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1. Introduction. A semigroup 5 is a X- [p-, a-] semigroup if and only 
if each subsemigroup of 5 is a left [right, two-sided] ideal of S. Since the 
concept of p-semigroup is the dual of that of X-semigroup, the results for p-
semigroups are generally not stated explicitly, ^-semigroups are treated as a 
special case of X-semigroups ; in fact, a semigroup 5 is a (r-semigroup if and only 
if it is a X-semigroup and a p-semigroup. The purpose of this paper is to deter­
mine the structure of X- [p-, a-] semigroups. 

In Section 2, the idempotents of a X-semigroup S are used to obtain a natural 
decomposition of S as the disjoint union of unipotent X-semigroups. In Section 
3, the structure theorem of unipotent X-semigroups is proved. The structure 
of a general X-semigroup follows in Section 4. The structure theorem of c-semi-
groups in Section 5 is an application of the results of Section 3 and the dual 
theorems. Throughout this paper, X (Z Y stands for X ÇZ Y. 

The definitions imply 

LEMMA 1. If S is a X- [p-, a-] semigroup, then any subsemigroup of S as well as 
any homomorphic image of S is of the same type. 

2. Decomposition of a X-semigroup into unipotent X-semigroups. 
(a) is the subsemigroup of semigroup S generated by a Ç S. 

LEMMA 2. S is a \-semigroup if and only if Sa C (a) for all a £ S. 

Proof. By the definition of X-semigroup, Sa Cl S (a) C (&). Conversely, let 
T be a subsemigroup of 5 and a G T. Sa C (a) C T so that T is a left ideal. 

LEMMA 3. \{a)\ < 3 for all a £ S; (a) contains an idempotent. If E is the set 
of idempotents of S, then every e £ E is a right zero of S. 

Proof. Suppose (a) is not finite. Then 

(a) = \an\n is a positive integer, ani ^ a712, nx ^ n2} 

and (a2) = {a2k:k is a positive integer} is a subsemigroup of (a). By Lemma 1, 
a3 = aa2 6 (a)(a2) C (a2), which is a contradiction. Thus, (a) is finite for 
a € 5. By (1, Theorem 1.9), (a) contains an idempotent. 

Let e Ç E. By Lemma 2, Se C (e) = {e} = {ee\ C Se. Thus, E is the set 
of right zeros of S and E is a right zero semigroup. 

Let a Ç S. Suppose p is the smallest positive integer such that av = e € E 
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SEMIGROUPS 53 

and p > 4. By (1, Theorem 1.9), (a) contains a cyclic subgroup Ka in which 
ap = e is the identity. Suppose y G Ka. Since e is the identity in Ka and e is a 
right zero in 5, 3/ =3/0 = e. Thus, i£a = {e\ and (a) has period 1 and index £; 
that is, 

(a) = {a, a2, ap~\ ap = e\. 

T = {a2, a4, a5, . . . , av\ is a subsemigroup of (a). Therefore 

a3 = aa2 G <a)r C r , 

which is a contradiction. Hence, £ < 3. 

LEMMA 4:. xy = y if and only if y G E. 

Proof. Suppose there is a y G S such that #3> = 3> for some x £ S. Then 
x £ l = {z £ S:zy = y} ^ 0. Since X is a subsemigroup of 5, it is a left 
ideal. Since X is a left ideal, 3>x G SX C X. Since X is a subsemigroup, we 
have x(yx) G X. By the definition of X, y2 = (:ry)2 = {x(yx)}y = 3/. Thus, 
3' lies in E and is a right zero. The converse is obvious. 

Let ex be the idempotent determined by x G 5. By Lemma 3, cj>:S —+ E, 
x<j> = e~, is a homomorphism. Clearly, <j> is a mapping. First, x<£ = x2<£. From 
xp = ex it follows that 

ex = e
2 = (xp)2 = (x2)p. 

