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Abstract

We provide necessary and sufficient conditions for the asymptotic normality of Nn,
the number of records among the first n observations from a sequence of independent
and identically distributed random variables, with general distribution F . In the case
of normality we identify the centering and scaling sequences. Also, we characterize
distributions for which the limit is not normal in terms of their discrete and continuous
components.
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1. Introduction

Consider a sequence {Xn}of independent and identically distributed (i.i.d.) random variables,
whose common distribution function F is general, in the sense that it has continuous and discrete
components, restricted to have only finitely many atoms (discontinuities) on bounded intervals.
A record is defined as an observation which is strictly greater than the current maximum. More
precisely, for n ≥ 2, Xn is a record if Xn > Mn−1 , where Mn = max{X1, . . . , Xn}, and X1 is
always a record by convention.

Records are intrinsically interesting objects. Their mathematical theory has reached maturity
and has not only found application in natural fields such as sports or meteorology but has also
shown usefulness, for instance, in the mathematical analysis of data structures. See [1], [3],
and [8] for general theory and applications.

There are three main random sequences related to records: the record values themselves,
the indices of record observations, called record times, and the counting process of records. In
this paper we focus our attention on the latter, giving necessary and sufficient conditions for
its asymptotic normality. See [4] and [9] for applications related to record counts in computer
data structures analysis.

Let Nn be the number of records among X1, . . . , Xn for n ≥ 1; that is, Nn =∑n
k=1 Ik ,

where Ik = 1{Xk>Mk−1} is the indicator of Xk being a record. The asymptotic behavior of Nn is
well understood for distributions F which are either continuous or lattice, but, to the authors’
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knowledge, no result has been reported for general distributions, with infinitely many atoms.
Of course, when the number of atoms is finite, the situation is either trivial or it reduces to the
problem with continuous F , which is very well known. Indeed, Rényi [10] discovered that, in
the latter case, the indicators In are independent, with E[In] = 1/n, n ≥ 1. This structural result
yields asymptotic normality for Nn, as well as other types of convergence, rather easily. The
case of discrete distributions was not addressed until decades later, probably because of the lack
of a result similar to Rényi’s. Vervaat [12] started exploring records for integer-valued random
variables. Later, Bai et al. [2] used a generating function approach to asymptotic normality, for
observations from the geometric distribution. More recently, a martingale method was used in
[6] to obtain a central limit theorem for Nn, applicable to a large range of discrete distributions.
In the present paper we provide a complete answer to the question of the asymptotic normality of
record counts from i.i.d. observations. As a consequence, for lattice distributions, we improve
the results of [6] and solve a conjecture posed in [2].

A useful way to look at records is to consider ξ(x), equal to the number of records in the whole
sequence {Xn}with values less than or equal to x. Shorrock [11] discovered that ξ = {ξ(x); x ≥
0} is a point process on the line that has independent increments and decomposes as the sum
of two independent processes ξc and ξd. The continuous component ξc is a nonhomogeneous
Poisson process and the discrete component ξd is a singular, independent increments process,
concentrated on the set of atoms of F . This result applies to general distributions only restricted
to have a finite number of atoms on compact sets. We will refer to ξ as the Shorrock process.

Observe that, in terms of the asymptotic behavior of Nn, there is no loss of generality in
restricting attention to positive random variables, because we deal with upper extremes. On
the other hand, for discontinuous F , it is relevant to consider only the case of infinitely many
atoms. Hence, in the sequel we work with distribution functions F such that F(x) = 0 for all
x ≤ 0, whose set of atoms is A = {an; n ≥ 1}, with an ↑ ∞. Note that an ↑ ∞ implies that
1−F(x) > 0 for all x ≥ 0, which in turn implies the almost-sure divergence of Nn as n→∞.
For convenience, we define a0 = 0, although 0 is not an atom.

We use the following notation throughout the paper. Sequences of real numbers x1, x2, . . .

are indexed by the positive integers, unless otherwise stated, and are denoted by {xn, n ≥ 1}
or {xn}. Braces are sometimes omitted for simplicity. Convergence (divergence) of xn to a
finite (infinite) limit x, as n→∞, is denoted by limn xn = x, or xn→ x, or xn ↑ x when xn

is increasing. We write xn ∼ yn if either both sequences diverge to∞ or converge to 0, with
limn xn/yn = 1, or both converge to nonzero, possibly different, finite limits. The O(·) and o(·)
symbols have their usual meanings. Analogously, convergence (divergence) of a real function g,
defined on [0,∞), to a finite (infinite) limit y, as x → ∞, is denoted by limx→∞ g(x) = y,
g(x)→ y, or g(x) ↑ y if g is increasing.

Random variables are defined on a common probability space (�, F , P); probability, ex-
pectation, and variance are respectively denoted by P[·], E[·], and var[·]. Convergence in
distribution and in probability are respectively denoted by ‘

d−→’ and ‘
p−→’. The Bernoulli and

Poisson distributions, with parameters p ∈ [0, 1] or λ ≥ 0, are denoted by Ber(p) and Po(λ),
respectively. The notation X ↪→ Ber(p) and X ↪→ Po(λ) mean that X respectively has a
Ber(p) or Po(λ) distribution. The normal distribution, with mean 0 and variance σ 2, is denoted
by N(0, σ 2). For a generic random variable X with distribution F , let F−(x) = P[X < x] for
x ∈ (0,∞).

