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We study the axisymmetric interaction of two chemically active Janus particles. By
relying on the linearity of the field equations and symmetry arguments, we derive a
generic solution for the relative velocity of the particles. We show that, regardless of
the chemical properties of the system, the relative velocity can be written as a linear
summation of geometrical functions which only depend on the gap size between the
particles. We evaluate these functions via an exact approach which accounts for the full
chemical and hydrodynamic interactions. Using the obtained solution, we expose the role
of each compartment in the relative motion, and also discuss the contribution of different
interactions. We then show that the dynamical system describing the relative motion of
two Janus particles can have up to three fixed points. These fixed points can be stable or
unstable, indicating that a system of two Janus particles can exhibit a variety of non-trivial
behaviours depending on their initial gap size, and their chemical properties. We also
look at the specific case of Janus particles in which one compartment is inert, and present
regime diagrams for their relative behaviour in the activity–mobility parameter space.
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1. Introduction

Phoretic transport has long been considered as a mechanism utilized by active particles
for propulsion and navigation through an interactive medium (Gompper et al. 2020).
In this mechanism, which relies on non-equilibrium interfacial processes, the system
exploits the inhomogeneity of its surrounding field and converts the free ambient energy
into mechanical work (Anderson 1989; Anderson & Prieve 1991). This inhomogeneity can
stem from a gradient in the chemical concentration (Derjaguin et al. 1947; Golestanian
2019), temperature (Young, Goldstein & Block 1959; Golestanian 2012; Cohen &
Golestanian 2014), or electrostatic potential (Ramos et al. 1998; Ajdari 2000; Bazant &
Squires 2004), all of which can result in a net motion in the system.

Here, our focus is on diffusiophoretic processes, in which chemically active particles
respond to a concentration gradient of chemicals, either imposed externally or induced
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by the particles themselves. The latter case, often referred to as self-diffusiophoresis,
concerns a chemically active particle that can create a local perturbation in the
concentration gradient via emitting or consuming chemicals through interfacial
interactions (Golestanian, Liverpool & Ajdari 2005; Howse et al. 2007; Simmchen et al.
2016; Moran & Posner 2017; Golestanian 2019; Lohse & Zhang 2020). In the absence of
advective effects which can lead to spontaneous symmetry breaking and directed motion
in isotropic settings (Michelin, Lauga & Bartolo 2013; Chen et al. 2020; Hokmabad et al.
2020), an asymmetry in the concentration field is necessary to achieve autonomous motion
or self-propulsion (Golestanian 2019). A well-known example of these self-propelling
colloids are the Janus particles. These particles have (at least) two compartments with
different physico-chemical properties, thereby inherently breaking the fore–aft symmetry
(Golestanian, Liverpool & Ajdari 2007). The motion of a single Janus particle has been
studied extensively, both theoretically and experimentally, and the underlying mechanism
for its dynamical behaviour is well explored (Golestanian et al. 2005; Ebbens & Howse
2011; Ebbens et al. 2014; Michelin & Lauga 2014; Ibrahim & Liverpool 2015; Uspal et al.
2015; Campbell et al. 2019).

Pair interaction of phoretic particles has also been an immense topic of interest
(see e.g. Saha, Golestanian & Ramaswamy (2014), Saha, Ramaswamy & Golestanian
(2019) and Sharifi-Mood, Mozaffari & Córdova-Figueroa (2016) and the references
therein). These interactions are of significant import in devising dimer-like micro- and
nano-swimmers, wherein two phoretic particles are connected by a rod and propel
autonomously by breaking the front–back symmetry (Rückner & Kapral 2007; Michelin &
Lauga 2015, 2017; Reigh & Kapral 2015; Reigh et al. 2018). Furthermore, understanding
these pair interactions can also be considered as the first step towards studying the
suspension of phoretic particles, in which the system exhibits a variety of complex
collective behaviours from swarming and comet-like propulsion, to phase separation and
self-organization (Liebchen et al. 2015; Zöttl & Stark 2016; Colberg & Kapral 2017; Stark
2018; Agudo-Canalejo & Golestanian 2019; Varma & Michelin 2019). Pair interactions
also play a key role in resolving many-body interactions, since in these systems the
near-field effects are often taken into account only through pairwise interactions (Brady &
Bossis 1988; Varma, Montenegro-Johnson & Michelin 2018). Chemotaxis of enzymes can
also be described via pair interactions, highlighting the importance of these interactions
even at the molecular level (Illien, Adeleke-Larodo & Golestanian 2017; Agudo-Canalejo,
Illien & Golestanian 2018; Adeleke-Larodo, Agudo-Canalejo & Golestanian 2019).

