)→D(Z) which restricts to Z(g)→D(Z)G.

Now, consider a finite-dimensional C-vector space X with a right G-action, given by a

homomorphism ρ :G→GL(X) between algebraic groups.

Definition 5.1. For X as above, we say X is multiplicity-free if X is spherical as a

G-variety. Equivalently, the left G-module C[X] decomposes with multiplicity one.

Being multiplicity-free implies the existence of an open dense G-orbit X+ ⊂X; hence,

(G,ρ,X) is a prehomogeneous vector space. In contrast with Hypothesis 2.1, here X+ is

not necessarily affine and (G,ρ,X) is not necessarily regular.

Lemma 5.2. For a multiplicity-free G-space X, we have D(X+)G =D(X)G. Moreover,

D(X)G is commutative and finitely generated as a Z(g)-module.

Proof. We recall from [15, p. 271] that Knop defined an algebra Z(Z) := U(Z)G for any

smooth G-variety Z, where U(Z)⊂D(Z) is the subalgebra of completely regular differential

operators. A key fact in [15, p. 262] is that U(Z) is a birational-equivariant invariant of Z,

and hence so is Z(Z); furthermore, Z(Z) =D(Z)G when Z is spherical, by [15, pp. 254–255].

Applying these results to Z ∈ {X,X+}, we conclude that D(X+)G = Z(X+) = Z(X) =

D(XG). The commutativity of D(X)G and finite generation over Z(g) are included in the

main theorem in [15].
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Fix a Borel subgroup B ⊂G and set T :=B/Bder. Let X be a multiplicity-free G-space.

There are decompositions

C[X] =
⊕

λ∈X∗(T )+

Pλ,

C[X̌] =
⊕

λ∈X∗(T )+

Dλ,
(5.1)

where

• X∗(T )+ denotes the set of dominant weights in X∗(T ),

• Pλ is the simple G-submodule with lowest weight −λ, occurring with multiplicity ≤ 1,

and the decomposition of C[X̌] is obtained from that of C[X] by duality; in particular, Dλ

is the simple G-submodule with highest weight λ, with multiplicity ≤ 1. Thus, X̌ is also a

multiplicity-free G-space.

Note that in [16], G acts on the left of X. One switches between left and right actions

on X by g−1x= xg, and the left G-module C[X] remains unaffected. Ditto for C[X̌].

Theorem 5.3 (See [12] or [16]). For a multiplicity-free G-space X, we have an

isomorphism of C-algebras

C : C[X× X̌]G
⊕

λ∈X∗(T )+

(
Pλ⊗

C

Dλ

)G

D(X)G,

∑
λ pλ⊗ qλ

∑
λ pλqλ,

∼

where we regard pλ ∈ C[X] and qλ ∈ C[X̌] as algebraic differential operators on X.

Notice that if G, X descend to a subfield of C, so does C.

We will mainly use the terms with dimPλ = 1 = dimDλ. In other words, we consider

relative invariants p ∈ C[X] and q ∈ C[X̌] with opposite eigencharacters −λ and λ. Then

p⊗ q are automatically G-invariant and C(p⊗ q) is an instance of the Capelli operators

introduced in [12].

5.2. Knop’s Harish-Chandra isomorphism

For any smooth G-variety X, Knop [15, Th. 6.5] has defined a Harish-Chandra

isomorphism which realizes Z(X) as the coordinate algebra of some explicitly defined variety.

Below we review the simpler case of multiplicity-free spaces, following [16].

Fix a multiplicity-free G-space X (Definition 5.1) over C, with open G-orbit X+. Fix a

Borel subgroup B ⊂ G, and let T := B/Bder. Let W be the corresponding abstract Weyl

group acting on T (see [10, p. 137]). Define:

• Λ(X)+ := {λ ∈⊂X∗(T ) : Pλ �= 0} where Pλ is as in (5.1), and let Λ(X) ⊂X∗(T ) be the

subgroup generated by Λ(X)+;

• a∗X := Λ(X)⊗R, which is a subspace of a :=X∗(T )⊗R;

• ρ := 1
2

∑
α ∈ a∗ where α ranges over the positive roots;

• WX : the little Weyl group of X+, which is a reflection group acting on a∗X and embeds

into the normalizer NW (ρ+a∗X).
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By [16, Sect 3.2], the submonoid Λ(X)+ in X∗(T ) is generated by linearly independent

elements χ1, . . . ,χm in X∗(T ), and its Z-span Λ(X) is the group of all weights of B -

eigenfunctions in C(X̌). We refer to [16] for further details.

For all D ∈D(X)G and λ∈Λ(X), the action of D on Pλ must be a scalar, say cD(λ), due

to multiplicity-freeness. We obtain a map D(X)G →Maps(Λ(X)+,C), mapping D to cD.