Also, let m(t) = sup{x ≥ 0 : P[X ≥ x] ≥ 1/t} for t ≥ 1, and observe that, for ε > 0,

1− F−(m(t)) ≥ 1

t
and 1− F−(m(t)+ ε) <

1

t
. (1)
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For k ≥ 1, let pk = P[X = ak] = F(ak)− F−(ak), µk = P[X ∈ (ak−1, ak)] = F−(ak)−
F(ak−1), rk = P[X = ak | X ≥ ak] (the hazard rate), and lk = log((1 − F(ak−1))/(1 −
F−(ak))). Note that rk = P[X = ak]/ P[X ≥ ak] = pk/(

∑
i≥k pi +∑

i>k µi). Finally, let

θ(x) =
n∑

k=1

(rk + lk)+ log
1− F(an)

1− F(x)
and v(x) = θ(x)−

n∑
k=1

r2
k (2)

for x ∈ [an, an+1) and n ≥ 0.
Our main result is Theorem 1, where we give necessary and sufficient conditions for the

asymptotic normality of Nn and, in that case, calculate explicit expressions of the centering and
scaling sequences. The proof is based on a central limit theorem for the Shorrock process ξ ,
coupled with a random change of time scale.

At first, it was not obvious to conjecture the asymptotic behavior of Nn for a general
distribution F . One may think that perhaps the form of the continuous component of F is
irrelevant, since record counts from continuous distributions have the classical log n speed
regardless of the distribution. Our results revealed a more complex situation of interaction
between the tails of both components of F .

The paper is organized as follows. The main result, a corollary, and examples are presented in
Section 2, followed by intermediate results and proofs in Section 3. In Section 4, distributions
for which Nn is not asymptotically normal are characterized in terms of their discrete and
continuous components.

2. Main results and examples

Theorem 1. (a) If limx→∞ v(x) = ∞ then

Nn − θ(m(n))√
v(m(n))

d−→ N(0, 1).

(b) If limx→∞ v(x) <∞ then Nn−θ(m(n)) is tight and there exist no (deterministic) sequences
bn, cn > 0 such that (Nn − bn)/cn

d−→ N(0, 1).

Corollary 1. Let F be concentrated on the positive integers. There exist sequences bn, cn > 0
such that (Nn − bn)/cn

d−→ N(0, 1) if and only if
∑∞

k=1(1− rk) = ∞, in which case they can

be taken as bn =∑m(n)
k=1 rk and cn =

√∑m(n)
k=1 rk(1− rk).

Observe that in Corollary 1 no conditions are imposed on the hazard rates rn so this result
extends Theorem 1 of [6]. Also, Corollary 1 gives a positive answer to a question raised in [2,
Section 1, p. 323].

In the first example below we consider a discrete distribution with hazard rates, having both
0 and 1 as limiting points, which can now be analyzed using Corollary 1. In the second example
we study a mixture of the exponential and geometric distributions.

Example 1. Consider a discrete distribution on the positive integers, with hazard rates given
by r2k−1 = 1−1/(2k+1) and r2k = 1/2k for k ≥ 1. The following approximations are easily
obtained: bn =∑m(n)

k=1 rk = m(n)/2+O(1) and c2
n =

∑m(n)
k=1 rk(1− rk) = log m(n)+O(1).

Then, from Corollary 1,
Nn −m(n)/2√

log m(n)

d−→ N(0, 1).
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A slightly improved presentation of the result above follows from the inequalities in (1). Note
thatAm(n) := − log(1− F−(m(n))) = −∑m(n)−1

k=1 log(1− rk) ∼ 1
2m(n) log m(n) asn→∞.

Then, taking the logarithm in (1), we have Am(n) ≤ log n < Am(n)+1 and, also, log Am(n) ≤
log log n < log Am(n)+1. From both inequalities we obtain (for large enough n)

1

m(n)

Am(n)

log Am(n)+1
<

1

m(n)

log n

log log n
<

1

m(n)

Am(n)+1

log Am(n)

.

Finally, it is easy to see that both extremes above converge to 1
2 . Thus, m(n) ∼ 2 log n/ log log n

as n→∞, and so
Nn −m(n)/2√

log log n

d−→ N(0, 1).