Despite all of these, our understanding of the relative motion of two phoretic particles is
still limited. One reason is that, due to complexity of the field equations, pair interactions
are often modelled using far-field approximations (Burelbach & Stark 2019; Saha et al.
2019; Varma & Michelin 2019), which assume the gap between the particles to be
considerably larger than their length scale. Under this approach, the behaviour of the
system cannot be probed when the particles are in close proximity to one another, and
so the role of near-field chemical and hydrodynamic interactions cannot be explored.
In an analytical/numerical study, by using an exact approach, Sharifi-Mood et al. (2016)
looked at the pair interaction of two identical phoretic particles, taking into account the
full chemical and hydrodynamic interactions. For chemically identical Janus particles,
they showed that the two particles can collapse, escape each other or cease motion and
become stationary. In this study, by allowing the particles to be of different chemical
properties, we show that there are several more scenarios for the relative motion of two
Janus particles. To solely focus on the chemical interplay between the compartments, we
consider axisymmetric cases in which the particles can only translate along their common
axis of symmetry. By using this simplification, and by extending the theoretical framework
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we developed for isotropic particles (Nasouri & Golestanian 2020), we derive a generic
solution for the relative motion of two Janus particles of arbitrary chemical properties.
This solution is in terms of compartment-by-compartment interactions which not only
allows us to expose the contribution of each compartment to the relative behaviour, but
also enables us to explore the full chemical parameter space. Both of these analyses are
direct consequences of decomposing the chemical field, which is an approach that has
not been employed before in phoretic systems. Using the obtained generic solution, we
show how the dynamical system describing the relative motion of two Janus particles can
remarkably have up to three fixed points. Depending on the stability of these fixed points
and the initial gap size between the particles, we discuss how the system can exhibit a
wealth of non-trivial behaviours.

We begin by writing down the field equations governing the motion of two Janus
particles with arbitrary chemical properties. We assume each Janus particle has two
compartments (or faces) of equal coverage, and each compartment has its own chemical
activity and mobility. As the first step, we evaluate the interactions of the particles which
have uniform mobilities. Using an exact analytical framework, we find a generic solution
for the field equations, and analyse the relative motion in the full chemical parameter
space, discussing the role of different compartments. We then use that solution to discuss
the emergence of fixed points in the dynamical system representing the relative motion,
and provide regime diagrams in the case of half-coated (one compartment of each particle
is completely inert) particles in the activity–mobility parameter space. We finally discuss
the general case in which the mobilities of the two compartments can also differ, and
present a generic solution for that case as well.

2. Problem statement

We consider two spheres (sphere 1 and sphere 2) of radii R and gap size Δ, immersed
in an otherwise quiescent viscous fluid. The system is axisymmetric, and we define a unit
vector e as the axis of symmetry. These spheres are chemically active, and they interact
with a chemical (i.e. solute particles) of diffusion coefficient D. In the infinite dilution
limit of solute particles, and in the absence of any nearby boundaries or a background
concentration gradient, the relative concentration field can be expressed by a steady-state
diffusion equation

∇2C = 0. (2.1)

Here, we have assumed the advective effects in the solute transport to be negligible
compared to the diffusive effects (i.e. Pèclet number is vanishingly small). The spheres
perturb the concentration field by consuming/producing the solute particles, thereby
creating a normal flux at their surfaces (i.e. S1 and S2). We may write

Dn1 · ∇C = −α1 at S1, Dn2 · ∇C = −α2 at S2, (2.2a,b)

where n1 and n2 are unit vectors normal to the surfaces, and α1 and α2 are the catalytic
activities of sphere 1 and sphere 2, respectively. The spheres respond to a gradient in
the chemical field through interfacial interactions, characterized by a physico-chemical
property called mobility. This response is often modelled as a local fluid slip velocity at
the surface of each sphere, and can be written as

vs
1 = μ1(I − n1n1) · ∇C at S1, vs

2 = μ2(I − n2n2) · ∇C at S2, (2.3a,b)

where μ1 and μ2 are the mobilities of the particles. Here, we consider the axisymmetric
interactions of two Janus particles, as shown in figure 1(a). These particles have two
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FIGURE 1. (a) Schematic of the two Janus particles considered in this study. Each particle has
two equally sized compartments. We label the compartments facing each other using ‘in’, and
use ‘out’ to describe the outer ones. The unit vector e is the common axis of symmetry, and Δ is
the clearance between the particles. (b) Schematic of the chemical field decomposition to isolated
self-propulsion (Gself ), neighbour-induced interaction (Gnei,in,Gnei,out) and neighbour-reflected
ones (Gref ,in,Gref ,out) from the perspective of particle 1.

equally sized compartments with different coatings which may result in a discontinuity in
their surface activity and mobility. We use ‘in’ to describe the chemical properties of the
compartments facing each other (αin

1 , μin
1 , αin

2 , μin
2 ), and ‘out’ for the outer compartments

(αout
1 , μout

1 , αout
2 , μout

2 ). The chemically induced slip velocities may give rise to translational
motion of the spheres. In the absence of inertia (zero Reynolds number regime), one may
find the velocities of each sphere, V 1 and V 2, by solving the Stokes equations

η∇2v = ∇p, ∇ · v = 0, (2.4a,b)

subject to boundary conditions

v (x ∈ S1) = V 1 + vs
1, v (x ∈ S2) = V 2 + vs

2, v(|x − x i| → ∞) = 0, (2.5a–c)

where v and p are the velocity and pressure field, η is the fluid viscosity, x is the
position vector and x i denotes the centre of sphere i with i ∈ {1, 2}. Since the system
is axisymmetric, the particles cannot rotate and only translate along the axis of symmetry.

