
J. Appl. Probab. 60, 204–222 (2023)
doi:10.1017/jpr.2022.40

ANOMALOUS RECURRENCE OF MARKOV CHAINS ON NEGATIVELY
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Abstract

We present a recurrence–transience classification for discrete-time Markov chains on
manifolds with negative curvature. Our classification depends only on geometric quan-
tities associated to the increments of the chain, defined via the Riemannian exponential
map. We deduce that a recurrent chain that has zero average drift at every point cannot
be uniformly elliptic, unlike in the Euclidean case. We also give natural examples of
zero-drift recurrent chains on negatively curved manifolds, including on a stochastically
incomplete manifold.
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1. Introduction

It is a classical result [12] that Brownian motion in hyperbolic space is transient in dimen-
sions two and higher, in contrast to the Euclidean case [15], where it is recurrent in dimension
two (meaning that, almost surely, it visits any given open set at arbitrarily large times). In
this paper we study more general random walks on negatively curved manifolds. We focus
our attention on cases where the process respects the geometry of the manifold. Specifically,
we consider discrete-time Markov processes that have martingale-like properties. To define a
martingale on a manifold, one needs some geometric structure. We will be interested in pro-
cesses where, in the chart induced by the Riemannian exponential map, each increment has
zero mean. Such processes are called zero-drift processes.

Even in dimension three or more, a zero-drift Markov chain in Euclidean space need not be
transient. Examples of recurrent zero-drift chains include what could be termed the ‘maximal
symmetric random walk’ of [25, Theorem 1.5], and the ‘elliptic random walk’ of [8, Section 3].
These examples are light-tailed (the conditional increment of the chain has a finite covariance
matrix at every point), and the latter is uniformly elliptic, meaning that there exists ε > 0 such
that, for any fixed direction, there is a probability of at least ε that the chain will move a
distance at least ε in that direction (see Section 2 for a precise definition).

Our main result (Theorem 1) is a recurrence–transience criterion for Markov chains on
negatively curved manifolds. The criterion is phrased in terms of certain geometric quantities
defined in the tangent bundle of the manifold. We deduce from our result that, unlike in the
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Euclidean case, zero-drift recurrent walks on negatively curved manifolds cannot be uniformly
elliptic. More generally, we quantify the extent to which uniform ellipticity must fail, in terms
of the asymptotic behaviour of the curvature of the manifold, if a zero-drift chain is to be
recurrent. This allows us to write down recurrent chains on a large class of manifolds, includ-
ing some that are stochastically incomplete, meaning that Brownian motion is not merely
transient but explosive, in the sense that it may go to infinity within finite time. Another con-
trast we observe is that in Euclidean space it is possible to give a simple recurrence criterion
using the growth of quantities calculated from the covariance matrices. We give an example
(Proposition 6) to show that the corresponding results do not hold in hyperbolic space for any
polynomial growth condition.

Our proof strategy is to combine the methods in [8], which uses methods of Lamperti type
[19], with differential geometric comparison theorems. Whereas there is a well-established
literature on the recurrence and ergodicity of random walks on manifolds with a Lie group
or homogeneous space structure (see, for example, [26] and the references therein), com-
parison theorems allow us to study manifolds that do not have these structures, by reducing
certain computations to the constant-curvature case. The use of comparison theorems is stan-
dard within the study of Brownian motion on manifolds [10, 11], but is less known within the
Markov chains literature. The technical details are different from the Euclidean case, and the
main technical novelty in this paper is Proposition 3, which gives an asymptotic approximation
to the moments of the increments of the process measuring distance from an origin, in terms
of geometrically meaningful quantities.

In the existing literature, much attention has been paid to the rate of escape of (continuous
and discrete) Markov processes on manifolds, and the question of the ultimate fate of the
angular process (defined using geodesic polar coordinates). The most basic example, Brownian
motion in hyperbolic space (of arbitrary dimension ≥ 2), escapes to infinity at linear speed,
and, unlike in the Euclidean case, its angular process almost surely converges to a limiting
direction. These facts can be proved using a variety of techniques, including ergodic theory and
group-theoretic methods [16], harmonic function theory [17, 29], or by applying integral tests
for one-dimensional processes [27]. We show in Section 5 that (under certain assumptions) a
uniformly elliptic Markov chain will always escape at linear speed. We also give an example
where reducing the movements that a chain makes in the transverse (as opposed to radial)
direction reduces the rate of escape. We return to some of these concepts at the end of the
paper as avenues of exploration in future work.

2. Notation and main results

Throughout, we adopt the convention that 0 ∈N, and denote by X = (Xn)n∈N a discrete-
time, time-homogeneous Markov chain whose state space is a Riemannian manifold M, with
the Borel sigma algebra. We review the geometric concepts that we need; the reader unfamiliar
with this material might consult, for example, [20]. Suppose that M has dimension d. If x ∈ M
is a point, then the tangent space at x, denoted TxM, is a d-dimensional real vector space
whose elements may be viewed as ‘vectors tangent to M at x’. The tangent bundle TM is
a manifold of dimension 2d whose points consist of pairs (x, v), where v ∈ TxM. The space
TxM inherits an inner product space structure, denoted 〈 · 〉x, from the Riemannian metric on
M. Let Planes(M, x) denote the collection of two-dimensional subspaces of TxM. Then the
sectional curvature of M at x with respect to the plane π ∈ Planes(M, x), which we denote by
sec(x, π ), is a real number that may be calculated using the metric on M. If M is a sphere of
radius r (in any dimension), then sec(x, π ) = r−2 for all choices of x and π . We are interested
in hyperbolic manifolds, where the sectional curvature is everywhere negative. Finally, the
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Riemannian exponential map expx : TxM → M (when it exists) sends the vector v ∈ TxM to
the point in M given by starting at x and travelling along the geodesic determined by v a
Riemannian distance of

√〈v, v〉x. We denote by DistM(x, y) the Riemannian distance between
x ∈ M and y ∈ M.

Assumption 1. M is complete and simply connected. Also, there is a constant κ > 0 such that
sec(x, π ) ≤ −κ2 for all x ∈ M and all planes π .