By Lemma 2, xy £ Sy C. (y)- By Lemmas 3 and 4, :ry = ê  or y2. Thus, 

{xy)<t> = 1^2 J = e„ = ékfy = (x<t>)(y4>). 

For e £ E, let 5(e) = 0-1(^)- Since 5(e) is a subsemigroup of 5, it is a left 
ideal. 5(e) is unipotent. Let x G 5(e) so that xv = e for some positive integer />. 
Then ex = xpx = xxp = xe = e. Thus, e is the zero in 5(e). 

5(e) is the maximal unipotent subsemigroup of 5 with e as its idempotent. 
Let M be s, unipotent subsemigroup of 5 containing e. Suppose x G M. Then 
(x) C M. By Lemma 3, (x) contains an idempotent d. Since M is unipotent, 
d = e. Thus, x G 5(e) and ilf C 5(e). 

In summary we obtain 

THEOREM 1. If S is a A-semigroup y then 5 is the union of the disjoint left ideals 
5(e). In terms of the definitions of (1, p. 25), a X-semigroup 5 is the union of a 
band B, B a right zero semigroup, of unipotent X-semigroups 5(e), and this is the 
greatest decomposition such that the factor semigroup is a band. 

DEFINITION 1. Sp = {x G 5:|(x)| = p) ; Sp(e) = Sp Pi 5(e). 

LEMMA 5. 

5(e) = 5 1 ( e ) U 5 2 ( e ) U 5 3 ( e ) , 

5 = 5i W 52 W 53, disjoint union; 
5x(e) = {e}, 5X = E. 
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LEMMA 6. xyz = ez G E, x, y, z G S. 

Proof. 

xyz = x(yz) = 

3. The s t ruc tu re of u n i p o t e n t X-semigroups. Let e be the unique 
idempotent of a unipotent X-semigroup S; e is the zero of S. Moreover, by 
Lemma 5, 

S =Si(e) yJS2(e) yJSz(e), 

Si(e) = {e}, S2(e) = {x G S:x ^ e, x2 = e], 

S%(e) = {x G S:x2 ^ <?, x3 = e}. 

We define 
A = {x e S:x2 ^ e}, 

B = {x G 5:x ^ <?, x2 = e, x = y2 for no y G 5} , 

C = {x G <S:x ?̂  £, x = y2 for some y G 5 | . 

From these definitions we have 

LEMMA 7. 

5 = A KJ B yj C yj {e}, disjoint union, 

A = 58, B \J C = S2, C = {x G 5:x = y2, y G 4 } . 

DEFINITION 2. Le£ I = {0,1} &e a se£ m'/A ta^0 elements. Let n:(A ^J B) 
X A —* J and j/:^4 —* C be functions defined respectively by 

(x, y)u = ^ „ r. and xy = x . 
v0 if xy = e 

When A = 0, jji and p are null functions, M and v are well-defined functions 
such that (a, a)/x = 1 and v is surjective. Moreover, for all x, y G 5, 

= / ^ ^ (*,30M = 1, 
le otherwise 

defines the product in S. 
Define xy = e if A = 0. M is obviously well defined. Since a2 9^ e for a G A, 

(a, a)/x = 1. By Lemma 7, v is a surjection. 
Let x, y G 5. By Lemma 2, xy G ^ C (y)« By Lemma 3, xy = y or y2 or e. 

By Lemma A, xy = y if and only if y = e. 
Now, suppose y ^ e. Then xy = y2 or e. By Lemma 7,y G J3 U C = 52 or A. 

If y G S2, then y2 = e. There are three cases for y G A : 
(i) x = e. Then xy = ey = e. 

(ii) x G C. Then x = z2, z G 5. By Lemma 6, xy = z2y = e. 
(iii) x G -4 VJ J3. There are two subcases: 
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(a) xy = e. By the definition of /x, this is equivalent to (x, y)n = 0. 
(0) xy 7e- e. Again, by the definition of /x, this is equivalent to (x, y)n = 1. 