Example 2. Consider the mixture F = αFe + (1 − α)Fg, where Fe and Fg stand for the
exponential and geometric distribution functions, with parameters λ and p, respectively. That
is, Fe(x) = 1− e−λx and Fg(x) = 1− q
x�, x ≥ 0, with λ > 0 and q = 1−p ∈ (0, 1). Then,
for k ≥ 1, pk = (1−α)qk−1p and

∑
i≥k pi = (1− α)qk−1. Also, µk = α

∫ k

k−1 λe−λy dy and∑
i≥k µi = αe−λ(k−1). So, letting ρ = e−λ/q,

rk = (1− α)qk−1p

(1− α)qk−1 + αe−λk
= p

1+ αqρk/(1− α)
. (3)

On the other hand,

lk = log
1− F(ak−1)

1− F−(ak)
= log

(1− α)qk−1 + αe−λ(k−1)

(1− α)qk−1 + αe−λk
= log

1+ αρk−1/(1− α)

1+ αqρk/(1− α)
. (4)

For the asymptotic behavior, we consider the following possibilities of relative tail behavior
of Fe and Fg. First, if ρ > 1 then rk ∼ p(1 − α)ρ−k/(αq) and so,

∑∞
k=1 rk <∞. Also,

lk = λ + O(ρ−k). Thus,
∑n

k=1(rk + lk) = λn+O(1) and, hence, v(x) = θ(x) + O(1) =
λx +O(1) for x →∞. From Theorem 1 we conclude that

Nn − λm(n)√
λm(n)

d−→ N(0, 1). (5)

We now estimate m(n) = sup{x ≥ 0 : 1 − F−(x) ≥ 1/n}, observing that 1 − F− = α(1 −
F−e ) + (1 − α)(1 − F−g ), with 1 − F−e (x) = 1 − Fe(x) = e−λx and 1− F−g (x) = q�x
−1.
From (1) we have, for all ε > 0,

− log(αe−λm(n) + (1− α)q�m(n)
−1) ≤ log n ≤ − log(αe−λ(m(n)+ε) + (1− α)q�m(n)+ε
−1).

The left-hand side above can be written as

λm(n)− log(α + (1− α)ρ−m(n)q�m(n)
−m(n)−1) = λm(n)− log α +O(ρ−m(n)).

As the same analysis can be carried out on the right-hand side, for all ε > 0, we finally obtain
m(n) = (1/λ) log n +O(1). We can now replace the estimate of m(n) in (5) to obtain, when
ρ > 1,

Nn − log n√
log n

d−→ N(0, 1).
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Suppose now that ρ < 1, that is, the exponential tail is lighter than the geometric tail. From
(3) and (4), we have rk = p + O(ρk) and lk = O(ρk). Thus,

∑n
k=1 rk = np +O(1) and∑n

k=1 lk = O(1), and, hence, θ(x) = px + O(1) and v(x) = pqx + O(1) as x → ∞. It
follows from Theorem 1 that

Nn − pm(n)√
pqm(n)

d−→ N(0, 1). (6)

The estimation of m(n) can be calculated as above. We have m(n) = − log n/ log q + O(1),
which can be substituted into (6) to obtain, when ρ < 1,

Nn + p log n/ log q√
log n

d−→ N

(
0,− pq

log q

)
.

Finally, if ρ = 1 then rk = (1 − α)p/(1 − αp) and lk = − log(1 − αp), k ≥ 1. Hence,
θ(x) = C(α, p)x + O(1) and v(x) = D(α, p)x + O(1), where C(α, p) = (1 − α)p/(1 −
αp)− log(1− αp) and D(α, p) = q/(1− αp)− log(1− αp). Theorem 1 yields

Nn − C(α, p)m(n)√
D(α, p)m(n)

d−→ N(0, 1).

For m(n), we have, as before, m(n) = − log n/ log q +O(1), thus getting

Nn + C(α, p) log n/ log q√
log n

d−→ N

(
0,−D(α, p)

log q

)
.

3. Intermediate results and proofs

The Shorrock process ξ is an independent increment point process on R+ = [0,∞), which
admits the representation ξ = ξc + ξd, where ξc and ξd are the continuous and discrete
(independent) components.

The intensity measure of ξ is given by the so-called hazard measure H(dx) = F(dx)/(1−
F−(x)), which we consider in detail in order to develop the central limit theorem for Nn. Note
that E[ξ(x)] = ∫

[0,x]H(dy) for all x ≥ 0. On the other hand, the continuous component ξc has
intensity measure 
c given by


c(−∞, x] = − log(1− F(x))+
k∑

j=1

log(1− rj ), x ∈ [ak, ak+1),

while the discrete component is the Bernoulli process ξd(x) =∑
j≥1 Zj 1{aj≤x}, where the

random variables Zj are independent Ber(rj ).
The following proposition is an easy consequence of Shorrock’s results.

Proposition 1. Let ξ be the Shorrock process, and let θ(x) and v(x) be as defined in (2). Then,
for x > 0,

(a) ξ(x) =∑n
k=1(Bk + Pk)+ P ′x for x ∈ [an, an+1), where Bk ↪→ Ber(rk), Pk ↪→ Po(lk),

k ≥ 1, and P ′x ↪→ Po(log((1− F(an))/(1− F(x)))) are independent,

(b) E[ξ(x)] = θ(x),

(c) var[ξ(x)] = v(x),

https://doi.org/10.1239/aap/1308662486 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1308662486


Asymptotic normality of record counts 427

(d) limx→∞ θ(x) = ∞,

(e) limx→∞ v(x) <∞ if and only if

∞∑
k=1

rk(1− rk) <∞ and
∞∑

k=1

µk

1− F−(ak)
<∞.