Under Assumption 1, the Riemannian exponential map expx : TxM → M exists and is a dif-
feomorphism for every x ∈ M [14, Lemma 2.1.4]. For technical reasons, we make an arbitrary
(but fixed) choice of origin O ∈ M, and work with local notions of recurrence and transience.
See the discussion following Definition 1 for how these local notions relate to (global) recur-
rence and transience, which do not depend on a choice of origin. Having chosen O, the function

erad(x) = exp−1
x (O)√

〈exp−1
x (O), exp−1

x (O)〉x

(x 
= O)

is well defined. We also define some sequences of random variables, indexed by n ∈N:

V (n) = exp−1
Xn

(Xn+1),

D(n)
tot =

√
〈V (n), V (n)〉Xn ,

D(n)
rad =

{−〈V (n), erad(Xn)〉Xn if Xn 
= O,

D(n)
tot if Xn = O,

�(n) =
{

D(n)
rad/D(n)

tot if D(n)
tot > 0,

0 if D(n)
tot = 0.

The TM-valued process (Xn, V (n)) is known as a geodesic random walk (GRW). The excursion
theory of a particular GRW on hyperbolic space, and the large deviation theory of GRWs on
general Riemannian manifolds, have been respectively studied in [3, 18]. Geometrically, D(n)

tot
is the total Riemannian distance between Xn and Xn+1, erad(x) is the unit vector that ‘points
from x to the origin’, D(n)

rad is the length of the radial component of V (n), and �(n) is the cosine
of the angle between V (n) and (−erad(Xn)) in TXn M. We also define the radial process (Rn)n∈N
by Rn = DistM(Xn, O).

We introduce another piece of notation. If H is a (suitable) function from a subset of R3 to
R, then we write Ex[H(Dtot, �R, �)] as shorthand for E

[
H(D(n)

tot , �nR, �(n)) | Xn = x
]
, where

�nR := Rn+1 − Rn. This notation is unambiguous because X is Markov, and so the expression
does not depend on n. We make the following assumptions on the chain X.

Assumption 2. There exist p > 2 and B ∈R such that Ex[(Dtot)p] ≤ B for all x ∈ M.

Assumption 3. It is almost surely the case that lim supn→∞ DistM(Xn, x) = ∞ for some
(equivalently for all) x ∈ M.

Assumption 2 also appears in [8]. Without it, we can construct trivial examples of recurrent
chains by having a probability of 10−6 (say) of jumping to the origin, regardless of the current
location of the chain. Assumption 3 is global in nature, but Proposition 1 gives local conditions
on X that are sufficent for Assumption 3 to hold. Proposition 1 is proved in Section 4.
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Proposition 1. Suppose that the manifold M and Markov chain X satisfy Assumptions 1 and 2.
Suppose that Ex[Drad] = 0 for all x ∈ M, and that there exists ε > 0 such that Ex[D2

rad] ≥ ε for
all x ∈ M. Then Assumption 3 holds.

Definition 1. The chain X is called O-recurrent if there is some constant r0 such that
lim infn→∞ Rn ≤ r0 almost surely. It is called O-transient if Rn → ∞ almost surely.

The notions of O-recurrence and O-transience are local, and also appear in [8], although
there they are simply called ‘recurrent’ and ‘transient’. For us, ‘recurrent’ means that, for any
open U ⊂ M, X almost surely visits U infinitely often, and ‘transient’ means ‘not recurrent’. If
X is O-transient for some choice of O (equivalently for all choices of O) then X is transient. If
X is O-recurrent for some choice of O, and the chain is ‘irreducible’ (in some suitable sense),
then we would expect X to be recurrent. For example, suppose that X is known to visit a
neighbourhood N0 of some origin O infinitely often almost surely, and has the property that,
for every open neighbourhood N of M, there exist m ∈N and δ > 0 such that infx∈N0 Px[τN ≤
m] ≥ δ, where τN := min{n ∈N : Xn ∈ N}. Then a Borel–Cantelli-type argument similar to [22,
Example 2.3.20] reveals that X is recurrent. A full analysis of the relationship between O-
recurrence and recurrence is technically involved since M is neither discrete nor countable;
this is beyond the scope of this paper.

We introduce the remaining notation that we need to state our main result. Given x ∈ M and
a real number dtot ≥ 0 (we should think of dtot as an observation of D(n)

tot for some n), the real-
valued functions kmin and kmax are defined to measure the extremes of the sectional curvature
within a distance dtot of x. More precisely, we define

kmin(x, dtot) = inf
y∈M : DistM(x,y)≤dtot,

π∈Planes(M,y)

√−sec(y, π ),

kmax(x, dtot) = sup
y∈M : DistM(x,y)≤dtot,

π∈Planes(M,y)

√−sec(y, π ).

By Assumption 1, 0 < κ ≤ kmin(x, dtot) ≤ kmax(x, dtot) for all x, dtot. Given k > 0, dtot > 0, and
φ ∈ [−1, 1], let G be the real-valued function

G(k, dtot, φ) = 1

k
log(cosh(kdtot) + φ sinh(kdtot)). (1)

We demonstrate in the proof of Proposition 3 that G is an asymptotic estimate, valid when R is
much larger than Dtot, for the increment �R on a manifold of constant curvature −k2. Finally,
the notation 1E, for an event E, refers to the indicator function that is equal to 1 on E and zero
on the complement of E.

Theorem 1. Let M and X satisfy Assumptions 1, 2, and 3. Let S(r) = {x ∈ M : DistM(O, x) = r},
and let

ν1(r) = inf
x∈S(r)

Ex[G(kmin(x, Dtot), Dtot, �)],

ν1(r) = sup
x∈S(r)

Ex[G(kmax(x, Dtot), Dtot, �)],
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ν2(r) = inf
x∈S(r)

{
Ex[G2(kmin(x, Dtot), Dtot, �)1�R≥0]

+Ex[G2(kmax(x, Dtot), Dtot, �)1�R<0]
}
,

ν2(r) = sup
x∈S(r)

{
Ex[G2(kmax(x, Dtot), Dtot, �)1�R≥0]

+Ex[G2(kmin(x, Dtot), Dtot, �)1�R<0]
}
.

(i) If lim infr→∞(2rν1(r) − ν2(r)) > 0 then X is O-transient.

(ii) If instead lim infr→∞ ν2(r) > 0 and there exist r0 ≥ 0, θ > 0 such that

2rν1(r) ≤
(

1 + 1 − θ

log r

)
ν2(r) for all r ≥ r0,

then X is O-recurrent.

Remark 1.

(i) The intuition behind Theorem 1 is that R is a one-dimensional process, and so we expect
(under suitable assumptions [6, 19]) the recurrence or transience of R to be determined
by the behaviour of the mean and variance of the increments �R when R is large. The
expressions νi(r) and νi(r), when r is large, are approximate upper and lower bounds for
Ex[(�R)i] when x ∈ S(r). They are analogous to the right-hand side of Equations (5.3)
and (5.4) in [8].