In this case we have, by the definition of v, xy = y2 = yv. Similarly, for the 
converse, xy = yv. 

THEOREM 2. Let S be a unipotent \-semigroup with zero e. Then there is a family 
{A, B, C) of disjoint subsets of S and, if A 7e 0, there are functions /x: (A ^J B) 
X A —•> / and v.A —> C such that: 

(1) 5 = A U B VJ Cyj {e}, disjoint union; 

(2) (a,a)v = l , a U ; 
(3) v is surjective, and so \A\ > \C\; 

(4) Xy = yvif (x,y)n = 1; 
(5) xy — e otherwise. 

Conversely, let A, B, C, \e) be pairwise disjoint sets with \A\ > \C\. Let 
S = A U B \J C U {e) ; if A ^ 0, let M: (A \J B) X A-> I be any function 
such that (a, a)ix — 1, a £ A, and let v.A —» C fo a?ry surjection. Define the binary 
operation m on S by 

I ̂  otherwise. 

Then the groupoid (S, m) is a unipotent X-semigroup. 

Proof. Only the converse remains to be proved, m is single-valued. Let x, y, 
z G S. (y, z)m = e or s*/, where (y, z)m = 3i> if (y, Z)JJL = 1. Thus, (y, z)m Ç C 
\J {e}. Therefore (x, (y, z)m)m = e. Similarly, (x, y)m £ C^J {e} and 
((x, y)w, z)m = e. Hence, associativity holds. 

Since (e, e)m — e, e is an idempotent. Suppose x Ç 5 is idempotent; that is, 
(x, x)m = x. Then x = (x, x)m = (x, (x, x)m)m — e. Hence, S is unipotent 
and e £ (x) for every x Ç S. 

Finally, let T be any subsemigroup of S and let x Ç T, y £ S. Then 

(y, x)w = e £ (x) C T or (y, x)m = xẑ  = (x, x)m 6 (x) C ^-

Therefore ST C ^ and 5 is a X-semigroup. 

DEFINITION 3. The §-tuple © = (A, B, C, e, /x, v) satisfying the conditions of 
Theorem 2 is called the structure set of X-semigroup S. 

THEOREM 3. Let © = (A,B,C, e, /*, v) and ©' = (A', B\ C, ë, /x', v') be the 
structure sets of two unipotent \-semigroups S and S' and let 2 :5 —* S' be a 
mapping. Then X is a homomorphism if and only if 

(1) £ 2 C_B' \JC U {*'}, 
(2) C 2 C C ' U { e ' } , 
(3) eX = ë, 

(4) (xv)2 = (x2)v'for every x G S - 1 ^ ' ) , 
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(5) {y,x)v = {yV,xt)v!forx G 2~1(^ /) , y 6 S ^ W ' U B'), 

(6) (yfx)/i = 0 / o r x 6 S " 1 ^ ' ) , y t AUB,y $ X~l(A'\J Bf), 

(7) x2 $ .4' implies x22 = e'. 

Proof. Note that (1), (2), and (3) are equivalent to 

(10 S - 1 ^ ' ) C^4, 

(2;) 2" 1 (50 CAUB, 

(30 2-KCO C i W ^ U C . 

Let S be a mapping of S into 5 ' which satisfies the seven conditions of 
Theorem 3. 

(i) By Theorem 2 and (10, # (? A implies yx = e, y G S, and x2 g ^4'. By 
(3), (yx)2 = eX = ef. By Theorem 2, x2 g ,4'implies Cy2)(x2) = e ' ,yS £ S'. 

(ii) By Theorem 2 and (10, (20, x £ A and y Q AKJ B imply 3/x = g and 
3/2 g ,4' U J3'. By (3), (yx)2 = e2 = ef. By Theorem 2, yX $ A'\J B' 
implies (3>2)(x2) = e'. 