Theorem 5.4 (Knop [16, Sect 4.8]). For every D ∈ D(X)G, the function cD extends

uniquely to a polynomial cD ∈ C[a∗X ], and the map

HC :D(X)G C [ρ+a∗X ]

D [x 	→ cD(x−ρ)]

is an injective homomorphism of C-algebras, with image equal to C[ρ+ a∗X ]WX or equiva-

lently C[(ρ+a∗X)//WX ], where // denotes the categorical quotient.

Remark 5.5. Whenever D(X)G acts on some C-vector space V and v ∈ V is a joint

generalized eigenvector therein, we may attach an infinitesimal character χv to v ; it is an

element of (ρ+a∗X)//WX . Specifically, for all D ∈ D(X)G, we have

N � 0 =⇒ (D−HC(D)(χv) · idV )N v = 0.

As in §2.1, define X∗
ρ(G) ⊂ X∗(G) to be the lattice of eigencharacters of relative

invariants. In fact, X∗
ρ(G)⊂Λ(X)WX . Every relative invariant can be viewed as an algebraic

differential operator on X+ of order zero.

Remark 5.6. Let λ ∈ X∗
ρ(G)⊗C. The translation x 	→ x+ λ makes sense on (ρ+

a∗X)//WX since λ is WX -invariant; in fact, λ is even W -invariant.

Proposition 5.7 (Algebraic twists). Let f ∈ C(X) be a relative character of eigen-

character λ ∈ X∗
ρ(G). For all D ∈ D(X)G and s ∈ Z, the differential operator Df,s :=

f−s ◦D ◦fs ∈ D(X+) belongs to D(X)G; furthermore,

HC(Df,s)(x) = HC(D)(x−sλ), x ∈ (ρ+a∗X)//WX .

Proof. Clearly, Df,s is G-invariant. It extends to X by Lemma 5.2. For the remaining

assertion, we have to compare cD and cDf,s
. Let μ ∈ Λ(X)+ be sufficiently positive (see

below), and let h ∈ Pμ be a corresponding element of lowest weight −μ. We have

h hfs cD(μ−sλ)hfs cD(μ−sλ)h=Df,sh

−μ −μ+sλ −μ+sλ −μ

fs
D f−s

where the second row indicates the weights; notice that the functions in the first row are all

lowest weight vectors. Here, we assume that μ,μ−sλ ∈ Λ(X)+. For such μ, we infer that

cDf,s
(μ) = cD(μ−sλ).

As Λ(X) is a full-rank lattice in a∗X , it is then elementary to conclude that cDf,s
(x) =

cD(x−sλ) for all x ∈ a∗X .

Proposition 5.8. Denote by ctopD the top homogeneous component of cD ∈ C[a∗], for

every D ∈ D(X)G. Consider the data:
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• f ∈ C[X], f̌ ∈ C[X̌]: polynomial relative invariants with opposite eigencharacters;

• D := C(f ⊗ f̌) ∈ D(X)G;

• μ ∈ X∗
ρ(G) ⊂ a∗X : the eigencharacter of some nondegenerate relative invariant h ∈ C[X]

for (G,ρ,X) (recall §2.1).

Then ctopD (−μ) �= 0.

Proof. More generally, consider a homogeneous element E ∈ (Pλ ⊗Dλ)
G with D :=

C(E). By [16, Sect 4.5], ctopD equals c(E) where

c :

(
C[X]⊗

C

C[X̌]

)G

→ C[a∗X ]

is defined as follows. Let X̊ ⊂X+ be the open B -orbit. There is a well-defined map a∗X×X̊
φ−→

X̌ given by

(χ,v) =

(∑
i

aiλi,v

)
	−→

∑
i

ai
(
f−1
i dfi

)
regular on X̊

(v) =: φχ(v),

where ai ∈C and λi ∈Λ(X)+, with a B -eigenfunction fi ∈ Pλi ; so φ is linear in χ. For each

v ∈ X̊, set

a∗X(v) :=
{
(v,φχ(v)) ∈X× X̌ : χ ∈ a∗X

}
.

By [16, p. 307], χ 	→ (v,φχ(v)) defines an isomorphism from a∗X onto the affine subspace

a∗X(v)⊂X× X̌. Now, we put

c(E) := E|a∗
X(v), identified as an element of C[a∗X ].

Next, take E := f ⊗ f̌ , noting that relative invariants are homogeneous. It remains to

prove that c(E)(−μ) �= 0.