Proof. Parts (a), (b), and (c) follow from Theorem 1 of [11]. For part (d), note that
limx→∞ θ(x) < ∞ would imply that

∑∞
k=1 P[Bk + Pk > 0] <∞ so, by the Borel–Cantelli

lemma and (a), limx→∞ ξ(x) <∞ almost surely (a.s.); that is, there would be a finite number
of records in the sequence {Xn}, which is a contradiction since F(x) < 1 for all x > 0. Part (e)
is immediate upon noting that lk = log(1 + µk/(1 − F−(ak))) and that

∑∞
k=1 lk <∞ if and

only if
∑∞

k=1 µk/(1− F−(ak)) <∞.

Our proof of Theorem 1 is based on a central limit theorem for ξ(x). To that end, the
representation of ξ(x) in Proposition 1(a), as a sum of independent random variables, is very
well suited. However, a drawback is the lack of control over the parameters lk which makes
Lyapunov’s condition arduous to check. We overcome this difficulty by enriching the sequence
of atoms with extra points which allow the lks to be split into manageable pieces.

Let x0 = 0, and, for n ≥ 1, let

xn = inf
{
x > xn−1 : x ∈ A or φn−1(x) > 1

2

}
, (7)

where φn(x) = log((1−F(xn))/(1−F−(x))) for n ≥ 0. That is, the sequence {xn} is formed
by all the atoms of F together with continuity points selected in such a way that φn(xn+1) is
bounded above (see Lemma 1 below). Note that xn is well defined because an ↑ ∞ implies
that the set over which the infimum is taken is nonempty. Some properties are collected in the
following lemma.

Lemma 1. Let {xn} be as defined in (7). Then the following statements hold.

(a) xn > xn−1 for all n ≥ 1.

(b) φn−1(xn) ≤ 1
2 for all n ≥ 1. Also, if xn �∈ A then φn−1(xn) = 1

2 .

(c) There are a finite number of xn values in every bounded interval (a, b).

(d) xn ↑ ∞.

Proof. (a) By definition, xn ≥ xn−1, so we prove that the strict inequality holds. Let
tn = min{a ∈ A : a > xn−1} be the smallest atom greater than xn−1.

As limx→x+n−1
φn−1(x) = 0 and φn−1(x) is continuous and nondecreasing in (xn−1, tn), then

(xn−1, tn) ∩ {x : φn−1(x) > 1
2 } is either empty or an interval (b, tn), with b > xn−1. In the

former case xn = tn > xn−1 and in the latter case, xn = b > xn−1.
(b) We consider two cases depending on whether xn ∈ A or not. If xn �∈ A, as in part (a),

φn−1(x) is continuous in (xn−1, tn) and xn = b ∈ (xn−1, tn), so φn−1(xn) = 1
2 . If xn ∈ A

then (xn−1, tn) ∩ {x : φn−1(x) > 1
2 } = ∅ so φn−1(x) ≤ 1

2 in (xn−1, tn) and, since φn−1 is left
continuous, we have φn−1(xn) ≤ 1

2 .
(c) It suffices to see there are finitely many values xn in the interval (ak, ak+1) for all

k ≥ 0. Suppose on the contrary that, for some n ≥ 1, xn−1 = ak and xn+m ∈ (ak, ak+1) for
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every m ≥ 0. Then, by part (b),

log
1− F(ak)

1− F−(ak+1)
= log

1− F(ak)

1− F−(xn)
+ log

1− F−(xn)

1− F−(ak+1)

= 1

2
+ log

1− F−(xn)

1− F−(ak+1)

= m

2
+ log

1− F−(xn+m−1)

1− F−(ak+1)

>
m

2

for every m ≥ 0, so log((1−F(ak))/(1−F−(ak+1))) = ∞, which is a contradiction. Part (d)
follows immediately from (a) and (c).

We introduce additional notation. For k ≥ 1, let sk = P[X = xk]/ P[X ≥ xk] (that is, sk = rn
if xk = an ∈ A and sk = 0 otherwise) and λk = φk−1(xk) = log((1−F(xk−1))/(1−F−(xk))).
For x ∈ (0,∞), let

π(x) = max{k : xk ≤ x} and τ(x) = min{k : xk ≥ x}, (8)

which are well defined by Lemma 1. Also, for n ≥ 0, let

θ̂ (n) =
n∑

k=1

(sk + λk) and v̂(n) =
n∑

k=1

(sk(1− sk)+ λk). (9)

The following is a rewriting of Proposition 1 in terms of xk , sk , and λk .

Corollary 2. Let ξ be the Shorrock process, and let π , τ , θ̂ , and v̂ be as defined in (8) and (9).
Then, for x > 0,

(a) ξ(x) =∑π(x)
k=1 (Ck +Qk)+Q′x , where Ck ↪→ Ber(sk), Qk ↪→ Po(λk), k ≥ 1, and

Q′x ↪→ Po(log((1− F(xπ(x)))/(1− F(x)))) are independent,

(b) E[ξ(x)] = θ(x) = θ̂ (π(x))+ log((1− F(xπ(x)))/(1− F(x))),

(c) var[ξ(x)] = v(x) = v̂(π(x))+ log((1− F(xπ(x)))/(1− F(x))).