(iii) Suppose x G A and ^ Ç i U 5 . By Theorem 2, 3/x = x*> if (y, x)fx = 1 ; 
yx = e if (3/, X)JU = 0. 

(a) Let (y, x)/x = 0. By (3), (;yx)2 = e2 = e ' . I faS G ,4 'and 3/2 G A'UB', 
then, by (5), 0 = (y,x)ti = (y2, x2)/x'. By Theorem 2, (3/2, x2)M ' = 0 
implies (3/2) (x 2) = e'. 

If x2 $ A' or ) ; S ? i ' W 5 ' , then (;y2, x2) / / is not defined. But, by the 
definition of products in S', (;y2)(x2) = er. 

(0) Let (y, x)n = 1. We consider three cases: 
(0i) y2 G A'\JB' and x2 G A'. By (5), 1 = (y,x)/i = Cy2, x2) / / . By 

Theorem 2 and (4), (;y2)(x2) = (x2)*/ = (xv)2 = (yx)2. 
(fi2) x2 £ 4 ' . By Theorem 2, (3/2) (x2) = e'. (;yx)2 = (xv)X = x22. By (7), 

x22 = e'. 
(fiz) yX Q A' KJ B' and x2 G A'. By (6), (y, x)/x = 0. This contradicts the 

assumption that (y,x)n = 1. Hence, this case does not occur. 
Therefore 2 is a homomorphism. 
Conversely, assume that 2 is a homomorphism. Since S' is unipotent and 

e2 = (ee)X = (eS)(e2), eS = e'. This proves (3). 
Suppose x (z B. Then x2 = e and e' = eX = x22 = (x2)2. Thus, x2 G ^4' so 

that x 2 6 5 ' VJ C" \J {e'\ and (1) holds. 
Suppose x G C Then there is a 3/ G A such that x = y2. Thus, x2 = ^ 22 = 

(3>2)2. Hence, x2 G C or x2 = e'. This proves (2). 
Since (1), (2), (3) hold now, we may use (10, (20, (30 if this is helpful. 
Suppose x G 2~1G40; that is, x2 G A'. By (10, x G A. Thus, both xv and 

( x 2 ) / are defined. 
Hence, (x*>)2 = x22 = (x2)2 = ( x 2 ) / . Thus, (4) holds. 
Suppose y G 2~1G4' \J Bf) ; that is, 3>2 G A' \J B'. Since 

^-1{A'\JB') = 2-H^40 U S - 1 ^ ) , 
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y G A \J B by (1') and (2'). Thus, both (y,x)n and (y2, x2) / / are defined. 
(3/, X)M = 1 implies yx = xv. By (4), 

(y 2) (*2) = (yx)2 = 0 ) 2 = (*2>' ^ e'. 

( x 2 ) / j* e' since v':Af —> C" is a surjection and e' g C. Thus, (yS, x2) / / = 1 
so that (y, x)n = (y 2, x S ) / . (3/, x)ii = 0 implies 3/x = e. Thus, e' = e2 = 
(3a) 2 = (;y2)(*2). Hence (3/2, x2) / / = 0 and (y, x)p = (y 2, x2) / / . Now (5) 
holds. 

Suppose y e A\J B but y g 2~1(^ / V B'). Then 3/2 g ,4' \JB'. By 
Theorem 2, (yx)2 = (^2)(x2) = e'. If (y,x)p = 1, then j;x = xv. By (4), 
(3^)2 = (xv)2 — ( x 2 ) / 7̂  e'', which is a contradiction. Hence, (y,x)fi = 0 
and (6) follows. 

By Theorem 2, x2 g ,4' implies (x2)2 = e'. Since 2 is a homomorphism, 
e' = (X2)2 = x22. Thus, (7) holds. 