Let h ∈C[X] be a nondegenerate relative invariant of eigencharacter μ, so h ∈P−μ. Take

χ=−μ in the construction above to see that for any v ∈ X̊,

c(E)(−μ) = (f ⊗ f̌)(v,φχ(v)) = f(v)f̌(φχ(v)) �= 0

by the nonvanishing of relative invariants on X+ and X̌+, since φχ(v) = (h−1dh)(v) ∈ X̌+

by the nondegeneracy of h.

5.3. Analytic twists

In this subsection, we work primarily over R. Let (G,ρ,X) be as in Hypothesis 2.1. Take

a pair f ∈R[X], f̌ ∈R[X̌] of relative invariants as furnished by Corollary 2.4. Theorem 5.3

then affords us an invariant algebraic differential operator C(f ⊗ f̌) on X.

On the other hand, for every λ ∈ ΛC, we view |f |λ as a real-analytic differential operator

of order zero on X+(R). It makes sense to define the invariant real-analytic differential

operator

Cλ(f ⊗ f̌) := |f |−λ ◦C(f ⊗ f̌)◦ |f |λ, λ ∈ ΛC,

on X+(R). They act on Nπ(X
+) in view of Definition 3.7, for every SAF representation π

of G(R).
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Remark 5.9. Suppose that h ∈ R(X) is a relative invariant with eigencharacter μ ∈
X∗

ρ(G), such that h > 0 and h= |f |μ on X+(R). The analytic twist Csμ(f ⊗ f̌) then comes

from the algebraic twist C(f ⊗ f̌)h,s ∈ D(X)G (Proposition 5.7) for all s ∈ Z.

Proposition 5.10. Let π be an SAF representation. For every η ∈Nπ(X
+), the family

Cλ(f ⊗ f̌)(η) inside Nπ(X
+) is holomorphic in λ ∈ ΛC.

Proof. The argument is a variant of that for Lemma 3.4. For each x ∈X+(R), consider

the evaluation map evx : C∞(X+)
∼→ C∞(X+;R) → C at x, where the first isomorphism

comes from the trivialization of L1/2 in Lemma 2.6. These maps are continuous and⋂
xker(evx) = {0}.
Now, consider the linear functionals η 	→ evx(η(v)) of Nπ(X

+) where (x,v)∈X+(R)×Vπ.

Their kernel have trivial intersection, and hence they generate the dual of Nπ(X
+). Thus,

there exists a finite subset F ⊂X+(R)×Vπ such that

Nπ(X
+) ↪→ CF

η 	→ (evx(η(v)))(x,v)∈F .

It suffices to show that for each (x,v) ∈ F , the function evx
(
Cλ(f ⊗ f̌)η(v)

)
is holomorphic

in λ ∈ ΛC. This is obvious by unwinding various definitions.

§6. Functional equation

Throughout this section, (G,ρ,X) is as in Hypothesis 2.1. The SAF representation π

of G(R) is assumed to have a central character. We also fix a maximal compact subgroup

K ⊂G(R).

The notations for Zλ, Žλ, and so forth are as in §3. In particular, the range of convergence

for Zλ is given by Re(λ)�
X

κ where κ is as in Theorem 3.10.

6.1. A decomposition

Fix basic relative invariants f1, . . . ,fr ∈R[X] for (G,ρ,X), with eigencharacters ω1, . . . ,ωr.

Let AG ⊂G be the maximal split central torus, and let AG(R)
◦ be the identity connected

component of AG(R). On the other hand, let aG :=Hom(X∗(G),R) and let HG :G(R)→ aG

be the Harish-Chandra homomorphism characterized by 〈χ,HG(g)〉 = |χ(g)| for all χ ∈
X∗(G). Set G(R)1 := ker(HG). It is well known that HG :AG(R)

◦ ∼→ aG, and multiplication

induces an isomorphism of Lie groups

AG(R)
◦×G(R)1

∼→G(R).

Define

G(R)ρ :=
{
g ∈G(R) : ∀χ ∈X∗

ρ(G), |χ(g)|= 1
}
,

X+(R)ρ :=
{
x ∈X+(R) : ∀1≤ i≤ r, |fi(x)|= 1

}
.

Therefore, G(R)ρ ⊃G(R)1 and G(R)ρ acts on the right of X+(R)ρ.

Note that aρ := Hom(X∗
ρ(G),R) is a quotient of aG. We can and do choose a splitting

to realize aρ as a direct summand of aG, and let Aρ := H−1
G (aρ) ⊂ AG(R)

◦. Note that

(|ω1|, . . . , |ωr|) induces Aρ
∼→ (R×

>0)
r.
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Proposition 6.1. With the choices above, we have real-analytic isomorphisms

G(R)ρ×Aρ G(R)

(g,a) ga

∼

and

X+(R)ρ×Aρ X+(R)

(x,a) xa(
yr(y)−1, r(y)

)
y,

∼

where r :X+(R)→Aρ is the map characterized by |fi(y)|= |ωi(r(y))| for all 1≤ i≤ r.