(ii) It is an immediate consequence of Theorem 1 that if, for i = 1, 2, we can find functions
ν′

i(r) and ν′
i(r) such that ν′

i ≤ νi and ν′
i ≥ νi, then Theorem 1 will hold with νi and νi

replaced by ν′
i and ν′

i respectively. So, in applications we can find bounds for the νi and
νi instead of evaluating them explicitly.

(iii) Another immediate consequence of Theorem 1 is that the equation

lim
r→∞ rν1(r) = ∞ (2)

is sufficient for O-transience.

(iv) If more information is known about the curvature of M, then the expressions for the νi
and νi simplify. For example, if the sectional curvature is globally bounded by −κ2

1 ≤
sec ≤ −κ2

2 , then kmin, kmax can be replaced by the constants κ1 and κ2. Using the fact that
1�R≥0 + 1�R<0 = 1, it follows that the indicator functions disappear from the formulae
when M is a constant curvature manifold.

(v) Corollary 1 gives sufficient conditions to ensure that �R ≥ 0 (and �R < 0) for suffi-
ciently large values of Rn, in terms of � and Dtot only. This allows the indicator functions
1�R≥0 and 1�R<0 to be bounded in terms of purely local quantities, as claimed in the
abstract.

(vi) Not every chain that satisfies our assumptions can be classified by Theorem 1, since
conditions (i) and (ii) of Theorem 1 are not exhaustive. We do not discuss the ambiguous
case in any detail here, except to remark that if X has sufficient radial symmetry for R
to be Markov, then we may be able to use the estimates in this paper, together with
recurrence–transience results for one-dimensional processes (for example [6, Theorem
2.10]) to obtain a finer classification.
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Definition 2. A chain X on M is called zero drift if E
[
exp−1

Xn
(Xn+1) |Fn

] = 0 almost surely
for all n ∈N, where the conditional expectation is defined using the vector space structure of
TXn M, and Fn = σ (X1, X2, . . . , Xn).

To say that a chain X is zero drift is to say that, for all x ∈ M, the conditional law of Xn+1,
given that Xn = x, has x as its Riemannian centre of mass (or ‘barycentre’ [7]). This concept
appears in the statistics and Monte Carlo literature as a way of taking means and medians
on manifolds [2]. Zero-drift chains are also closely related to the notion of martingales on M.
When M =R

d the two notions are equivalent, although for general M the story is slightly more
complicated, as explained in [28].

Recall from [8, Equation (1.11)] that a chain (Xn)n∈N is called uniformly elliptic if there
exists ε > 0 such that

P
[〈exp−1

Xn
(Xn+1), w〉Xn ≥ ε |Fn

] ≥ ε (3)

almost surely for all unit vectors w ∈ TXn M and all n ∈N. In Euclidean space, zero-drift
recurrent uniformly elliptic chains exist. By contrast, in Section 5 we derive the following
consequence of Theorem 1.

Theorem 2. Let M satisfy Assumption 1. Let X be a Markov chain on M satisfying
Assumptions 2 and 3. If X is uniformly elliptic and of zero drift, then X is O-transient.

We deduce Theorem 2 from a stronger result, namely that, under our assumptions, if a
zero-drift chain is to be recurrent, then the function

Q(x) := Ex
[
D2

tot − D2
rad

]
(4)

cannot remain bounded above zero as DistM(x, O) → ∞. Geometrically, Q is the total variance
of the increment, conditional on the chain currently being at x ∈ M, in the transverse direction.
Some intuition as to why this stronger result is true is given at the start of Section 5. In the
Euclidean case, Q provides a great deal of information as to the recurrence of a zero-drift
chain: if we ignore certain boundary or degenerate cases, and assume that Q and Ex

[
D2

tot

]
tend

to limiting values when far from the origin, then these limiting values alone are enough to
deduce recurrence or transience [8, Theorem 2.3]. By contrast, in the hyperbolic setting, rapid
decay of Q is insufficient to imply recurrence, unless very strong assumptions are placed on
the tails of the chain.

We now proceed as follows. Sections 3, 4, and 5 respectively prove Theorem 1,
Proposition 1, and Theorem 2. Finally, Section 6 gives some examples.

3. Geometric calculations and proof of Theorem 1

For real numbers k > 0, dtot ≥ 0, φ ∈ [−1, 1], and x ∈ M, define a function F by

F(k, dtot, φ, x) = 1

k
arccosh(cosh kr cosh kdtot + φ sinh kr sinh kdtot) − r, (5)

where r = r(x) = DistM(x, O). Proposition 2 implies that if the manifold has constant curvature
−k2, then F(k, D(n)

tot , �(n), x) is the exact value of the increment Rn+1 − Rn, given that Xn = x.
We stress that Proposition 2 is a purely geometric result; its proof does not require any
probabilistic information.
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Proposition 2. Let M be a manifold satisfying Assumption 1. For brevity, we write k(n)
min (or

k(n)
max) in place of kmin(Xn, D(n)

tot ) (or kmax(Xn, D(n)
tot )). Recall also that �nR := Rn+1 − Rn. Then,

for all n ∈N,

F(k(n)
min, D(n)

tot , �(n), Rn) ≤ �nR ≤ F(k(n)
max, D(n)

tot , �(n), Rn),

F2(kmin, D(n)
tot , �(n), Rn)1�nR≥0+F2(kmax, D(n)

tot , �(n), Rn)1�nR<0

≤ (�nR)2 ≤
F2(kmax, D(n)

tot , �(n), Rn)1�nR≥0 + F2(kmin, D(n)
tot , �(n), Rn)1�nR<0.

Proof. The first inequality, in the constant curvature case, is a classical result equivalent
to the hyperbolic law of cosines [1]; it follows from the constant curvature case together with
Toponogov’s theorem (see, for example, [4, Chapter 10, Proposition 2.5]). The second inequal-
ity follows from the first, together with the elementary observation that, for real numbers
x and y such that x ≤ y, we have x2 ≤ y2 if x ≥ 0 whereas x2 ≥ y2 if y ≤ 0. �

Some routine algebraic manipulation of the first inequality in Proposition 2 results in the
following corollary.

Corollary 1. A sufficient condition for Rn+1 − Rn < 0 is that

�(n) <
coth k(n)

maxRn
(
1 − cosh k(n)

maxD(n)
tot

)
sinh k(n)

maxD(n)
tot

.