THEOREM 4. Z,^ (yl, .S, C, e, \x, v) and (Af, Bf, C, ef, y!, v) be the structure 
sets of two unipotent \-semigroup s S and S''. Then S and Sf are isomorphic if and 
only if there is a bijection 2 ; 5 —» Sf such that: 

(1) A2 = A', 

(2) 5 2 = B', 

(3) C2 = C, 

(4) e2 = e', 

(5) M 2 = (x2)z/, x G 4 , 
(6) (y,x)/i = fex2y,xMjÉ^W^ 

(7) x2 ? i ' implies x22 = e'. 

Proof. Suppose 5 = 5 ' under 2. By Theorem 3, 

B^CB'KJ C'\J [e'\, CX CCU \ef), eX = e'. 

Since 2 is a bijection, 2 - 1 is a mapping of S' onto 5 such that (1/), (20, (3') 
become respectively 

i ' ^ C i , B'2-1 CAKJB, C'2-1 CA\J BU C. 

Furthermore, applying Theorem 3 to 2 - 1 , we obtain 

5 ' S - 1 CBU C\J {e}, C'2-1 CCVJ {e}, e '2- 1 = e, 

i 2 C i ' B?CA'\JBf CLCA'KJB'KJ C. 

A'?-1 C -4 implies A' C -4 2, which together with i 2 C i ' gives ,4 2 = A'. 
This proves (1). .4 2 = A', 5 2 C A' \J B', 2 is an injection imply 5 2 C B'. 
Similarly, B'lr1 C 5 , which then gives B' C 5 2 . Thus, 5 2 = 5 ' and (2) 
holds. The proof that (3) holds is similar. (4) is obvious. Since A'lr1 = A, (5) 
holds. Again, y l '2 - 1 = 4 and {A' \J B')V~l = A U 5 imply (6). Finally, we 
note that Condition (6) of Theorem 3 cannot occur since y Ç A VJ B and 
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y G (Ar \J B')H~l are contradictory. (7) is verified as in Theorem 3. Thus, 2 
satisfies all the conditions of Theorem 3, which reduce to those of this corollary. 

Conversely, suppose the seven conditions of the corollary hold and S is a 
bijection. Then the first five conditions and Condition (7) of Theorem 3 clearly 
hold. Condition (6) of Theorem 3 is vacuously true. Theorem 3 now implies 
that S is a homomorphism. Since 2 is a bijection, 2 is an isomorphism. 

4. The structure of general X-semigroups. Let S be a X-semigroup. By 
Theorem 1, 5 is the disjoint union of the S(e), e G E. If we index E with the 
set J (E itself is not used in order to avoid confusion), then 

S = \JjeJS(ej), E = {ej G Sief = ej}j G J}. 

Since S(ej) is a unipotent X-semigroup, Theorem 2 applies. Let (A h Bh C;, eh 

Hj, Vj) be the structure set of S(e^). We investigate the behaviour of the product 
xy G 5, where x G 5(6*), y G S(ej), i T* j . 

LEMMA 8. If x G S(e*), y G S(e3), i 9^ j , then: 

(i) xy = y if and only if y = e^ 

(ii) xy = ejify £ A jt 

(hi) xy = ej if y G Aj and x G A t \J Bu 

(iv) xy = ej or y2 if x £ At\J Bu y G A j . 

Proof, (i) By Lemma 4, ary = 3; if and only if 3/ = ej. 
(ii) By (i), y G -By ^J C .̂ By Lemma 7, y2 = ej. By Lemma 2, xy G (y) = 

[y^j}. By (i), xy = ej. 
(iii) x G Ai^J Bi implies x ^ d^J {ei}. Thus, x = et or x G C*. By 

Lemma 7, x G C* implies x = z2, 2 Ç i,-. By Lemma 6, 

) ety = e/y I 

(iv) Since xy G (y) = {3% y2, y3 = ^-} and, by (i), xy 9e y, xy ~ y2 or ejm 

DEFINITION 4. Let S = VJ S(e^) #e a X-semigroup. Then there is a family of 
functions g* = {/z;-: nfiAj^J Bj) X Aj—*I>j G / } . ^or eac& i G J define 
additional functions / i j ^ i j U ^ j ) X -4 ; —* J, i G / , by 

(X v)a - I1 ifXy = y2' 
W,y)»ij- ^ Q otherwise. 