Proof. The decomposition of G(R) is routine to verify. As for the decomposition of

X+(R), one observes that r(xa) = a for (x,a) ∈ X+(R)ρ×Aρ; it follows readily that the

two maps are mutually inverse.

Example 6.2. In the Godement–Jacquet case (Example 3.17), we have

G(R)ρ =
{
(g,h) ∈D××D× : |Nrd(g)|= |Nrd(h)|

}
,

X+(R)ρ = {x ∈D(R) : |Nrd(x)|= 1} .

Note that AG(R)� R××R× and aG � R2 canonically. Take the splitting aρ ↪→ aG so that

aρ := R×{0}, Aρ :=
{
(a,1) : a ∈ R×

>0

}
.

Pick Nrd to be the basic relative invariant. Then the map r :X+(R)→Aρ above is simply

y 	→
(
|Nrd(y)|1/n,1

)
. The decompositions in Proposition 6.1 are then evident.

Let C∞(X+
ρ ) stand for the Fréchet space of C∞ half-densities over X+(R)ρ, which is a

smooth G(R)ρ-representation. Notice that Aρ is isomorphic to the vector space Rr as Lie

groups; hence, there exists an invariant half-density � �= 0 on Aρ.

Proposition 6.3. Let π be an SAF representation of G(R) with central character.

Choose any invariant half-density � �= 0 on Aρ. We have an isomorphism of C-vector spaces

Nπ(X
+)

∼→HomG(R)ρ

(
π,C∞(X+

ρ )
)
,

η 	→
[
v 	→ �−1η(v)|X+(R)ρ .

]
Proof. Since η(v) must transform by ωπ under Aρ, we have η(v) ∈ C∞(X+

ρ )⊗ωπ|Aρ�

with respect to X+(R)�X+(R)ρ×Aρ. The bijectivity is then evident.

6.2. The γ-factor

Proposition 6.4. Consider λ ∈ ΛC with Re(λ)≥
X
κ. If η ∈Nπ(X

+) satisfies

Zλ(η,v,ξ) = 0, v ∈ V K-fini
π , ξ ∈ C∞

c (X+),

then η = 0.

Proof. Since we are in the range of convergence, Zλ(η,v, ·) = 0 on C∞
c (X+) implies

η(v)|f |λ = 0, and thus η(v) = 0. Since V K-fini
π is dense in Vπ, it follows that η = 0.
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Proposition 6.5. Let ξ ∈ C∞
c (X+). Then Zλ(η,v,ξ) is given by

∫
X+(R)

η(v)|f |λξ for

any λ ∈ ΛC off the poles.

Proof. Evident when Re(λ) ≥
X

κ. The general case follows by meromorphic

continuation.

Before proving the next result, recall that C∞(X+) and S(X) are both smooth as G(R)-

representations; the action ofG(R) (resp. g) on them are denoted as ξ 	→ g ·ξ (resp. ξ 	→H ·ξ).
The g-action here is derived from the G(R)-action. It differs from the one derived from

g⊂ U(g)→DX together with (2.2), because |Ω|1/2 is not G(R)-invariant.

Observe that for smooth G(R)-representations π1, π2 and a jointly continuous G(R)-

invariant bilinear form B : Vπ1 ×Vπ2 → C, we have

B(π1(H)v1,v2)+B(v1,π2(H)v2) = 0, H ∈ g, v1 ∈ Vπ1 , v2 ∈ Vπ2 . (6.1)

The argument for (6.1) is well known: simply compute the derivative at t= 0 of

B (π1(exp(tH))v1,π2(exp(tH))v2) =B(v1,v2) (t ∈ R)

using the joint continuity of B and smoothness of π1, π2.

Lemma 6.6. Let η̌ ∈ Nπ(X̌
+). Choose a denominator L(η̌,λ) as in Theorem 3.12, and

consider the variant LŽλ(η̌, ·, ·) of zeta integrals on X̌. Fix λ ∈ ΛC and set πλ := π⊗|ω|λ.

(i) For all v ∈ V K-fini
π , there exists a unique Tλ(v) ∈ C∞(X+) such that

LŽλ(η̌, v,Fξ) =

∫
X+(R)

Tλ(v)ξ, ξ ∈ C∞
c (X+).

(ii) v 	→ Tλ(v) extends to an element of Nπλ
(X+).