Here begins a series of technical results leading to the proof of Theorem 1. The idea is to
establish a central limit theorem for ξ̂ (n) (Lemma 2) and apply Kubacki and Szynal’s result
(Lemma 4) in order to replace n by the random variable Mn. Then the random centering
sequences are replaced by deterministic sequences and convergence for ξ(Mn) is obtained
thanks to the asymptotic equivalence of ξ and ξ̂ . The final conclusion follows from the simple
identity which connects the Shorrock process with Nn, namely Nn = ξ(Mn).

Lemma 2. Let ξ̂ (n) =∑n
k=1(Ck +Qk). If

∑∞
n=1(sk(1− sk)+ λk) = ∞ then

ξ̂ (n)− θ̂ (n)√
v̂(n)

d−→ N(0, 1).
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Proof. Since the random variables Zk = Ck + Qk − (sk + λk) are independent, with
E[Zk] = 0 and var[∑n

k=1 Zk] = v̂(n), it suffices to check Lyapunov’s condition
n∑

k=1

E[|Zk|3]
(v̂(n))3/2 → 0.

Since λk ≤ 1
2 , simple calculations yield E[|Zk|3] ≤ 2(sk(1− sk)+ λk) and the result follows.

Lemma 3. Let 0 ≤ x ≤ y. Then

1− F−(x)

1− F−(y)
≥ exp{θ̂ (π(y)− 1)− θ̂ (τ (x))}. (10)

Proof. Inequality (10) trivially holds if τ(x) ≥ π(y)− 1, so assume that τ(x) < π(y)− 1.
Write, for k ≥ 1,

1− F−(xk) = 1− F−(xk)

1− F(xk−1)

k−1∏
i=1

1− F(xi)

1− F−(xi)

1− F−(xi)

1− F(xi−1)
= e−λk

k−1∏
i=1

(1− si)e
−λi .

Then, for x ∈ (0,∞),

τ(x)∏
i=1

(1− si)e
−λi ≤ 1− F−(xτ(x)) ≤ 1− F−(x) ≤ 1− F−(xπ(x)) ≤

π(x)−1∏
i=1

(1− si)e
−λi .

Therefore, recalling that 1− t ≤ e−t for any t ≥ 0, we have

1− F−(x)

1− F−(y)
≥

π(y)−1∏
i=τ(x)+1

1

1− si
eλi ≥

π(y)−1∏
i=τ(x)+1

esi+λi = eθ̂ (π(y)−1)−θ̂ (τ (x)).

Note that, for θ given in (2), its generalized inverse θ←(t) = inf{x : θ(x) ≥ t} for t ∈
(0,∞) is well defined since limx→∞ θ(x) = ∞ by Proposition 1(d). The function θ← has the
following properties, whose proofs are immediate since θ is nondecreasing, right continuous,
and θ(x) − θ−(x) < 1 for all x > 0: (i) θ(a) ≥ b if and only if a ≥ θ←(b), (ii) θ(θ←(t)) ∈
[t, t + 1).

Proposition 2. The sequence θ(Mn)− θ(m(n)) is tight.

Proof. We must prove that P[|θ(Mn)−θ(m(n))| ≥ εcn] → 0 for any deterministic sequence
cn ↑ ∞ and every ε > 0, which is equivalent to P[Mn ≥ θ←(θ(m(n)) + εcn)] → 0 and
P[Mn ≥ θ←(θ(m(n))− εcn)] → 1, also respectively equivalent (see [5, Proposition 3.1.1]) to

n P[X ≥ θ←(θ(m(n))+ εcn)] → 0 (11)

and
n P[X ≥ θ←(θ(m(n))− εcn)] → ∞. (12)

For (11), let δn = (xτ(m(n))+1 − m(n))/2 for n ≥ 1. Note that δn > 0. By the properties of
m(n) displayed in (1) and Lemma 3 we obtain, for large enough n,

n P[X ≥ θ←(θ(m(n))+ εcn)]
<

P[X ≥ θ←(θ(m(n))+ εcn)]
P[X ≥ m(n)+ δn]

≤ exp{−(θ̂(π(θ←(θ(m(n))+ εcn))− 1)− θ̂ (τ (m(n)+ δn)))}.
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Thus, we must show that θ̂ (π(θ←(θ(m(n))+ εcn))− 1)− θ̂ (τ (m(n)+ δn))→∞, which
follows by noting that 0 < θ̂(n)− θ̂ (n− 1) < 2, 0 ≤ τ(m(n)+ δn)− τ(m(n)) ≤ 1 for n ≥ 1,
0 ≤ θ(x)− θ̂ (π(x)) < 1, 0 ≤ θ̂ (τ (x))− θ(x) < 1, and θ(θ←(x)) ∈ [x, x + 1) for x > 0.

The proof of (12) is similar, noting that

n P[X ≥ θ←(θ(m(n))− εcn)] ≥ P[X ≥ θ←(θ(m(n))− εcn)]
P[X ≥ m(n)]

≥ exp{θ̂ (π(m(n))− 1)− θ̂ (τ (θ←(θ(m(n))− εcn)))}.