In particular, for all ε > 0 there exists a constant rε such that, if Rn > rε and

�(n) <
(1 − ε)

(
1 − cosh k(n)

maxD(n)
tot

)
sinh k(n)

maxD(n)
tot

,

then Rn+1 − Rn < 0. A sufficient condition for Rn+1 − Rn ≥ 0 is that

�(n) ≥ coth k(n)
minRn

(
1 − cosh k(n)

minD(n)
tot

)
sinh k(n)

minD(n)
tot

.

In particular, for all ε > 0 there exists a constant rε such that, if Rn > rε and

�(n) ≥ (1 + ε)
(
1 − cosh k(n)

minD(n)
tot

)
sinh k(n)

minD(n)
tot

,

then Rn+1 − Rn ≥ 0.

Proposition 3. Assume that M has constant curvature −k2, and that X satisfies Assumption 2.
Let x ∈ M be a point of distance Rx from O. Then

Ex[�R] = 1

k
Ex[log(cosh kDtot + � sinh kDtot)] + O(R1−p

x ), (6)

Ex
[
(�R)21�R≥0

] = 1

k2
Ex

[
log2 (cosh kDtot + � sinh kDtot)1�R≥0

] + O(R2−p
x ), (7)
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where the implicit constants in the remainder terms depend only on k, p, and B, and remain
bounded as a function of k as k → ∞. Moreover, (7) remains true if 1�R≥0 is changed to 1�R<0
throughout.

Proof. For brevity, let α = cosh kRx, β = sinh kRx, c = cosh kDtot, and s = sinh kDtot. Using
Proposition 2, followed by some algebraic manipulation, we find that∣∣∣∣�R − 1

k
log(c + φs)

∣∣∣∣ =
∣∣∣∣1

k
arccosh(αc + �βs) − Rx − 1

k
log(c + �s)

∣∣∣∣ (8)

=
∣∣∣∣1

k
log(2(αc + �βs)) + 1

k
log

(
1 + √

1 − (αc + �βs)−2

2

)
− Rx − 1

k
log(c + �s)

∣∣∣∣
=

∣∣∣∣1

k
log

(
2(αc + �βs)e−kRx

c + �s

)
+ 1

k
log

(
1 + √

1 − (αc + �βs)−2

2

)∣∣∣∣
=

∣∣∣∣1

k
log

(
c(1 + e−2kRx ) + �s(1 − e−2kRx )

c + �s

)
+ 1

k
log

(
1 + √

1 − (αc + �βs)−2

2

)∣∣∣∣
=

∣∣∣∣1

k
log

(
1 + c − �s

c + �s
e−2kRx

)
+ 1

k
log

(
1 + √

1 − (αc + �βs)−2

2

)∣∣∣∣
≤

∣∣∣∣1

k
log

(
1 + c − �s

c + �s
e−2kRx

)∣∣∣∣ +
∣∣∣∣1

k
log

(
1 + √

1 − (αc + �βs)−2

2

)∣∣∣∣.
Note that, since α, β, c, s ≥ 0 and � ∈ [−1, 1],

e−kDtot = c − s ≤ c + s = ekDtot . (9)

In particular, c ± �s ≥ 0. Further,

αc + �βs ≥ αc − βs = cosh(kRx − kDtot) ≥ max
( 1

2 exp(kRx − kDtot), 1
)
. (10)

We can verify that if u ≥ 0 then 0 ≤ log(1 + u) ≤ u, and that if u ≥ 1 then∣∣∣∣ log

(
1 + √

1 − u−2

2

)∣∣∣∣ ≤ 1

u2
.

It follows that∣∣∣∣�R − 1

k
log(c + �s)

∣∣∣∣ ≤ 1

k

c − �s

c + �s
e−2kRx + 1

k

1

(αc + �βs)2

≤ 1

k
e2k(Dtot−Rx) + 4

k
e2k(Dtot−Rx) [by (9) and (10)]

= 5

k
e2k(Dtot−Rx). (11)

Let E be the event that Dtot ≤ R/2, and Ec its complement. Then∣∣∣∣Ex

[
�R − 1

k
log(c + �s)

]∣∣∣∣ ≤
∣∣∣∣Ex

[(
�R − 1

k
log(c + �s)

)
1E

]∣∣∣∣
+

∣∣∣∣Ex

[(
�R − 1

k
log(c + �s)

)
1Ec

]∣∣∣∣ =: Q1 + Q2.
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Using (11),

Q1 ≤E

[
5

k
e2k(Dtot−Rx)1E

]
≤E

[
5

k
e−kRx 1E

]
≤ 5

k
e−kRx .

To bound Q2, we use (9) and then Assumption 2:

Q2 ≤Ex[2Dtot1Ec ] =Ex
[
2Dp

totD
1−p
tot 1Ec

] ≤
(

Rx

2

)1−p

Ex
[
2Dp

tot1Ec
] ≤ 2pR1−p

x B.

Combining these bounds establishes (6). For (7), we note, from the elementary observation
that a2 − b2 = (a − b)2 + 2b(a − b), that

∣∣∣∣Ex

[
(�R)21�R≥0 −

(
1

k
log(c + �s)

)2

1�R≥0

]∣∣∣∣ ≤

Ex

[∣∣∣∣
((

�R − 1

k
log(c + �s)

)2

1E + 2

k
log(c + �s)

(
�R − 1

k
log(c + �s)

)
1E

)
1�R≥0

∣∣∣∣
]

+Ex

[∣∣∣∣
((

�R − 1

k
log(c + �s)

)2

1Ec + 2

k
log(c + �s)

(
�R − 1

k
log(c + �s)

)
1Ec

)
1�R≥0

∣∣∣∣
]

=: Q3 + Q4.

Using (11), we find that

Q3 ≤Ex

[((
5

k
e2k(Dtot−Rx)

)2

+ 2Dtot

(
5

k
e2k(Dtot−Rx)

))
1E

]

≤Ex

[
25

k2
e−2kRx + 10

k
e−kRx Dtot

]
.

Assumption 2 together with Lyapunov’s inequality implies that Ex[Dtot] is bounded as a
function of x, giving a bound on Q3 of the required form. To bound Q4, Assumption 2
gives

Q4 ≤Ex
[
8D2

tot1Ec
] =Ex

[
8Dp

totD
2−p
tot 1Ec

] ≤ 2p+1R2−p
Ex

[
Dp

tot1Ec
] ≤ 2p+1BR2−p,

from which we deduce (7). Finally, the same proof as above shows that (7) holds when 1�R≥0
is changed to 1�R<0 throughout. �

3.1. Proof of Theorem 1

Recall that the functions F and G are defined in (5) and (1), respectively.