Proof. Let v ∈V K-fini
π g ∈K andH ∈ g. Since F :S(X)→S(X̌) intertwines smoothG(R)-

representations and LŽλ(η̌, ·, ·) is G(R)-invariant and jointly continuous on πλ×S(X) by

Theorem 3.12(ii), we have

LŽλ (η̌, v,F(g · ξ)) = LŽλ (η̌, v,g · (Fξ))

= LŽλ

(
η̌,πλ(g

−1)v,Fξ
)
,

LŽλ (η̌, v,F(H · ξ)) = LŽλ (η̌, v,H · (Fξ))

=−LŽλ (η̌,πλ(H)v,Fξ) ∵ (6.1),

(6.2)

for all ξ ∈ S(X).

Since v is finite under Z(g) and K with respect to πλ, the distribution C∞
c (X+) � ξ 	→

LŽλ(η̌, v,Fξ) is also finite under Z(g) and K by (6.2). The same holds if we choose Ω and

consider the linear functional ξ0 	→ LŽλ(η̌, v,F(ξ0|Ω|1/2)) on S0(X), since the G(R)-actions

on ξ0 and ξ0|Ω|1/2 only differ by a character.

It is then a well known consequence of the elliptic regularity theorem that our distribution

is represented by a unique Tλ(v) ∈ C∞(X+): a detailed explanation can be found in [23,

Prop. 9.7]. In fact, Tλ(v) is K -admissible in the sense of [23] (see also Example 2.4 therein).

The K -admissibility of the distribution Tλ(v), or more generally, of DX+
C

-module M it

generates, actually implies that Tλ(v) is of moderate growth at infinity (see [23, Th. 9.5]).
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Now, vary v. It is clear that v 	→ Tλ(v) is linear, and for all ξ ∈ C∞
c (X+), we have∫

X+(R)

Tλ (πλ(g)v)ξ = LŽλ (η̌,πλ(g)v,Fξ)
(6.2)
= LŽλ

(
η̌, v,F(g−1 · ξ)

)
=

∫
Tλ(v)(g

−1 · ξ) =
∫

(g ·Tλ(v))ξ,∫
X+(R)

Tλ (πλ(H)v)ξ = LŽλ (η̌,πλ(H)v,Fξ)
(6.2)
= −LŽλ (η̌, v,F(H · ξ))

=−
∫

Tλ(v)(H · ξ) (6.1)
=

∫
(H ·Tλ(v))ξ,

where we used the fact that
∫
: C∞(X+)×C∞

c (X+) → C is G(R)-invariant and jointly

continuous. Indeed, invariance follows by change of variables, while the joint continuity

is easily checked by restricting to C∞(X+)×C∞
Ω (X+) and recalling the topologies from

§§2.3–3.1, where Ω⊂X+(R) is any compact subset.

As ξ is arbitrary, we deduce that

Tλ (πλ(g)v) = g ·Tλ(v), Tλ (πλ(H)v) =H ·Tλ(v).

Summing up, Tλ : V K-fini
πλ

→C∞(X+)K-fini is a map of (g,K)-modules. We claim that Tλ

extends to an element of Nπλ
(X+). Indeed, this would follow from [4, Exam. 11.1(b) and

Prop. 11.2] provided that Tλ(v) is of moderate growth on X+(R) for every v ∈ V K-fini
π . To

reconcile the aforementioned moderate growth at infinity in [23] with that in [4], see the

proof of Proposition 4.1.

Note that the Tλ could be identically zero at some points λ.

Proposition 6.7 (Weak functional equation). Let π be an SAF representation of G(R)

with central character. There exists a unique meromorphic map γ(π,λ) :Nπ(X̌
+)→Nπ(X

+)

(i.e., its matrix entries are meromorphic in λ ∈ ΛC), such that for all η̌ ∈ Nπ(X̌
+) and all

v ∈ Vπ, we have

Žλ (η̌, v,Fξ) = Zλ (γ(λ,π)(η̌),v,ξ) , ξ ∈ C∞
c (X+),

for all λ ∈ ΛC off the poles. Moreover:

(i) γ(π,λ) is unique: if γ1(π,λ), γ2(π,λ) satisfy

Zλ (γ1(λ,π)(η̌),v,ξ) = Zλ (γ2(λ,π)(η̌),v,ξ)

for all η̌, v,ξ and all λ in an open subset U �= ∅ in ΛC, then γ1(π,λ) = γ2(π,λ) as

meromorphic families in λ;

(ii) if L(η̌,λ) is as in Theorem 3.12, then L(η̌,λ)γ(π,λ) is holomorphic in λ;

(iii) (γ(π,λ+μ)(η̌))λ = γ(π⊗|ω|λ,μ)(η̌λ) for all μ,λ, η̌.