By Lemma 8, /x -̂, i,j G / , is well defined. Also njj = M;, j G / . Moreover, if 
00 G S^i) , y G S(ej), then 

= ( ^ if (x,y)/*ii= 1, 
\ej otherwise. 

An immediate consequence of Definition 4 is 
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THEOREM 5. Let S be a \-semigroup with the set of idempotents E — {e/.j (zJ\. 
Then there exist families of subsets of S and families of functions as follows: 

%a = {Ajij G j } , g& = {Bj:j e / ) , gc = [Cy.j G / } , 

&. = {t*ij'i,j e / } , g , = [vj-.j G J}, 

where the A/s, Bfs, C/s, {^J's ar^ pairwise disjoint, 

Htj: (A i \J Bt) X Aj-+ I, (x, x)fjLjj = 1 for x £ A j , 

Vj'.Aj—* Cj is surjective, such that, for 

x G S(et) =Ai\JBt\JCiKJ {et},y G SO,) = A,\J BjU C, U {ej}, 

{ej otherwise. 

THEOREM 6. Let J be any non-empty set. Let S be a set which is the disjoint 
union of four sets A*, B*, C*, E, where A*, B*, C* are disjoint unions of 

ga = {Ay.j e / } , g6 = {Bjij G / } , gc = {Cj-.j G / } , 

respectively, and E = {ey:/ G / } . Assume \Af\ > |C ; | /or each j G J". For e^erj' 
£air (z,/) £ J X Jf let 

lxij:{Ai\JBl) XAj->I 

be any function satisfying (a, a)y.jj = 1 for a G Aj. Also let v/.Aj —» C ; fc any 
surjection. Put 

S(ej) = AJUBJU CjU {ej}. 

Then S = KJ jeJ S(ej) is a \-semigroup with multiplication m defined by 

\ej otherwise 

for x G S(e{), y G S(ef); and S(ef) is the maximal unipotent subsemigroup with 
idempotent ej and structure set {A j , Bj, Cj, ej} iijj, V3). 

Proof. The proof is similar to that of Theorem 2 and we note that if z G S{ek), 
then, by the définition of m, 

((x, y)m, z)m = ek = (x, (y, z)m)m. 

Another view of X-semigroups uses the concept of elementary semigroup 
(Definition 6). 

THEOREM 7. Let S = U a e r Sa, Sai (^ Sa2 = 0, ai ^ a2, such that 

Sa = \J^aAa(i, Aa0X r\ Aa^ = {0a}, ft y& ft, ft, ft G Aa, a G r . 

Let ft be a fixed index element such that ft G n a e r Aa. L ^ F = {/a:a: G T} 6e a 
family of functions 
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f*:Aa\{f3o} - » U {Aaf\{Oa}:P G Aa\{£o}} 

such that fifa G A^for 0 G Aa\{0o}. Further, let 

Bafio = 4a*o\{0«}f a G r ; ^ = Aafi\{ffla, 0a}, 0 ^ 0o, a Ç T. 

For x G ̂ 4T5, ̂  G ̂ 4a^, 7, a G r , 5 6 A7, 0 G Aa, define a binary operation in S by 

if x = y G 5a0, 7 = a, ô = 0, 0 ^ 0O, 
# x G U5eAyBy8j y G 5a/3, 0 5* /So, 

77ien 5 is a \-semigroup and conversely any X-semigroup has such a structure. 

Proof. Suppose x, y, z G S, x G ̂ 4«̂ , y G ̂ 47s, s Ç ylKT. Then, by the definition 
of multiplication in S, xy = <5/7 or 07. Since 07 and bfy G ^J8eAyBy8, another 
application of the definition of multiplication yields (xy)z = 0K. Similarly, 

*»•> - te ô.0-
Thus, 5 is a semigroup. 