Proof. In what follows, C is a constant that depends only on κ , p, and B, but may change
from line to line. We note that

Ex[�R] ≤Ex[F(kmax(x, Dtot), Dtot, �, x)]

≤Ex[G(kmax(x, Dtot), Dtot, �)] + Cr1−p, (12)
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where r = DistM(x, O). The first inequality here is from Proposition 2. The second follows from
the proof of Proposition 3, noting that the right-hand side of (8) is exactly |F(k, Dtot, �, x) −
G(k, Dtot, �)|. Similarly, we see that

Ex[(�R)2] ≤Ex[F2(kmax(x, Dtot), Dtot, �, x)1�R≥0]

+Ex[F2(kmin(x, Dtot), Dtot, �, R)1�R<0]

≤Ex[G2(kmax(x, Dtot), Dtot, �)1�R≥0]

+Ex[G2(kmin(x, Dtot), Dtot, �)1�R<0] + Cr2−p. (13)

Define, for i = 1 and i = 2,

μ
i
(r) = νi(r) − Cri−p, μi(r) = νi(r) + Cri−p. (14)

Taking suprema of (12) and (13) over S(r), and infima of the corresponding lower bounds over
S(r), it follows that

μ
i
(Rn) ≤E[(�Rn)i |Fn] ≤ μi(Rn) (15)

almost surely for all n, where Fn is the sigma algebra generated by R1, . . . , Rn.
Suppose now that the assumptions in Theorem 1(i) hold. It follows from (14), together

with the fact that p > 2, that lim supr→∞ μ2(r) < ∞ and lim infr→∞
(
2rμ

1
(r) − μ2(r)

)
> 0.

Theorem 1(i) now follows from these two expressions and (15), together with [22, Theorem
3.5.1].

Suppose instead that the assumptions in Theorem 1(ii) hold for some constants r0 ≥ 0 and
θ > 0, where θ = 2θ ′. Then, with the constant C as given in (14),

2rμ1 −
(

1 + 1 − θ ′

log r

)
μ

2
= 2rν1 −

(
1 + 1 − θ ′

log r

)
ν2 + C

(
3 + 1 − θ ′

log r

)
r2−p

=
(

2rν1 −
(

1 + 1 − θ

log r

)
ν2

)
− θ ′ν2

log r
+ C

(
3 + 1 − θ ′

log r

)
r2−p.

By assumption, lim infr→∞ ν2 > 0, and therefore the second term of the last equality decays
more slowly than the third as r → ∞. It follows that there exists r′

0 such that, for all r ≥ r′
0,

2rμ1 −
(

1 + 1 − θ ′

log r

)
μ

2
≤ 0.

Theorem 1(ii) follows from this and (15), together with [22, Theorem 3.5.2]. �

4. Non-confinement

In this section we prove Proposition 1. Our strategy is to use martingale arguments to deduce
Proposition 1 from a similar result in Euclidean space [8, Proposition 2.1]. Compared to that
result, ours applies to a wider class of processes (not just martingales), but at the price of being
a little more restrictive: we require E[D2

rad] ≥ ε as opposed to E[D2
tot] ≥ ε. Let us note also that

other non-confinement criteria are known (one example is [22, Equation (3.10)]), and proving
non-confinement is often straightforward in practice. Let F be the filtration that is naturally
generated by X.

Proposition 4. Let X be a Markov chain on a manifold M satisfying Assumption 1. Assume
that Ex[Drad] ≥ 0 for all x ∈ M. Then the radial process R is a non-negative F-submartingale.
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Proof. By Toponogov’s theorem, it is enough to prove this in the case where M is Euclidean.
Using the cosine rule for triangles in R

2, we can show that

Rn+1 = Rn

√√√√1 + 2D(n)
rad

Rn
+

(
D(n)

tot
)2

R2
n

.

Since Dn
tot ≥ |Dn

rad|, we deduce that

Rn+1 − Rn ≥ Rn

([(
1 + D(n)

rad

Rn

)2]1/2

− 1

)
≥ D(n)

rad, (16)

and the result follows upon taking expectations. �

In the remainder of this section, Y = (Yn)n∈N is a process in R
d adapted to F , such that

Y0 = 0. The processes L and A are defined using the Doob decomposition of Y [30]. More
precisely, the jth one-dimensional component of Y is given by Yj

n = Lj
n + Aj

n, where, for each
j, 1 ≤ j ≤ d, Lj is an F-martingale and Aj is a predictable process, with the property that if Yj

is a submartingale then Aj is non-negative and increasing.

Lemma 1. Assume that E[|�nL|p |Fn] ≤ B and E[|�nA|p |Fn] ≤ B for all n almost surely for
some p > 2, B ∈R. After enlarging the probability space if necessary, consider the process
(Zn)n∈N given by Z0 = Y0 and (�nZ) = (�nL) + ξn+1(�nA), where the ξn are equal to ±1 with
equal probability, independently of each other, L, or A. Let G0 =F0 and, for each n ≥ 1, let Gn

be the sigma algebra generated by Fn and (ξ1, . . . , ξn). Then:

(i) E[|�nZ|p | Gn] ≤ B′ for some B′ depending only on B, p, and d;

(ii) Z is a G-martingale;

(iii) E[|�nY|2 | Gn] =E[|�nZ|2 | Gn].

Proof. (i) This follows from the bounds on E[|�L|p] and E[|�A|p], and the inequality |x +
y|p ≤ Cd,p(|x|p + |y|p) for vectors x, y ∈R

d, where Cd,p is a constant.
(ii) We check that E[�nZ | Gn] =E[�nL | Gn] + (�nA)E[ξn+1 | Gn] = 0 + 0 = 0, and that,

by part (i) and Lyapunov’s inequality, there is a constant B′′ such that E[|Zn|] ≤∑n−1
k=0 E[|�kZ|] ≤ nB′′ < ∞.
(iii) We calculate

E[|�nZ|2 | Gn] =
d∑

j=1

E

[
(�nLj + ξn+1�nAj)2 | Gn

]

=
d∑

j=1

E

[
(�nLj)2 + 2ξn+1�nAj�nLj + (�nAj)2 | Gn

]

=E[|�nL|2 + |�nA|2 | Gn],

and, similarly, E[(�nY)2 | Gn] =E[(�nL)2 + (�nA)2 | Gn]. �
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Proposition 5. Suppose that Y is an R-valued submartingale. Assume that there exist B ∈R+
and p > 2 such that E[|�nL|p |Fn] ≤ B and E[|�nA|p |Fn] ≤ B for all n. Assume also that
there exists ε > 0 such that E[|�nY|2 |Fn] ≥ ε for all n, and that

P

[
lim sup

n→∞
Ln > −∞

]
= 1. (17)

Then P[lim supn→∞ |Yn| = ∞] = 1. In particular, if Y is bounded below almost surely then
P[lim supn→∞ Yn = ∞] = 1.