3. Non-uniform activity and uniform mobility

3.1. A generic solution
To find the translational velocities of the spheres, we need to solve the chemical and
hydrodynamic interactions which are coupled through the boundary conditions given in
(2.3a,b) and (2.5a–c). However, we can simplify the calculations by using the symmetry
arguments and relying on the linearity of the field equations, as we show in the following.
To illustrate this approach, we first begin with the hydrodynamic interactions, for which we
can use the Lorentz reciprocal theorem to bypass solving the complete Stokes equations
(Lorentz 1896; Happel & Brenner 1983; Stone & Samuel 1996; Elfring 2017; Nasouri
2018; Nasouri & Elfring 2018; Masoud & Stone 2019). This theorem connects our main
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problem, to an auxiliary one in the same domain as〈
n · σ · v̂

〉
S1+S2

= 〈
n · σ̂ · v

〉
S1+S2

, (3.1)

where 〈·〉 denotes the surface integral, and n is a unit vector normal to the surface of the
domain. Here, (σ , v) and (σ̂ , v̂) are the stress and velocity fields in the main and auxiliary
problem, respectively. By choosing the auxiliary problem as the axisymmetric motion of
two passive particles (with the same geometry as in our main problem) towards each other
with an identical and constant speed, we can directly find the relative velocity in terms of
the flow properties of the auxiliary problem (Sharifi-Mood et al. 2016; Papavassiliou &
Alexander 2017; Yang, Rallabandi & Stone 2019). Defining F̂ i as the net hydrodynamic
force on each particle in the auxiliary problem, the relative velocity in the main problem
is then found

V 1 − V 2 = e

|F̂ 1|
(〈

σ̂1v
s
1

〉
S1

+ 〈
σ̂2v

s
2

〉
S2

)
, (3.2)

where σ̂i = ni · σ̂ · ti is the tangential component of the traction, vs
i = vs

i ti and ti is a unit
vector tangential to the surface of sphere i. We note that since we are only interested in
the relative motion of the particles, and that the particles are of equal radii, it suffices to
employ only one auxiliary problem to resolve the hydrodynamic interactions. For instance,
probing the velocities of the individual particles requires an additional auxiliary problem,
which is often chosen to be the trailing of two passive particles in a viscous fluid (Stimson
& Jeffery 1926). When the system is not axisymmetric and the particles freely move
with respect to one another, even further decomposition of the hydrodynamic field is
required as one needs to account for parallel and perpendicular translational motions, as
well as rotations. A detailed analysis with respect to this sort of decomposition in the
hydrodynamic field is presented by Mozaffari et al. (2016) and Sharifi-Mood et al. (2016).
Here, however, we focus instead on decomposing the chemical field as we want to better
understand the contribution of each compartment separately in the relative behaviour of
the particles. To this end, we limit our attention to the relative motion in an axisymmetric
setting, so that the hydrodynamic interactions can be probed by simply using one single
auxiliary problem. As we will show in the following, this simplification allows us to
decompose the overall interactions to some geometrical functions that can fully capture
the dynamics of the system.

We now use (3.2) to decompose the interactions in the chemical field. Without any loss
of accuracy, the concentration field can be written as

C(x) = C1(x) + C2(x), (3.3)

where C1 (C2) is the concentration field induced by sphere 1 (2) when sphere 2 (1) is
completely inert. The concentration field can be further decomposed as

C(x) =
[
Cfar

1 (x) + Cnear
1 (x)

]
+

[
Cfar

2 (x) + Cnear
2 (x)

]
, (3.4)

where ‘far’ denotes the concentration field induced by each particle in the absence of its
neighbour, and ‘near’ accounts for the correction due to the chemical interactions between
the particles. The slip velocity for each sphere is then found

vs
i = μi

[
∇i

‖Cfar
1 + ∇i

‖Cnear
1

]
+ μi

[
∇i

‖Cfar
2 + ∇i

‖Cnear
2

]
at Si, (3.5)

where ∇i
‖ = (I − nini) · ∇. Note that we have not yet used the assumption of μin

i = μout
i ,

so the decomposition given in (3.5) is generic. But to simplify the equations even further,
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we now assume that the mobilities of the spheres do not vary across their surfaces. By
replacing the slip velocity from (3.5) to (3.2), we can make some simplifications. The
motion induced by Cfar

i is essentially self-propulsion in the absence of any neighbours.
Thus it must linearly depend on αin

i − αout
i , so one can claim

D

|F̂ 1|
〈
σ̂i∇i

‖Cfar
i

〉
Si

= eGself
i

(
αin

i − αout
i

)
, (3.6)

where Gself
i only varies with the cap size (Golestanian et al. 2007). Note that when a

particle is chemically isotropic (αin
i = αout

i ), it cannot self-propel without the presence of a
nearby neighbouring particle or boundary since its concentration field becomes completely
isotropic (Soto & Golestanian 2014). We can similarly define