Proposition 3. If limx→∞ v(x) = ∞ then

v̂(π(Mn))

v̂(π(m(n)))

p−→ 1,
v̂(τ (Mn))

v̂(τ (m(n)))

p−→ 1. (13)

Proof. By (9),

|v̂(π(Mn))− v̂(π(m(n)))| =
π(Mn∨m(n))∑

k=π(Mn∧m(n))+1

(sk(1− sk)+ λk)

≤
π(Mn∨m(n))∑

k=π(Mn∧m(n))+1

(sk + λk)

= |θ̂ (π(Mn))− θ̂ (π(m(n)))|.
Then, observing that 0 ≤ θ(x)− θ̂ (π(x)) < 1 and 0 ≤ v(x) − v̂(π(x)) < 1 for x > 0,
and using Proposition 2, we have |θ̂ (π(Mn))− θ̂ (π(m(n)))|/v̂(π(m(n)))

p−→ 0. Also, since
0 ≤ θ̂ (τ (x))− θ(x) < 1 and 0 ≤ v̂(τ (x))− v(x) < 1 for x > 0, the second limit in (13) is
obtained analogously.

The result below, which follows from Theorem 1 of [7], is a useful generalization of Rényi’s
well-known central limit theorem for the sum of a random number of independent random
variables.

Lemma 4. Let {Xn} be a sequence of centered and independent random variables, with
var[Xn] = σ 2

n <∞ for alln ≥ 1. Let s2
n =

∑n
k=1 σ 2

k ↑ ∞, and suppose that
∑n

k=1 Xk/sn
d−→ Y

for some random variable Y . Let {Tn} and {νn} be two sequences of positive integer-valued

random variables, with {νn} independent of {Xn}, such that νn
p−→∞ and sTn/sνn

p−→ 1. Then∑Tn

k=1 Xk/sνn

d−→ Y .

Proof of Theorem 1. If limx→∞ v(x) = ∞, we conclude, from Lemma 2, Proposition 3,
and Lemma 4, that

ξ̂ (π(Mn))− θ̂ (π(Mn))√
v̂(π(m(n)))

d−→ N(0, 1).

Moreover, since 0 ≤ θ(x)− θ̂ (π(x)) < 1 for x > 0, the random centering above can be
replaced by θ(m(n)) by Proposition 2. Now, using 0 ≤ v(x) − v̂(π(x)) < 1 for x > 0,
we obtain

ξ̂ (π(Mn))− θ(m(n))√
v(m(n))

d−→ N(0, 1). (14)
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In a similar way it can be shown that

ξ̂ (τ (Mn))− θ(m(n))√
v(m(n))

d−→ N(0, 1). (15)

By Corollary 2(a) we have ξ̂ (π(Mn)) ≤ ξ(Mn) ≤ ξ̂ (τ (Mn)) a.s. Hence, from (14) and (15),
we conclude that

ξ(Mn)− θ(m(n))√
v(m(n))

d−→ N(0, 1).

The proof of part (a) of Theorem 1 is now complete, recalling that Nn = ξ(Mn).
We now prove part (b). The random variables Zk = Ck + Qk − (sk + λk), k ≥ 1, are

centered and independent, with
∑∞

k=1 var[Zk] <∞. Therefore,
∑∞

k=1 Zk <∞ a.s., which
implies that limn(ξ̂ (π(Mn))− θ̂ (π(Mn))) <∞ and limn(ξ̂ (τ (Mn))− θ̂ (τ (Mn))) <∞ a.s.
Consequently, for any sequence cn ↑ ∞, Proposition 2 yields

ξ̂ (π(Mn))− θ(m(n))

cn

= ξ̂ (π(Mn))− θ̂ (π(Mn))+ θ̂ (π(Mn))− θ(m(n))

cn

p−→ 0 (16)

and
ξ̂ (τ (Mn))− θ(m(n))

cn

p−→ 0. (17)

From (16) and (17), tightness of Nn − θ(m(n)) follows.
Finally, suppose that there exist sequences bn, cn > 0 such that (Nn − bn)/cn

d−→ N(0, 1).
Then, since the distribution of Nn − bn is lattice of span 1 for each n ≥ 1, (Nn − bn)/cn

cannot converge to any continuous distribution unless cn →∞. But because of the tightness
of Nn − θ(m(n)), cn→∞ implies that

θ(m(n))− bn

cn

= Nn − bn

cn

− Nn − θ(m(n))

cn

d−→ N(0, 1),

which is a contradiction.

4. Finite variance

We give necessary and sufficient conditions for limx→∞ v(x) <∞ in terms of the discrete
and continuous components of F .

Let F = Fd + Fc, where Fd is purely discrete and Fc is continuous, with Fd(∞) :=
limx→∞ Fd(x) ≤ 1 and Fc(∞) := limx→∞ Fc(x) < 1. For k ≥ 1, let

rd
k =

P[X = ak]
Fd(∞)− F−d (ak)

= pk∑
j≥k pj

be the hazard rate of the discrete part of F .
Recall that, by Proposition 1(e), limt→∞ v(t) <∞ if and only if

∞∑
k=1

rk(1− rk) <∞, (18)

∞∑
k=1

µk

1− F−(ak)
<∞. (19)
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Note that, since pk = rk(1− F−(ak)), condition (19) can be written equivalently as

∞∑
k=1

µk

pk

rk <∞. (20)

We present next a simple but useful technical lemma, followed by a result showing that rk
can be replaced by rd

k in conditions (18) and (20).