Proof. We work in the enlarged probability space described in Lemma 1. Let Z = (Zn)n∈N
be as in Lemma 1. We claim that{

ω ∈ � : lim sup
n→∞

|Yn| = ∞
}

⊇
{
ω ∈ � : lim sup

n→∞
|Zn| = ∞

}
∩

{
ω ∈ � : lim sup

n→∞
Ln > −∞

}
. (18)

To see this, first suppose that ω ∈ � is such that A is bounded, say An ≤ W for all n. Then
Yn ≥ Zn − 2W for all n. On the other hand, if A is unbounded, then, since A is positive and
increasing, limn→∞ An = ∞ and so lim supn→∞ An + Ln will be infinity provided that there
exists W ∈R such that Ln > W infinitely often. This establishes (18). By 17, it suffices to
prove that lim supn→∞ |Zn| = ∞ almost surely. Lemma 1, combined with [8, Proposition 2.1],
establishes this result. �

Proof of Proposition 1. Decompose the radial process as Rn = Ln + An. It follows from
Proposition 4 and the uniqueness of the Doob decomposition that Ln = ∑n

i=1 D(i)
rad. It suf-

fices to check that the assumptions of Proposition 5 hold when Yn = Rn. First, it is almost
surely the case that |�nL| = |D(n)

rad| ≤ D(n)
tot and |�nL + �nA| ≤ D(n)

tot , and hence |�nA| ≤ 2D(n)
tot .

Assumption 2 then gives the required bounds on E[|�nL|p |Fn] and E[|�nA|p |Fn]. Second,
using (16), E[|�nR|2 |Fn] ≥E[|�nL|2 |Fn] ≥ ε. Finally, [8, Theorem 2.1] shows that almost
surely there is a bounded neighbourhood of the origin N such that Ln ∈ N infinitely often, so
(17) holds. �

5. Uniform ellipticity and proof of Theorem 2

In this section we prove Theorem 2, which states that any uniformly elliptic zero-drift chain
must be transient. We first give an intuitive explanation for why this is true. Let M be a manifold
of constant curvature −k2. Suppose that the chain is currently a distance R � 1 from the origin,
and that it makes a purely transverse step of unit length (‘transverse’ means perpendicular to
the geodesic joining the origin to the chain’s current location). Then the (Euclidean or hyper-
bolic) Pythagorean theorem reveals that the change in the chain’s distance from the origin is
given by

�R =
{

R
(√

1 + R−2 − 1
)

if k = 0,

k−1arccosh(cosh kR cosh k) − R if k < 0.

Expanding this to first order in R−1, we see that as R → ∞, �R tends to a limit that is zero if
k = 0, but positive if k < 0. For this reason, if the variance in the transverse direction remains
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bounded above zero, then we would expect a zero-drift chain to be transient. Theorem 2 makes
this intuition precise.

Lemma 2. For all real numbers k > 0, dtot ≥ 0, and φ ∈ [−1, 1],

drad + Jmin(k, dtot)(d
2
tot − d2

rad) ≤ G(k, dtot, φ) ≤ drad + Jmax(k, dtot)(d
2
tot − d2

rad),

where

drad = φdtot,

Jmin(k, dtot) = 1

2d2
tot

(
dtot − sinh(kdtot)

k(cosh(kdtot) + sinh(kdtot))

)
,

Jmax(k, dtot) = 1

2d2
tot

(
−dtot + sinh(kdtot)

k(cosh(kdtot) − sinh(kdtot))

)
.

Moreover, Jmin is positive, increasing in k, and decreasing in dtot, whereas Jmax is non-negative
and increasing in both k and dtot.

Proof. For fixed k and dtot, consider the function

H(φ) :=
(

1

k
log(cosh(kdtot) + φ sinh(kdtot)) − φdtot

)
(1 − φ2)−1.

It is lengthy but elementary to check that H is decreasing on φ ∈ [−1, 1] and that its limits at
φ = ±1 are

1

2

(
± dtot ∓ sinh(kdtot)

k(cosh(kdtot) ± sinh(kdtot))

)
.

The first part follows, and the remainder follows from a direct check. �

In the following theorem, the function Q is as defined in (4).

Theorem 3. Let X be a Markov chain on a manifold M, and suppose that Assumptions 1, 2,
and 3 all hold. Suppose also that X is of zero drift and that there exist constants dmin ≥ 0 and
ε > 0 such that Q(x) ≥ ε for every x ∈ M such that DistM(O, x) ≥ dmin. Then X is O-transient.

Proof. Let c = cosh(κDtot), s = sinh(κDtot), and A be a constant to be chosen later. Using
Lemma 2, we obtain

Ex[G(κ, Dtot, �)] ≥Ex[Drad] + 1

2
Ex

[
1

D2
tot

(
Dtot − s

κ(c + s)

)(
D2

tot − D2
rad

)]

≥ 1

2
Ex

[
1

D2
tot

(
Dtot − s

κ(c + s)

) (
D2

tot − D2
rad

)
1Dtot<A

]

= 1

2
Ex

[(
1

Dtot
− 1

2κD2
tot

(1 − e−2κDtot )

)(
D2

tot − D2
rad

)
1Dtot<A

]

≥ 1

2
Ex

[(
1

A
− 1

2κA2
(1 − e−2κA)

)(
D2

tot − D2
rad

)
1Dtot<A

]
,

where the last line follows from the fact that the function

1

dtot
− 1

2κd2
tot

(1 − e−2κdtot )
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is positive and decreasing in dtot. Therefore, there is a constant A0, depending only on κ , such
that, if A > A0 and DistM(O, x) ≥ dmin, then

Ex[G(κ, Dtot, �)] ≥ 1

4A
Ex

[(
D2

tot − D2
rad

)
1Dtot<A

]
= 1

4A

(
Ex

[
D2

tot − D2
rad

] −Ex
[(

D2
tot − D2

rad

)
1Dtot>A

])
≥ 1

4A

(
ε −Ex

[
D2

tot1Dtot>A
])

.

By Assumption 2,

Ex
[
D2

tot1Dtot<A
] =Ex

[
Dp

tot · D2−p
tot 1Dtot>A

] ≤Ex[Dp
tot]A

2−p ≤ BA2−p.