D

|F̂ 1|
〈
σ̂i∇i

‖Cnear
i

〉
Si

= eGref ,in
i αin

i + eGref ,out
i αout

i , (3.7)

D

|F̂ 1|
〈
σ̂i∇i

‖Cj
〉
Si

= eGnei,in
i αin

j + eGnei,out
i αout

j , (3.8)

where all the ‘G’ functions are dimensionless and only depend on the gap size, and
{i, j} ∈ {1, 2} in a mutually exclusive manner. Here, as shown schematically in figure 1(b),
Gref ,in

i and Gref ,out
i represent the motion induced by the chemical activity of a particle,

due to the passive presence of its neighbour. Thus, in these terms, the neighbouring
particle serves as a geometrical asymmetry in the concentration field generated by each
particle. Note that, since the two compartments of each particle interact differently with the
neighbouring particle, Gref ,in

i /=Gref ,out
i especially when the gap size is small. On the other

hand, Gnei,in
i and Gnei,out

i account for the motions induced solely by the chemical field of the
neighbouring particle. Similarly here, Gnei,in

i /=Gnei,out
i . Due to the symmetry of the system,

for all the G functions we find (Gi)
∗ = Gj ≡ G, where (·)∗ denotes a mirror-symmetric

transformation. Defining the relative speed as Vrel = (V 1 − V 2) · e, we finally arrive at

Vrel = Gself
[
μ1

(
αin

1 − αout
1

) + μ2
(
αin

2 − αout
2

)]
/D

+ Gnei,in
(
μ1α

in
2 + μ2α

in
1

)
/D + Gref ,in

(
μ1α

in
1 + μ2α

in
2

)
/D

+ Gnei,out
(
μ1α

out
2 + μ2α

out
1

)
/D + Gref ,out

(
μ1α

out
1 + μ2α

out
2

)
/D. (3.9)

Equation (3.9) presents a generic expression for the relative speed for any two Janus
particles. It shows that the relative motion of the particles is governed by their
self-propulsion (Gself ), neighbour-induced motions (Gnei,in and Gnei,out) and self-generated
neighbour-reflected motions (Gref ,in and Gref ,out). The geometrical G functions are
independent of the chemical properties of the particles, thus we only need to evaluate
them once. Contrary to (3.2) wherein the chemical and hydrodynamic fields are both
needed to be solved upon variation of the chemical properties, (3.9) allows us to determine
the relative velocity quite efficiently using just a simple linear summation of particles’
chemical properties and the geometrical functions. Except for the case of self-propulsion
(Golestanian et al. 2007), finding the exact explicit analytical expressions for each of these
geometrical functions may not be feasible. However, one can evaluate them to some level
of approximation using the far-field based approaches such as the method of reflections,
or employ the exact treatment which presents the solution in terms of infinite series in
the bispherical coordinates (Mozaffari et al. 2016; Sharifi-Mood et al. 2016; Michelin &
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FIGURE 2. (a) Variation of the geometrical G functions against the gap size. As shown in (3.9),
the relative velocity of the particles can be expressed as a linear summation of these functions.
(b) The ratio of the re-grouped G functions which decay monotonically with Δ as defined in
(3.11) to (3.16).

Lauga 2017). Here, to be able to see the relative behaviour without any loss of accuracy, we
take the latter approach and numerically evaluate these functions accounting for the full
chemical and hydrodynamic interactions. This approach, which relies on the reciprocal
theorem and the exact solution of the Laplace and Stokes equation for a two-body system,
has been employed in the literature quite extensively to evaluate the motion of phoretic
particles (Mozaffari et al. 2016; Sharifi-Mood et al. 2016; Michelin & Lauga 2017; Nasouri
& Golestanian 2020). In what follows we show how this method can be adapted to obtain
the geometrical functions.

For the case of uniform mobilities, we need to evaluate five geometrical functions.
Since the system is linear, if we find the relative speed for five arbitrarily chosen cases
(i.e. five pair interactions with arbitrarily chosen values for activities and mobilities),
we can construct a linear system of equations from which the exact values for the G
functions can be recovered. To do so, we use (3.2) which describes the relative speed of
the particles in terms of the slip velocities and the flow field of the auxiliary problem.
For any pair of spherical particles, we can solve the chemical field equations exactly
in the bispherical coordinate system, as widely discussed in the literature (Michelin &
Lauga 2015; Mozaffari et al. 2016; Sharifi-Mood et al. 2016). The complete solution to the
auxiliary problem is also readily available from the classical works of Maude (1961) and
Spielman (1970). Thus, combining these two, the exact relative velocity of the particles
can be explicitly determined from (3.2). Using this direct approach, we can construct a
5 × 5 matrix which can be used to determine the G functions. We take α0 and μ0 as the
reference values for the activity and mobility, and define α̃ = α/α0, and μ̃ = μ/μ0. The
scaling for the speed then naturally arises as V0 = α0μ0/D, which essentially characterizes
the self-propulsion speed of a half-coated Janus particle with chemical properties α0 and
μ0, as such a particle would swim with the speed of (1/4)V0 (Golestanian et al. 2007).
Using these scalings, we evaluate the geometrical functions for 0.001 < Δ/R < 10; see
figure 2(a). To validate the obtained values, we use them to determine the relative speed
for Janus particles with identical chemical properties, and as shown in figure 3, our results
concisely match those reported by Sharifi-Mood et al. (2016).