Lemma 5. Suppose that
∑∞

k=1 µk/(1− F−(ak)) <∞. Then,∑
j>i µj

1− F(ai)
→ 0, (21)

1− F−(ai)

Fd(∞)− F−d (ai)
→ 1, (22)

1− F(ai)

Fd(∞)− Fd(ai)
→ 1. (23)

Proof. For (21), note that ∑
j>i µj

1− F(ai)
≤

∑
j>i

µj

1− F−(aj )
→ 0.

Now, (22) follows from (21) and the identity

1− F−(ai) = Fd(∞)− F−d (ai)+
∑
j>i

µj .

Analogously, (23) follows from (21) and

1− F(ai) = Fd(∞)− Fd(ai)+
∑
j>i

µj .

Proposition 4. We have limx→∞ v(x) <∞ if and only if

∞∑
k=1

rd
k (1− rd

k ) <∞, (24)

∞∑
k=1

µk

pk

rd
k <∞. (25)

Proof. Suppose first that limx→∞ v(x) < ∞. Then, by (19) and Lemma 5, we have 1 −
F−(ak) ∼ Fd(∞)− F−d (ak) and 1 − F(ak) ∼ Fd(∞) − Fd(ak), which imply that rk ∼ rd

k

and 1− rk ∼ 1− rd
k . Therefore, (18) implies (24) and (20) implies (25).

For the converse, as rk ≤ rd
k , we have

∞∑
k=1

µk

1− F−(ak)
=
∞∑

k=1

µk

pk

rk ≤
∞∑

k=1

µk

pk

rd
k <∞,

so, by Lemma 5, we have rk ∼ rd
k and 1− rk ∼ 1− rd

k , and the conclusion follows.
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In the next theorem we characterize distributions with limx→∞ v(x) <∞. For that purpose,
fix ã ∈ (0, a1), let B = {k : rd

k < 1
2 }, and define the random variable X̃ by

X̃(ω) =
{

ã if X(ω) ∈ {ak : k ∈ B},
X(ω) otherwise.

Note that X̃ is obtained from X by removing all atoms with hazard rates rd
k < 1

2 and assigning
their probabilities to ã. That is, P[X̃ = ak] = 0 for all k ∈ B and P[X̃ = ã] =∑

k∈B pk .

Theorem 2. We have limx→∞ v(x) < ∞ if and only if any of the following conditions
hold:

(a) rd
k → 1,

∞∑
k=1

(1− rd
k ) <∞ (26)

and
∞∑

k=1

µk

pk

<∞, (27)

(b) the limit points of {rd
k } are 0 and 1, ∑

k∈B
rd
k <∞, (28)

and X̃ satisfies condition (a).

Proof. Suppose that limx→∞ v(x) < ∞, so that (18), (20), (24), and (25) hold, and let us
prove that either (a) or (b) holds. If rd

k → 1 then (26) and (27) follow from (24) and (25).
Now suppose that rd

k does not converge to 1 (recall that 0 < rd
k < 1 for all k ≥ 1). Since (24)

holds, rd
k (1− rd

k )→ 0, so the only possible subsequential limits of rd
k are 0 and 1. Now, 1 must

be a subsequential limit, since otherwise, rd
k → 0 and (24) would imply that

∑∞
k=1 rd

k <∞,
which is a contradiction since every discrete random variable with infinitely many atoms has∑∞

k=1 rd
k = ∞; 0 must also be a subsequential limit of rd

k because otherwise rd
k → 1. Moreover,

the definition of B and (24) imply that
∑

k∈B rd
k < 2

∑
k∈B rd

k (1− rd
k ) <∞, so (28) holds.

We now prove that X̃ verifies condition (a).
Let F̃ be the distribution function of X̃, let F̃d be the discrete part of F̃ , and let F̃d(∞) =

limx→∞ F̃d(x). Let {αk} be the sequence of atoms of X̃; that is, α1 = ã and, for k ≥ 2,
αk = ank

with nk ∈ {1, 2, . . .} \ B, nk ↑ ∞. Observe that Fd(∞) = F̃d(∞) since the total
mass due to atoms is the same for X and X̃. Note also that 0 is not a limit point of {rd

nk
} because

in this subsequence we are excluding atoms with discrete hazard rates less than 1
2 . Therefore,

the fact that {rd
k } has 0 and 1 as unique limit points implies that rd

nk
→ 1. Define, for k ≥ 2,

r̃k = P[X = αk]
1− F̃−(αk)

= pnk

1− F̃−(ank
)
, r̃d

k =
P[X = αk]

F̃d(∞)− F̃−d (αk)
= pnk

F̃d(∞)− F̃−d (ank
)
.