Let T be a subsemigroup of semigroup 5. Suppose z G F, 3; G 5. By hypo­
thesis, x G ̂ 4«/3 C Sa, y G ̂ 47s C Sy, a, 7 G r , 0 G Aa, ô G A7. By the definition 
of multiplication in S, yx = 0/a or 0a. Since T is a subsemigroup, 0a = x3 G 7". 
Also, if x G -B«,3, 0 5̂  0o, then 0/a = x2 G F. Thus, yx G 7", and T is a X-semi-
group. 

For the converse we note that Sa, a G I\ is a unipotent X-semigroup S(et), 
i G J; Aaj3, a G I\ 0 G Aa, 0 F^ 0o, is an elementary semigroup of the type Tc 

(Definitions 5 and 6) ; 0a, a G I\ is a right zero, say eu i G / ; Aa0Q, a G I\ is a 
null semigroup of the type Wô€# 7"&, B C ^(^0 say (Definition 5). Also 
fifa — c G 7V Thus, 5 is the union of © and $, where © = U a e r ^ ^ £ A a Aa^ is 
a union of elementary semigroups and g = W«er «̂/3o *s a union of null semi­
groups. 

5. The structure of <r-semigroups. Let 5 be a o--semigroup. Since 5 is 
both a X-semigroup and a p-semigroup, S is unipotent and the unique idem-
potent is zero. 

An application of Theorem 2 for unipotent X-semigroups to cr-semigroup S 
gives a family {A,B, C) of disjoint subsets of 5 and, for A 9^ 0, functions 
/*: (A \J B) X A -> I, v\A -> C such that: 

(1) S = A U 5 U CVJ {e}, 

(2) (a,a)M = 1, 

(3) *> is surjective, 
(4) xy = 3/y if (x, y)ix = 1, 
(5) :ry = g otherwise. 
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Suppose (x, y)p = 1. Then, by (4), xy = yv = y2 5e e. Since (x) is an ideal 
in the (7-semigroup S, xy G (x). By Lemma 3, (x) C {x, x2, xz = e). xy — xz = e 
contradicts xy ^ e. By Lemma 6, xy = x implies x = xy — (xy)y = e. This 
contradicts x^ ^ e too. Thus, x;y = x2. By Lemma 7, x2 = xy = y2 5* e 
implies x2 G C and x f i . Thus, ^ = x2 is defined and x*> = yv. 

By the dual of Theorem 2, let S = A' KJ B' U C U {e} be the p-semigroup 
decomposition of 5. By Lemma 7 and its dual, both A and ^4' are characterized 
as the set {a G S:a2 ^ e). Thus, A1 = A. Again, by Lemma 7 and its dual, 
C = {x2:x £A},C = {y2:y £ A'}. Thus, C = C. Hence, £ ' = £ also. 

By (4) and (5), if x G ̂ 4, y G B, then xy = e. From the duals of (4) and (5), 
xy = e iî x £ B, y £ A. This result implies that fi:(A KJ B) X A —> I may be 
replaced by M :A X A -^ T, where the same symbol is used for a function and 
one of its restrictions. 

We summarize in 

THEOREM 8. Let S be a a-semigroup. Then S is totipotent and there is a family 
{A,B, C) of disjoint subsets of S, \A\ > \C\, and functions fi:A X A —» / , 
(x, x)/x = 1, xy = e if xv ^ yv, and v is a surjection. The operation in S is defined 
by 

\e otherwise. 

Conversely, if S satisfies S — A U B\J C\J \e), disjoint union, and there are 
functions \x\A X A —> I, (x, x)p = 1, (x, y)m = e for xv 9^ yv, and v.A —•> C is 
a surjection, then (S, m) is a a-semigroup for m defined by 

( \ = \yv if (x,y)fi = 1, 
\e otherwise. 