As expected, the function Gself
i which represents the isolated self-propulsion, does not

vary with the gap size and is solely a function of the coating ratio between the two
compartments (which we consider here to be 1 as each compartment takes a half of the
surface). We find Gself

i = 0.25 which is identical to the exact value obtained analytically
for a single Janus particle (Golestanian et al. 2007). The other G functions, however,
originate from the chemical and hydrodynamic interactions between the particles. In the
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FIGURE 3. The relative speed obtained from (3.9) (solid lines) and those obtained by
Sharifi-Mood et al. (2016) (dashed-lines) for 10−3 < Δ/R < 10. In all cases μ̃1 = μ̃2 = 1, and
�: α̃in

1 = α̃in
2 = 1, α̃out

1 = α̃out
2 = 0, �: α̃in

1 = α̃out
2 = 1, α̃out

1 = α̃in
2 = 0 and ⊕: α̃in

1 = α̃in
2 = 0,

α̃out
1 = α̃out

2 = 1.

far-field limit, the chemical field generated by each particle can be approximated by a point
source, while the hydrodynamic field is the one of a force-free torque-free motion which is
governed by a symmetric force dipole (i.e. stresslet). Thus, in this limit, the chemical field
generated by each particle will decay by 1/Δ, while the hydrodynamic field will decay
as 1/Δ2. Therefore, the net phoretic interactions of the two particles will also decay by
the gap size, as can be seen from the behaviour of the geometrical functions when Δ is
large. Remarkably, however, this weakening of interactions does not occur monotonically
for Gnei,out and Gref ,in . For the former, an increase in Δ initially strengthens the interactions,
while for the latter the attractive/repulsive nature of the interactions is reversed at a certain
gap size. This implies that the near-field chemical and hydrodynamic interactions in these
geometrical functions may oppose the leading-order far-field effects. When the gap size
is small, the strength of the near-field effects dominate the interactions and result in the
non-monotonicity of the interactions with respect to the gap size. These effects rapidly
vanish once Δ/R > 1, and the interactions follow a monotonic decay as dictated by the
far-field interactions.

We recall that the expression given in (3.9) is derived using the linearity of the field
equations and the geometrical symmetry arguments. Thus, while the full behaviour can
only be explored via an exact approach such as the one taken in this study, one can still
find these geometrical functions to some level of approximations using the far-field based
approaches such as the method of reflections. The method of reflections assumes the
gap size to be considerably larger than the length scale of the particles. At the zeroth
order, the chemical field generated by each particle is substituted by a point source
(or sink depending on the sign of activity), while the hydrodynamic interactions are
completely ignored. At this order, the neighbour-reflected terms are identically zero, as
they only appear at higher orders. Further reflections then account for higher-order effects
such as source doublets in the chemical field, and stresslets in the hydrodynamic field,
giving rise to the appearance of the neighbour-reflected terms and also correcting the
neighbour-induced ones. By keeping more reflections, the solution eventually converges
to that of the exact approach, but only in the limit of Δ/R > 1 (see e.g. Sharifi-Mood et al.
(2016) for the comparison). Thus, we can technically recover the geometrical functions
using the method of reflections with reasonable accuracy for Δ/R > 1. However, when
Δ ∼ R, the convergence becomes very slow and one has to account for several reflections.
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It is now worthwhile discussing the case wherein the particles are in very close
proximity to one another and Δ → 0. One then naturally expects the effect of the
outer compartments to become vanishingly small compared to those of the inner ones.
To evaluate this, we need to separate the effects of the inner and outer compartments
completely. We note that the decomposition given in (3.9) does not properly separate the
role of each compartment; rather, it shows how each type of interaction contributes to
the relative motion. Thus, to evaluate the role of each compartment, we need to decompose
the self-propulsion term as well. We thereby combine Gself with the neighbour-reflected
terms, namely Gref ,in and Gref ,out. The total number of the geometrical functions then
reduces to four as we can write

Vrel = Gnei,in
(
μ1α

in
2 + μ2α

in
1

)
/D + (Gref ,in + Gself

) (
μ1α

in
1 + μ2α

in
2

)
/D

+ Gnei,out
(
μ1α

out
2 + μ2α

out
1

)
/D + (Gref ,out − Gself

) (
μ1α

out
1 + μ2α

out
2

)
/D. (3.10)