Let us first check that

F̃d(∞)− F̃−d (ak) ∼ Fd(∞)− F−d (ak). (29)
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To this end, consider∑
j≥k, j∈B pj

Fd(∞)− F−d (ak)
≤

∑
j≥k, j∈B

pj

Fd(∞)− F−d (aj )
=

∑
j≥k, j∈B

rd
j → 0, (30)

where convergence to 0 above follows from
∑

k∈B rd
k <∞. Finally, the identity

Fd(∞)− F−d (ak) = F̃d(∞)− F̃−d (ak)+
∑

j≥k, j∈B
pj

and (30) imply (29).
Now, from (29), for large k,

r̃d
k =

pnk

F̃d(∞)− F̃−d (ank
)
∼ pnk

Fd(∞)− F−d (ank
)
= rd

nk
→ 1,

so r̃d
k → 1.

Let us see that X̃ verifies (26). By (29) we have, for large k,

1− r̃d
k =

F̃d(∞)− F̃d(ank
)

F̃d(∞)− F̃−d (ank
)
∼ Fd(∞)− Fd(ank

)

Fd(∞)− F−d (ank
)
= 1− rd

nk
,

so
∑∞

k=1(1− r̃d
k ) <∞ since

∞∑
k=2

(1− rd
nk

) =
∑
k �∈B

(1− rd
k ) ≤ 2

∑
k �∈B

rd
k (1− rd

k ) <∞.

Let us prove (27) for X̃, which is clearly equivalent to

∞∑
k=3

F̃−(αk)− F̃ (αk−1)

F̃d(∞)− F̃−d (αk)
<∞, (31)

since r̃d
k → 1.

Observing that, for k ≥ 3, F̃−(αk)− F̃ (αk−1) =∑nk

l=nk−1+1(F
−(al)− F(al−1)) and that

F̃d(∞)− F̃−d (αk) ∼ Fd(∞)− F−d (αk) ∼ 1− F−(αk),

where the first equivalence above follows from (29) and the second from Lemma 5, (31) is
equivalent to

∞∑
k=3

nk∑
l=nk−1+1

F−(al)− F(al−1)

1− F−(ank
)

<∞. (32)

Consider the identity

1− F−(ank−1+1) = 1− F−(ank
)+

nk−1∑
l=nk−1+1

pl +
nk∑

l=nk−1+2

µl
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and ∑nk−1
l=nk−1+1 pl

1− F−(ank−1+1)
≤

∑
l≥nk−1+1, l∈B pl

1− F−(ank−1+1)
∼

∑
l≥nk−1+1, l∈B pl

Fd(∞)− F−d (ank−1+1)
→ 0,

∑nk−1
l=nk−1+2 µl

1− F−(ank−1+1)
≤

∑∞
l=nk−1+2 µl

1− F−(ank−1+1)
→ 0,

where the equivalence follows from (22) and the limits from (30) and (21), respectively.
Therefore, 1− F−(ank−1+1) ∼ 1− F−(ank

) and

nk∑
l=nk−1+1

F−(al)− F(al−1)

1− F−(ank
)
∼

nk∑
l=nk−1+1

F−(al)− F(al−1)

1− F−(al)
,

so (32) follows from (19). This completes the proof of the necessity of (a) or (b).
Let us now show that (a) or (b) imply that limx→∞ v(x) <∞. Suppose first that (a) holds;

then ∞∑
k=1

µk

pk

rk <

∞∑
k=1

µk

pk

<∞,

by (27), so we have (20). Moreover, applying Lemma 5, we have rk ∼ rd
k and 1− rk ∼ 1− rd

k ,
and (18) holds.

Suppose that (b) holds. Let us prove (18) and (19). For (19), note that

∞∑
k=n2+1

µk

1− F−(ak)
=
∞∑

k=3

nk∑
l=nk−1+1

F−(al)− F(al−1)

1− F−(al)

≤
∞∑

k=3

nk∑
l=nk−1+1

F−(al)− F(al−1)

1− F−(ank
)

=
∞∑

k=3

F̃−(ank
)− F̃ (ank−1)

1− F−(ank
)

≤
∞∑

k=3

F̃−(ank
)− F̃ (ank−1)

1− F̃−(ank
)

=
∞∑

k=3

F̃−(αk)− F̃ (αk−1)

P[X = αk] r̃k

<

∞∑
k=3

F̃−(αk)− F̃ (αk−1)

P[X = αk]
<∞

by (27).
For (18), observe that, by Lemma 5, the convergence of the series above implies that∑∞
k=1 rk(1− rk) <∞ if and only if

∑∞
k=1 rd

k (1− rd
k ) <∞. Thus, we have to prove that∑

k∈B rd
k (1− rd

k ) <∞ and
∑

k �∈B rd
k (1− rd

k ) <∞. The first convergence follows from∑
k∈B rd

k (1− rd
k ) <

∑
k∈B rd

k <∞ by (28). Also, (28) implies (29) so 1− rd
nk
∼ 1− r̃d

k ;
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therefore,
∑

k �∈B rd
k (1− rd

k ) =∑∞
k=2 rd

nk
(1− rd

nk
) <

∑∞
k=2(1− rd

nk
) <∞, since

∑∞
k=1(1 −

r̃d
k ) <∞.

Remark 1. Theorem 2 shows that distributions F such that ξ(x) has finite asymptotic variance
are very light tailed in the sense that the discrete part has light tails (the discrete hazard rates go
to 1 very fast) and, moreover, the tail of the continuous part is even lighter, since it is negligible
when compared with the tail of the discrete part.
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