Choose A sufficiently large that BA2−p ≤ ε/2. This then gives

Ex[G(κ, Dtot, �)] ≥ ε

2
. (19)

Equation (2) therefore holds, and X is O-transient. �

Proof of Theorem 2. Conditional on Xn = x, view v(x) = exp−1
x (Xn+1) as a random vector in

TxM. Decompose v(x) as v = λraderad(x) + w(x), where λrad ∈R and w(x) is a random vector
orthogonal to erad(x). For each ω ∈ �, w(x) is uniquely defined and does not depend on a choice
of basis for TxM, because O is fixed and uniquely determines erad(x). We may now interpret
Q(x) geometrically as Q(x) =Ex[〈w(x), w(x)〉x], the expected squared length of the transverse
component of v.

Choose a unit-length vector etrans(x) perpendicular to erad(x). By the Cauchy–Schwarz
inequality, 〈w, w〉x ≥ 〈w, etrans(x)〉2

x = 〈v, etrans(x)〉2
x , and hence

Q(x) ≥Ex[〈v, etrans(x)〉2]. (20)

If X is uniformly elliptic in the sense of (3) then there exists ε > 0 such that Px[〈v, etrans(x)〉2
x ≥

ε2] ≥ ε for every x ∈ M. It follows from (20) that Q(x) ≥ ε3 for all x, and X is O-transient by
Theorem 3. �

Remark 2. We finish this section with a comment on the rate of escape of transient processes.
Assumption 2 and the triangle inequality imply that there is a constant C such that Ex[�R] ≤ C
for all x. Therefore, under our Assumptions 1, 2, and 3, [23, Theorem 2.3] (with β = 0) shows
that there exists a constant � such that, almost surely,

lim sup
n→∞

Rn

n
≤ �. (21)

In the case of a zero-drift, uniformly elliptic chain, (19) together with the same theorem from
[23] gives a constant λ such that λ ≤ lim infn→∞ Xn

n almost surely, which in combination with
(21) gives a linear rate of escape. As mentioned in the introduction, it is a general theme in the
literature that ‘hyperbolic’ processes tend to escape at linear speed. However, as we shall see
in the next section, by reducing the transverse component when far from the origin (thereby
losing uniform elipticity) we may reduce the rate of escape and eventually obtain recurrence.
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6. Examples

Let V be a finite-dimensional inner product space of dimension d. Given v ∈ V and
a, b > 0, define LV (a, b, v) : V → V to be the linear transformation that sends v to av

√
d

and any w ∈ 〈v〉⊥ to bw
√

d. Define an elliptical measure ξV (a, b, v) : Borel(V) →R≥0 by
ξV = μV ◦ L−1

V (a, b, v), where μV is the uniform measure on the unit sphere in V . Thus, ξV

is supported on an ellipsoid with principal axes of lengths a
√

d, b
√

d, . . . , b
√

d. Given a
d-dimensional manifold M with origin O ∈ M, and functions a, b : M →R≥0, define a mea-
sure μp : Borel(M) →R at each point p ∈ M by μp = ξTpM(a(p), b(p), erad(p)) ◦ exp−1

p , where
erad(O) is defined arbitrarily as some fixed unit-length vector in TOM (as far as recurrence and
transience is concerned, this choice is unimportant). This defines what we refer to as the ellip-
tic Markov chain with parameters a and b. In the case where a and b are constant, and M is
Euclidean space, the elliptic Markov chain reduces to the example in [8, Section 3].

We claim that, for the elliptic Markov chain,

Ep[D2
tot] = a(p)2 + (d − 1)b(p)2, Ep[D2

rad] = a(p)2. (22)

To prove this, note that the computation in [8, p.7] establishes this result when V has the
Euclidean inner product. The general result follows from the definition of ξV together with
the fact that any two inner product spaces of dimension d whose inner products are positive
definite are isometric.

We study a special case that allows us to give a recurrence criterion that relates the asymp-
totic behaviour of b and the curvature of the manifold. Choose a(r) = a for all r, where a > 0
is a positive constant. For constants c > 0 and γ ≥ 0, choose the curvature of M such that, if p
is a point at a distance r from O, then

sec(p, π ) =
{

−c2 if r ≤ 1,

−(crγ )2 if r ≥ 1

for all π ∈ Planes(M, p). Since a > 0, it follows from Proposition 1 that Assumption 3 holds.
Further, assume that b(r) ≤ b for all r. Then Assumption 2 holds, because, almost surely,

D(n)
tot ≤ dmax (23)

for all n ∈N, where dmax := √
d max (a, b). To apply Theorem 1, we need to compute ν1,

ν2, ν1, and ν2. Although this could be done by choosing coordinates and writing down a
multidimensional integral, we instead obtain estimates using only (22) and (23). This better
enables comparison with the results in [8].

Since M is radially symmetric, we may unambiguously write Er to mean Ex for any x ∈ S(r).
Using the fact that Er[Drad] = 0, together with (22) and (23), we obtain that, for all sufficiently
large r,

ν1(r) =Er[G(kmin(r, Dtot), Dtot, �)]

≥Er[Jmin(kmin(r, Dtot), Dtot)(D
2
tot − D2

rad)]

≥ Jmin(kmin(r, dmax), dmax)Er[(D2
tot − D2

rad)]

= Jmin(kmin(r, dmax), dmax)(d − 1)b(r)2

= Jmin(c(r − dmax)γ , dmax)(d − 1)b(r)2.
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FIGURE 1. Simulations of the elliptic Markov chain with parameters a(r) and b(r) in the hyperbolic
plane. The law of each simulation in the upper row is given schematically by the corresponding picture in
the lower row. We take a(r) = a and b(r) = b

rβ , where the constants (a, b, β) respectively take the values
(0.01, 0.2, 0), (0.2, 0.01, 0), and (0.2, 0.01, 1.1).

Similarly, ν1(r) ≤ Jmax(c(r + dmax)γ , dmax)(d − 1)b(r)2. To bound ν2 and ν2, we simply
observe that, for all k > 0, Er[D2

rad1Drad>0] ≤Er[G(k, Dtot, �)2] ≤Er[D2
tot] and hence, by

symmetry, 1
2 a2 ≤ ν2(r) ≤ ν2(r) ≤ a2 + (d − 1)b(r)2. We discuss the cases γ = 0 and γ > 0

separately.
Suppose that γ = 0 and that, for sufficiently large r, b(r) = b/rβ for some constant b. Then

the elliptic Markov chain is recurrent if β > 1
2 and transient if β < 1

2 . If β = 1
2 , then the chain

is transient provided 2Jmin(c, dmax)(d − 1)b2 > a2, and recurrent provided 2Jmax(c, dmax)(d −
1)b2 < 1

2 a2. Now suppose that γ > 0. Note that, for fixed d, Jmin(d, k) → 1/2d as k → ∞,
and Jmax(d, k) ≤ e2kd for all sufficiently large k, and so Jmax(d, (r + d)γ ) ≤ e3drγ

for all suffi-
ciently large r. Accordingly, we obtain transience if (1/dmax)r(d − 1)b2(r) > a2 and recurrence
if 2re3dmaxrγ

(d − 1)b2(r) < 1
2 a2 for all sufficiently large r.