Proof. Write πλ := π⊗|ω|λ as before. Let η̌ ∈Nπ(X̌
+) and choose a denominator L(η̌,λ)

as in Lemma 6.6 to obtain the family Tλ ∈ Nπλ
(X+) in λ ∈ ΛC. Define

Lγ(λ,π)(η̌) := Tλ(·)|f |−λ ∈Nπ(X
+).

We contend that Lγ(λ,π)(η̌) is a holomorphic family inside Nπ(X
+). Lemma 6.6 implies

LŽλ(η̌, v,Fξ) =

∫
X+(R)

Lγ(λ,π)(η̌)(v) · |f |λξ, v ∈ V K-fini
π .
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The left-hand side being holomorphic in λ (while v,ξ are kept fixed), our strategy is to repeat

the arguments for Lemma 3.4 to prove our claim. The problem, however, is the presence of

|f |λ in the integrand. The work-around is to use the decomposition X+(R)�X+(R)ρ×Aρ

in Proposition 6.1. Let:

• ξ = ξ1⊗ ξ2 with ξ1 ∈ C∞
c (X+

ρ ) and ξ2 ∈ C∞
c (Aρ);

• �: an invariant, nonzero half-density on Aρ;

• Lγ(γ,π)(η̌)(v) = Uλ(v)⊗ωπ�, where Uλ ∈HomG(R)ρ

(
π,C∞(X+

ρ )
)
.

Such a decomposition of Lγ(γ,π)(η̌)(v) exists and is unique (Proposition 6.3). We have∫
X+(R)

Lγ(λ,π)(η̌)(v) · |f |λξ =
∫
X+(R)ρ

Uλ(v)ξ1 ·
∫
Aρ

ωπ|ω|λ�ξ2.

The integral
∫
Aρ

is holomorphic in λ. For every given λ◦ ∈ ΛC, we may choose ξ2 such

that
∫
Aρ

ωπ|ω|λ◦ξ2 �= 0, and the nonvanishing propagates to some neighborhood U of λ◦.

It follows that
∫
X+(R)ρ

Uλ(v)ξ1 is holomorphic in λ over U , for all ξ1 ∈ C∞
c (X+

ρ ) and v ∈
V K-fini
π . Hence, the arguments for (ii) =⇒ (i) in Lemma 3.4 show that Uλ is a holomorphic

family inside HomG(R)ρ(π,C
∞(X+

ρ )). Our claim on the holomorphy of Lγ(λ,π)(η̌) inside

Nπ follows from Proposition 6.3.

Next, consider the meromorphic family in λ ∈ ΛC:

γ(λ,π)(η̌) :=
Lγ(λ,π)(η̌)

L(η̌,λ)
, η̌ ∈Nπ(X̌

+).

It satisfies Žλ (η̌, v,Fξ) = Zλ (γ(λ,π)(η̌),v,ξ) for all ξ ∈ C∞
c (X+) and v ∈ V K-fini

π . The

equality extends to all v ∈ Vπ by continuity.

Consider the assertion (i). We may assume that U is disjoint from the singularities of

Zλ. Proposition 6.5 implies γ1(λ,π) = γ2(λ,π) for all λ ∈ U , and hence determines γ(λ,π)

as a meromorphic family in λ ∈ ΛC.

Assertion (ii) follows from the construction of γ(π,λ). As for (iii), notice that

Žλ+μ (η̌, v,Fξ) = Žμ (η̌λ,v,Fξ) (∵ Corollary (4.3))

= Zμ (γ(μ,πλ)(η̌λ),v,ξ)

for all ξ ∈ C∞
c (X+). On the other hand,

Žλ+μ (η̌, v,Fξ) = Zλ+μ (γ(π,λ+μ)(η̌),v,ξ)

= Zμ ((γ(π,λ+μ)(η̌))λ ,v,ξ) (∵ Corollary 4.3).

When Re(μ) ≥
X

κ and μ lies off the poles, (iii) follows by applying Proposition 6.4. The

general case of (iii) follows by meromorphic continuation.

Remark 6.8. The uniqueness of γ(π,λ) in the weak functional equation has been

established in [22, §4.5] by the same reasoning. The proof above can also be applied in

the general setting in [22] to furnish a γ-factor together with a weak functional equation,

provided that the axioms thereof are satisfied. Since the framework in [22] is largely

conjectural, we confine ourselves to the case of prehomogeneous vector spaces here.

We close this subsection by the compatibility between γ-factors and intertwining

operators.
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Proposition 6.9. Let ϕ : π → σ be a morphism between SAF representations of G(R).

Define ϕ∗ :Nσ(X
+)→Nπ(X

+) by η 	→ η ◦ϕ, and similarly for X̌+.

(i) For all η ∈ Nσ(X
+), v ∈ Vπ, and ξ ∈ S(X), we have Zλ (η,ϕ(v), ξ) = Zλ (ϕ

∗η,v,ξ).