As shown in figure 2(a), the total contribution of the outer compartments (i.e. Gnei,out

and Gref ,out − Gself ) indeed asymptotes to zero when Δ → 0, while those of the inner
compartments reach finite values. One can then conclude that in the lubrication regime,
both the chemical and hydrodynamic interactions of the outer compartments are fully
screened over the spherical boundary of the particles. A similar screening was observed
for hydrodynamic interactions of two beating cilia, for which the presence of a spherical
boundary was shown to fully screen the interactions (Nasouri & Elfring 2016). Finally,
we note that when Δ → 0, we find Gnei,in to be two times larger than Gself . This suggests
that in the lubrication regime, the squeezing effect on the chemical and hydrodynamic
field strengthens the overall phoretic interactions such that the neighbouring particle can
remarkably translate the particle faster than its own inherent asymmetry.

3.2. Emergence of fixed points
Depending on the chemical properties of the particles (and also Δ in the case of
Gref ,in) the interactions stemmed from the geometrical functions can be attractive or
repulsive. Therefore, they may (or may not) oppose one another in a given pair interaction.
Additionally, since these geometrical functions (except for the one of the self-propulsion)
vary with the gap size, the overall nature of the phoretic interaction may also vary with the
gap size. Thus, the collective interplay of all these effects may induce fixed points in the
dynamical behaviour of the system.

To explore this, we first look at the simple case of chemically isotropic particles, for
which it was shown that the relative motion can only have one fixed point (Nasouri &
Golestanian 2020). Note that in this case there is no self-propulsion as the chemical field
generated by each particle in isolation is purely isotropic. Also, since there is no difference
between the two compartments of each particle, we can group the geometrical functions
together and define Gnei = Gnei,in + Gnei,out as the net neighbour-induced interaction, and
Gref = Gref ,in + Gref ,out as the net neighbour-reflected contribution. By setting αin

i = αout
i ,

the relative speed given in (3.9) takes the simple form

Vrel = Gnei [(μ1α2 + μ2α1) + ε0 (μ1α1 + μ2α2)] /D, (3.11)

where

ε0 = Gref

Gnei
. (3.12)

As we discussed in our previous work (Nasouri & Golestanian 2020), Gnei and Gref are
both positive scalers that decay monotonically with the gap size, but so does their ratio;
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see figure 2(b). Thus, the system of two isotropic particles can indeed have at most one
fixed point.

We now want to similarly determine the number of fixed points in a pair interaction
of Janus particles. Since the interactions are more complex for Janus particles, a simple
regrouping of the geometrical function may not suffice for unravelling the dynamical
system. However, with the aid of numerical calculations, we can show that the system
can only have three fixed points. We rewrite (3.9) as

Vrel = (Gself − Gref ,out
) [(

μ1α
in
2 + μ2α

in
1

)
ε1 + (

μ1α
in
1 + μ2α

in
2

)
ε2

+ (
μ1α

out
2 + μ2α

out
1

)
ε3 − (

μ1α
out
1 + μ2α

out
2

)]
/D, (3.13)

where

ε1 = Gnei,in

Gself − Gref ,out
, (3.14)

ε2 = Gref ,in + Gself

Gself − Gref ,out
, (3.15)

ε3 = Gnei,out

Gself − Gref ,out
, (3.16)

are now all positive scalars that decay monotonically with Δ, as shown in figure 2(b).
Given that Gself − Gref ,out is always positive, the nature of the interactions is now only
embedded in the pre-factors containing the chemical properties of the particles, and so
determining the number of the fixed point is reduced to the terms inside the bracket
in (3.13). A simple parameter scan then reveals that the dynamical system allows for a
maximum of three fixed points. Unlike the case of isotropic particles, the emergence of
the fixed points here is not solely due to a simple interplay of neighbour-induced and
neighbour-reflected interactions. Rather, as shown in (3.13), a combination of different
interactions lead to emergence of the fixed points.

As shown in figure 4, the system can have one single fixed point (stable or unstable), two
fixed points (one stable, one unstable), or three fixed points (two stable, one unstable or
vice versa). This means that a pair of Janus particles may exhibit a variety of behaviours,
depending on their initial gap size. When the system has no fixed point, the interactions
are either purely attractive in which the particles collapse and make a complex, or purely
repulsive in which they separate indefinitely. A single stable fixed point indicates that the
particles (regardless of their initial position) hold a non-zero gap size at steady state and
subsequently move together with an identical velocity. For a single unstable fixed point, the
particles form a metastable complex if their initial gap size is below a certain value, and
move away if their gap size exceeds that value. The behaviour becomes more complicated
once the system exhibits more than one fixed point. For the case of two fixed points, the
particles reach an equilibrium state at a non-zero gap size. This state is, however, only
linearly stable, thus, under sufficient perturbation (e.g. thermal activation) the particles
either form a metastable complex (when the gap size corresponding to the stable fixed
point is larger than the one of the unstable fixed point) or move away (when the gap size
corresponding to the stable fixed point is smaller than the one of the unstable fixed point).
When the system has three fixed points, there are two scenarios for the relative interaction.
If two of these fixed points are stable, then the particles reach a steady state at a non-zero
gap size. There are two stable fixed points in this case, hence this equilibrium gap size can
vary between two values, and so the system can move from one state to another under the
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FIGURE 4. Variation of the relative speed (Vrel) with the gap size for four different cases.
The dynamical system describing the relative motion of the two Janus particles can have (a) zero,
(b) one, (c) two or (d) three fixed points. The parameter sets used for solid lines are as follows:
(a) α̃in