Tighter estimates of νi and νi would give sharper criteria than those stated above, but we
do not pursue this here as our main intention is to contrast the Euclidean and hyperbolic
cases. Figure 1 shows numerical simulations of this example in the hyperbolic plane (c = 1 and
γ = 0). Only the third simulation, where the tranverse component decays to zero, shows recur-
rence. If analogues of these chains were constructed in Euclidean space, both the second and
the third would be recurrent, since results in [8] show that, even if we take a and b to be
constant, we can still obtain recurrence provided 2a > b.

A result in [21] shows that if kmin(r) ≥ Cr2+ε for constants C, ε > 0 then M is stochasti-
cally incomplete, and so the discussion above gives a recurrent chain on such a manifold, as
promised. At an intuitive level, we might say that the chain resembles Brownian motion on the
manifold locally (for example, it has zero drift), but has very different global properties.

Finally, we note that in the previous example, for a constant-curvature manifold (i.e. γ = 0),
we obtain recurrence provided supx∈S(r) Q(x) decays faster than O(1/r). We stress that this is
not sufficient in general, as exemplified below.
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Proposition 6. There is a zero-drift O-transient chain in the hyperbolic plane such that, for
every δ ∈ (

0, 1
2

)
, limr→∞ exp(rδ) supx∈S(r) Q(x) = 0.

Proof. We give an example of such a chain. Take the probability density of Dtot, condi-
tional on the chain being at x ∈ M, to be the same for every x and given by ftot(y | x) = m−1

ym ,
1 ≤ y < ∞, where m is a constant; it is necessary to choose m > 3 in order for Assumption 2
to hold. For some function λ(r) (to be chosen later), let

ε(y) = 1 − cosh(y) + sinh(y)

sinh(y)
· 1y≥λ(r)

and, conditional on Dtot = y, let � be distributed as

�( · | Dtot = y) =
{

1 with probability α(y),

−1 + ε(y) with probability 1 − α(y),

where

α(y) = 1 − ε(y)

2 − ε(y)
=

{ 1−cosh(y)+sinh(y)
2 if y ≥ λ(r),

1
2 otherwise.

Notice that ε and α depend on the point x ∈ M via its distance from O, although for brevity
we omit this from our notation. We can check that 0 ≤ α(y) ≤ 1 for all y ≥ 1, so that this def-
inition makes sense. The choice of α ensures that E[� | Dtot = y] = 0 for all y, and hence
that Ex[Drad] =Ex[�Dtot] = 0 for all x ∈ M. The choice of ε is made to simplify some of the
forthcoming expectation calculations. Having specified the distributions of Drad and Dtot, it is
straightforward to choose the transverse components to give a zero-drift chain. We compute

Ex[D2
tot(1 − �2) | Dtot = y] = y2

Ex[1 − �2 | Dtot = y]

= y2(0 + (1 − α)(1 − (−1 + ε)2)) = y2ε.

From now on, assume that λ(r) ≥ 1 for all r. Then

Ex[D2
tot(1 − �2)] =

∫ ∞

y=1
f (y)Ex

[
D2

tot(1 − �2) | Dtot = y
]

dy

=
∫ ∞

y=λ

(m − 1)

sinh(y)ym−2
(1 − cosh(y) + sinh(y)) dy

≤
∫ ∞

y=λ

2m

eyym−2
dy

≤
∫ ∞

y=λ

2me−y dy = 2me−λ. (24)

On the other hand, we find that, if y ≥ λ(r), Ex[G(1, Dtot, �) | Dtot = y] = α log(cosh y +
sinh y) + (1 − α) log(1) = yα(y), whereas if y < λ(r) then E[G(1, Dtot, �) | Dtot = y] = 0. So,

Ex[G(1, Dtot, �)] =
∫ ∞

y=λ

yα(y)f (y) dy

=
∫ ∞

y=λ

(m − 1)(1 + sinh(y) − cosh(y))

2ym−1
dy

≥
∫ ∞

y=λ

m − 1

4ym−1
dy = m − 1

4(m − 2)

1

λm−2
. (25)
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Choose λ(r) = r(1/(m−1)). Then (24) tells us that supx∈S(r) Q(x) has the required rate of decay,
and (25) tells us that (2) holds and so the chain is transient. �

7. Future work

In this section we briefly outline some further questions that might be considered. We might
allow the curvature of the manifold M to be asymptotically zero (but always negative). Since
recurrence and transience typically only depends on what happens very far from the origin, it is
a priori not obvious whether chains will typically behave in a hyperbolic manner, in a Euclidean
manner, or somewhere in between. There has been recent interest in random processes on
manifolds whose metric (and so curvature) changes in time [5, 24]. The latter article contains
geometric conditions on the evolution of M for Brownian motion on M to be stochastically
complete, and it would be interesting to see what effect (if any) these conditions have on the
range of behaviours observed in discrete chains defined on M.

We have considered here only the radial process that measures distance from the origin,
but for a full understanding we should also consider the angular process. As mentioned in
the introduction, there is a general theme that transient processes on hyperbolic manifolds
converge to a limiting angle. A concrete question is whether a zero-drift transient Markov
chain in hyperbolic space, under suitable assumptions on the moments of its increments, must
converge to a limiting angle. In cases where it does, it is natural to ask for a characterisation of
the law of that angle.

In Euclidean space, the radial and angular processes of the scaling limits of a class of
Markov chains similar to those found in this paper have been considered in [9]. The authors
presented a stochastic differential equation satisfied by the limit, and described the behaviour
of both the radial and angular components of the limit in detail. The notion of diffusive scal-
ing generalises easily to the manifold setting [13], and so we expect that in our case we would
obtain manifold-valued diffusions with similar properties to those in [9]. In view of the qualita-
tive differences between the Euclidean and hyperbolic cases, it would be of interest to compare
the limits obtained for hyperbolic and Euclidean manifolds.
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