(ii) Suppose that π,σ have central characters. Then γ(λ,π)◦ϕ∗ = ϕ∗ ◦γ(λ,σ).

Proof. Assertion (i) is clear in the range of convergence; the general case follows by

meromorphic continuation. As for (ii), it suffices to observe that by (i),

Zλ (γ(λ,π)ϕ
∗η̌, v,ξ) = Žλ (ϕ

∗η̌, v,Fξ) = Žλ (η̌,ϕ(v),Fξ)

= Zλ (γ(λ,σ)η̌,ϕ(v), ξ) = Zλ (ϕ
∗γ(λ,σ)η̌, v,ξ)

for all η̌ ∈Nσ(X̌
+), v ∈ Vπ, and ξ ∈ S(X). Now, apply Proposition 6.4.

6.3. Consequences of the weak functional equation

Fix an SAF representation π of G(R) with central character. With the notations of

Proposition 6.7, we define

Δλ(η̌, v,ξ) := Žλ(η̌, v,Fξ)−Zλ (γ(π,λ)(η̌),v,ξ) (6.3)

for all η̌ ∈Nπ(X̌
+), v ∈ Vπ, and ξ ∈ S(X). Note that Δλ(η̌, v, ·) is a meromorphic family of

tempered distribution on X. Our Theorem 3.13 amounts to Δλ(η̌, v,ξ) = 0, and it suffices

to check this for λ in any given open subset U �=∅ of ΛC.

Lemma 6.10. Let U ⊂ ΛC be a nonempty open subset such that:

• the closure of U is compact,

• U is disjoint from the singularities of Zλ, Žλ, and γ(π,λ).

For any h ∈ R[X] such that ∂X = {x : h(x) = 0}, there exists M ∈ Z≥0 such that

Δλ

(
η̌, v,hMξ

)
= 0, λ ∈ U,

for all η̌, v, and ξ.

Proof. Pick c, č ∈ ΛR such that Re(λ)≥
X
c and Re(λ)≥

X̌

č for all λ ∈ U . By Propositions

4.5 and 4.7, there exists (a,b) ∈ Z2
≥0 such that ξ 	→Δλ (η̌, v,ξ) has order ≤ (a,b) whenever

λ∈U . Furthermore, Δλ (η̌, v,ξ) = 0 for ξ ∈C∞
c (X+). The assertion is then well known (see,

e.g., [14, Prop. 3.15]).

Let h ∈ R[X], ȟ ∈ R[X̌] be a pair of relative invariants as in Corollary 2.4, with

eigencharacters−θ and θ, respectively. Upon multiplying ȟ,h by some positive real numbers,

we may and do assume that

h(x) = |f |−θ(x), ȟ(y) = |f̌ |θ(y), x ∈X+(R), y ∈ X̌+(R). (6.4)

Plug the choice above of h into the setting of Lemma 6.10, and take U and M as in that

Lemma. Take a κ̌ ∈ ΛR associated with π and (G,ρ̌, X̌) as in Theorem 3.10. Observe that

for all η̌, v, and ξ ∈ S(X),
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Žλ

(
η̌, v,F(hMξ)

)
= c(ψ)M deghŽλ

(
η̌, v,hM (Fξ)

)
∵ Lemma 2.7

= c(ψ)M degh

∫
X̌+(R)

η̌(v)|f̌ |λ ·hM (Fξ) assuming Re(λ)≥
X̌

κ̌

= (−c(ψ))M degh

∫
X̌+(R)

hM
(
η̌(v)|f̌ |λ

)
Fξ

∵ integration by parts on X(R) and (2.2)

= (−c(ψ))M degh

∫
X̌+(R)

Cλ

(
ȟM ⊗hM

)
(η̌(v)) · |f̌ |λ−Mθ ·Fξ ∵ (6.4)

= (−c(ψ))M deghŽλ−Mθ

(
Cλ

(
ȟM ⊗hM

)
η̌, v,Fξ

)
.

The first and the last terms are both meromorphic in λ when η̌ is fixed (Proposition 5.10),

and hence the equality extends to all λ.

On the other hand, Corollary 4.3 and (6.4) imply

Zλ

(
γ(π,λ)η̌, v,hMξ

)
= Zλ−Mθ (γ(π,λ)η̌, v,ξ) .

Let the open subset U be as in Lemma 6.10. For all λ ∈ U , we arrive at

(−c(ψ))M deghŽλ−Mθ

(
Cλ

(
ȟM ⊗hM

)
η̌, v,Fξ

)
= Zλ−Mθ (γ(π,λ)η̌, v,ξ) . (6.5)

For every η̌ ∈ Nπ(X̌
+), define

λη̌ := (−c(ψ))M deghCλ

(
ȟM ⊗hM

)
η̌. (6.6)

It is linear in η̌ and gives a holomorphic family (in λ) inside Nπ(X̌
+) by Proposition 5.10.