1 = −0.82, α̃out
1 = −0.84, α̃in

2 = 0.56, α̃out
2 = 0.81, μ̃1 = 0.07, μ̃2 = −0.78,

(b) α̃in
1 = −0.8, α̃out

1 = −0.64, α̃in
2 = −0.28, α̃out

2 = −0.89, μ̃1 = 0.04, μ̃2 = −0.33, (c) α̃in
1 =

−0.26, α̃out
1 = −0.47, α̃in

2 = 0.37, α̃out
2 = 0.26, μ̃1 = 0.05, μ̃2 = 0.37 and (d) α̃in

1 = 0.89,
α̃out

1 = −0.16, α̃in
2 = −0.79, α̃out

2 = 0.90, μ̃1 = 0.58, μ̃2 = 0.37. The same values are used for
the dashed lines except μ1 → −μ1 and μ2 → −μ2. The red solid lines show the value zero.

presence of a noise. In the case of two unstable and one stable fixed points, the system
reaches a linearly stable state at a non-zero gap size, and will either form a metastable
complex, or separate under sufficient perturbations.

3.3. Half-coated particles
By using the generic expression given in (3.9), one can simply determine the nature
of the interactions for any pair of Janus particles at any gap size. Nevertheless, given
the importance of half-coated particles (Janus particles with one compartment being
completely inert) in the experimental realization of chemically active systems (Ebbens
et al. 2012, 2014; Brown & Poon 2014; Campbell et al. 2019), it is worthwhile to further
evaluate (3.9) for cases wherein one side of each particle is inert. We can thereby have
three configurations: case (1) wherein the two inner sides are inert αin

1 = αin
2 = 0, case

(2) in which the inner sides are active αout
1 = αout

2 = 0 and case (3) with αout
1 = αin

2 = 0.
For case (1) we find

V (1)

rel = (Gself − Gref ,out
) [(

μ1α
out
2 + μ2α

out
1

)
ε3 − (

μ1α
out
1 + μ2α

out
2

)]
/D, (3.17)

which indicates that there can be only one fixed point in this configuration of the particles,
since the variation of ε3 with Δ is monotonic, as shown in figure 2(b). For case (2), we
similarly find

V (2)

rel = Gnei,in
[(

μ1α
in
2 + μ2α

in
1

) + (
μ1α

in
1 + μ2α

in
2

)
ε2/ε1

]
/D, (3.18)

where ε2/ε1 is now a non-monotonic function with respect to Δ and so the system can
have two fixed points. Finally, for case (3), we have

V (3)

rel = (Gself − Gref ,out
) (

μ2α
in
1 ε1 + μ1α

in
1 ε2 + μ1α

out
2 ε3 − μ2α

out
2

)
/D. (3.19)

Now, using (3.17) to (3.19), we construct the phase diagrams describing the dynamical
behaviour of the particles, in the activity–mobility parameter space (see figure 5). For
half-coated particles, we find that the system can no longer have three fixed points.
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FIGURE 5. The regime diagrams describing the relative dynamics of half-coated particles for
three configurations. As shown by the schematics at the top of each panel (red and white colours
represent active and inert compartments, respectively), the three configurations are: Case (1)
inner compartments are inert. Case (2) outer compartments are inert. Case (3) inner compartment
of sphere 1 and outer compartment of sphere 2 are inert. As shown in the right side of the figure,
colours represent variations of the nature of interactions (attractive or repulsive) versus the gap
size. Note that these maps must be reversed if α2μ2 < 0.

4. Non-uniform activity and non-uniform mobility

We now look at the general case in which the two compartments of each particle can
have different values of activities and mobilities. In this case, the neighbour-induced and
the neighbour-reflected motions are more entangled, thus the dimensionless geometrical
functions should be defined more generally as

D

|F̂ 1|
〈
μiσ̂i∇i

‖Ci
〉
Si

= eμin
i αin

i QI
i + eμout

i αin
i QII

i

+ eμin
i αout

i QIII
i + eμout

i αout
i QIV

i , (4.1)

D

|F̂ 1|
〈
μiσ̂i∇i

‖Cj
〉
Si

= eμin
i αin

j QV
i + eμout

i αin
j QVI

i

+ eμin
i αout

j QVII
i + eμout

i αout
j QVIII

i , (4.2)