Proof. The proof of the converse is similar to the proofs of Theorems 2 and 6. 

DEFINITION 5. For each a G A, Ta = {a, c, e:a2 = c G C) = (a). For each 
b G B, Tb = {b, e\ = (b). For each c G C, TJ = {c, e\ = (c) and Tc = 
Ac U {c, e\ = AC\J Tc', where Ac = {a G S:a2 = av = c} = ^ ( c ) C A. 

Clearly, A = \JctCAc\ Ta, Tb, TJ, Tc are a-(sub)semigroups of S; S = 
^JdeBUC -L d-

DEFINITION 6. An elementary semigroup S is a a-semigroup such that B — 0, 
\C\ = 1 . An elemental semigroup S is an elementary semigroup such that \A\ = 1. 
A nil-semigroup S is a a-semigroup such that \B\ = 1, A = C = 0. 

COROLLARY 1. All elemental semigroups are isomorphic. If S is an elemental 
semigroup, then \S\ = 3. For any a G A, Tais an elemental (sub)semigroup. 

All nil-semigroups are isomorphic. A nil-semigroup is a null semigroup of 
order 2. For any b G B, Tb is a nil-semigroup, for any c G C, T/ is a nil-
semigroup. 
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LEMMA 9. If S is an elementary semigroup, then S is the union of elemental 
semigroups; that is, S = KJaiATa. Moreover, S = Ac U [c, e\, xf = c for all 
x G A. S need not be finite. 

If 5 is a null semigroup, |5| > 2, then S is the 0-disjoint union of nil-semi­
groups; that is, S = {JbtB Tb. 

THEOREM 9. A semigroup S is a a-semigroup if and only if S is the 0-disjoint 
union of a collection S of elementary semigroups and a collection 33 of nil-semi­
groups, 

S = \Jd<D Td, Td G S U 33, 

such that Ti r\ T j — {e\, xy — e, x G Tuy G Tj , i ^ j , i, j G D. Either S or 
33 may be empty but not both. 

Proof. Let S = AKJ BKJ CU {e} be a d-semigroup. Let D = B \J C. By 
Definitions 5 and 6, {Td:d G D) is a set of elementary semigroups and nil-
semigroups. By definition 5, Tt C\ Tj = \e] if i ^ j , i,j G D. By the statement 
following Definition 5, S = ^Jd€D Td. Moreover, since xy — e for xv ?£ yv, 
x G T i, y Ci Tj, i y^ j , i, j G Z2, we have x^ = 6. 

Conversely, if S = ^JdtD Td is a groupoid satisfying the given properties, 
then 5 is a semigroup because (xy)z = e = x(yz) if x, y, z are not all in the 
same elementary semigroup or nil-semigroup, and (xy)z = x(yz) if x, y, z are 
all in the same elementary semigroup or nil-semigroup since these are already 
associative. 

Let S' be a subsemigroup of S. Certainly, e G S''. Suppose x G S', x ^ e\ 
then x G Td, d £ D, Td is an elementary semigroup or 7^ is a nil-semigroup. 
If r d is nil, then 7^ = (x) C S'. If Td is elementary, then (x) is a subsemigroup 
of 7^. Thus, Sf is a 0-disjoint union of subsemigroups of the Td or S' = {e}. 
Conversely, any such 0-disjoint union is a subsemigroup of S. Thus, let 
S' = \Jd'tD'Td', where Td> is nil or elemental. Hence, Ti T y = Ty Tt = {e} 
if i,j G D,i 9e j , and T y is an elemental subsemigroup of elementary semigroup 
Tj or is some nil-semigroup; Tj Tj' C Ty, Tj' Tj C T y because T y is a 
subsemigroup of a (7-semigroup Tj. Therefore Sf is an ideal and 5 is a o--semi-
group. 

Theorem 9 gives a practical way of constructing all non-isomorphic er-semi-
groups of order n if n is a small positive integer. 
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