Lemma 6.11. Take h ∈R[X], ȟ ∈R[X̌], θ ∈ ΛZ, U ⊂ ΛC, and M ∈ Z≥0 as in the recipe

above. Let

U ′ := U \ singularities of Zλ−Mθ, Žλ−Mθ,γ(π,λ−Mθ)

so that U ′ is open dense in U. Then Δλ−Mθ

(
λη̌, v,ξ

)
= 0 for λ ∈ U ′, that is,

Žλ−Mθ

(
λη̌, v,Fξ

)
= Zλ−Mθ

(
γ (π,λ−Mθ)(λη̌),v,ξ

)
, λ ∈ U ′,

where η̌ ∈Nπ(X̌
+), v ∈ Vπ, and ξ ∈ S(X) are arbitrary.

Proof. In view of (6.5), (6.6), and Proposition 6.7(i), we deduce that

γ (π,λ−Mθ)(λη̌) = γ (π,λ)(η̌), η̌ ∈ Nπ(X̌
+)

as meromorphic families in λ. Plugging this back into (6.5) yields the asserted equality.

6.4. Proof of functional equation

Fix an SAF representation π of G(R) with central character. Let h ∈ R[X], ȟ ∈ R[X̌] be

a pair of relative invariants as in Corollary 2.4, satisfying (6.4). Consider the linear map

Φλ :Nπ(X̌
+) Nπ(X̌

+)

η Cλ

(
ȟM ⊗hM

)
◦η.

It is holomorphic in λ ∈ ΛC (i.e., its matrix entries are all holomorphic if we fix a basis) by

Proposition 5.10.
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Lemma 6.12. The holomorphic function λ 	→ detΦλ on ΛC is not identically zero.

Proof. Observe that the commutative C-algebra

D(X̌+
C
)GC =D(X̌+)G⊗

R

C

acts on Nπ(X̌
+) by η̌ 	→D∗η̌ :=D◦ η̌, where D ∈D(X̌+

C
)GC . Using Theorem 5.4 and Remark

5.5, Nπ(X̌
+) decomposes into joint generalized eigenspaces

Nπ(X̌
+) =

⊕
χ

Nχ,

Nχ :=
{
η̌ ∈ Nπ(X̌

+) : has infinitesimal character χ
}

under D(X̌+
C
)GC = D(X̌C)

GC (Lemma 5.2), where χ ranges over (ρ+a∗X)//WX . It suffices

to show that det(Φλ|Nχ) is not identically zero, for each χ.

Take a nondegenerate relative invariant ǧ ∈R[X̌] such that ǧ≥ 0 (e.g., ǧ= ȟ). Multiplying

by some positive constant, we may assume ǧ = |f̌ |μ on X̌+(R) where μ ∈ ΛZ is the

eigencharacter of ǧ. Set

D := C
(
ȟM ⊗hM

)
.

Define Dǧ,s ∈D(X̌)G as in Proposition 5.7, where s∈Z. We claim that for all but finitely

many s, we have

det((Dǧ,s)∗ :Nχ →Nχ) �= 0. (6.7)

This will conclude the proof since Remark 5.9 says that Dǧ,s = Csμ

(
ȟM ⊗hM

)
.

To show (6.7), we deduce from Proposition 5.7 that (Dǧ,s)∗ ∈ EndC(Nχ) has the

generalized eigenvalue

HC(Dǧ,s)(χ) = HC(D)(χ−sμ) = cD(χ−ρ−sμ)

= sdegcD · ctopD (−μ)+(lower terms in s).

The top homogeneous component ctopD satisfies ctopD (−μ) �= 0 by Proposition 5.8, because

ǧ ∈ R[X̌] is nondegenerate. This establishes (6.7).

Proof of Theorem 3.13. Take Lemma 6.11 as our foothold. Lemma 6.12 implies that

η 	→ λη is a linear automorphism of Nπ(X̌
+) on an open dense subset U ′′ ⊂ U ′. Hence, for

any given λ ∈ U ′′,

Δλ−Mθ(η̌, v,ξ) = 0

holds for all η̌ ∈Nπ(X̌
+), v ∈ Vπ, and ξ ∈ S(X); recall that Δ is defined in (6.3).

Since U ′′−Mθ is open nonempty in ΛC and λ 	→Δλ(η̌, v,ξ) is known to be meromorphic,

the equality extends to the whole ΛC. This proves the functional equation in Theorem 3.13;

the remaining assertions about γ-factors are already established in Proposition 6.7.
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