Again, under a mirror-symmetric transformation we have (Qi)
∗ = Qj ≡ Q, thus the

relative velocity this time is found

Vrel = QI
(
μin

1 αin
1 + μin

2 αin
2

)
/D + QII

(
μout

1 αin
1 + μout

2 αin
2

)
/D

+ QIII
(
μin

1 αout
1 + μin

2 αout
2

)
/D + QIV

(
μout

1 αout
1 + μout

2 αout
2

)
/D

+ QV
(
μin

1 αin
2 + μin

2 αin
1

)
/D + QVI

(
μout

1 αin
2 + μout

2 αin
1

)
/D

+ QVII
(
μin

1 αout
2 + μin

2 αout
1

)
/D + QVIII

(
μout

1 αout
2 + μout

2 αout
1

)
/D. (4.3)

Comparing this solution to the one of uniform mobility given in (3.9), it is clear that QI +
QII = Gref ,in + Gself , QIII + QIV = Gref ,out − Gself , QV + QVI = Gnei,in and QVII + QVIII =
Gnei,out. Thus, under this decomposition, the self-propulsion term is distributed between
QI to QIV , as one can also see in figure 6 since they are the only geometrical functions
that do not decay to zero as the gap size increases. One can alternatively separate the
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FIGURE 6. The variation of the geometrical Q functions versus the gap size Δ. A linear
summation of these geometrical functions can return the relative speed of two Janus particles
whose compartments have different activities and mobilities, as shown in (4.3).

self-propulsion from the interaction-induced terms as here we have (Golestanian et al.
2007)

D

|F̂ 1|
〈
μiσ̂i∇i

‖Cfar
i

〉
Si

= eGself
i

(
μin

i + μout
i

2

) (
αin

i − αout
i

)
. (4.4)

Similar to the case of uniform mobilities, here as well as in the lubrication regime, the
effect of the outer compartments to the relative motion becomes irrelevant. As shown in
figure 6, when Δ → 0, only QI and QIV have non-zero values indicating that even the
effect of cross-inner–outer terms such as QII and QIII vanish away in this limit.

We perform a thorough parameter scan over the activity–mobility parameter space to
identify the emergence of fixed points in the system. Surprisingly, we find that allowing
the mobilities to be non-uniform across the surface of the particles does not increase the
number of fixed points in the dynamical system. This may be due to the fact that unlike the
chemical activities that alter the chemical field directly, any discontinuity in the mobilities
can only directly affect the hydrodynamic field which has proven to be less important in
terms of determining the fixed points in the dynamical system (Nasouri & Golestanian
2020). Thus, we can then conclude that a pair of Janus particles can only have up to three
fixed points in their relative motion.

5. Conclusion

In this study, we discussed the axisymmetric pair interaction of two Janus particles,
and derived a generic solution for their relative motion. This solution, which is in
terms of a linear summation of geometrical functions, illustrates the contribution of each
compartments of the particles to the relative motion. Since in far-field-based many-body
solvers the near-field effects are often taken into the account through pair interactions,
the generic solution presented here can in particular provide an efficient and accurate
way to introduce near-field effects when modelling phoretic suspensions. We also use this
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solution to show that the dynamical system describing the relative motion can have up
to three fixed points, indicating that the system can exhibit vastly different behaviours
depending on the initial gap size and the chemical properties of the particles.

Because of its simplicity and generality, our approach can be simply extended to study
the interaction of Janus particles in which the coating coverage of the two compartments
are not identically equal. For these systems, if the front–back geometrical symmetry is
broken, one needs to keep more geometrical functions to construct the generic solution.
The geometrical asymmetry in these cases then may induce more fixed points in the
system. Similarly, if the particles have more complicated coating patterns, one may also
expect a higher number of fixed points to emerge. The calculation can also be extended
to cases where the particles have slender axisymmetric shapes (Ibrahim, Golestanian &
Liverpool 2018) and cases where more experimentally relevant details of the chemical
reaction are taken into consideration (Ibrahim, Golestanian & Liverpool 2017). For
instance, we can similarly introduce these geometrical functions for interactions of two
spheroidal particles. Given that the exact motion of a single spheroidal squirmer with
a catalytic surface has been recently discussed by Pöhnl, Popescu & Uspal (2020), one
can use that solution to construct a reflection-based approach for capturing the far-field
behaviour of two spheroidal particles. However, studying the full behaviour of the system
still requires an exact evaluation of the geometrical function for which computational
approaches (such as the boundary element method Uspal 2019) should be employed.

Furthermore, we should note that to evaluate the stability of the reported bound states,
one should look into non-axisymmetric interactions, since our current axisymmetric
approach does not take into account rotation and lateral translation which could trigger an
escape under the presence of a noise. In that case, other than the gap size, the geometrical
functions also depend on the orientation of the particles. Thus, at a given gap size, these
functions should be evaluated for all the possible orientations. Given the cumbersomeness
of these calculations for non-axisymmetric cases (Sharifi-Mood et al. 2016), it may be
useful to limit the exact treatment of the geometrical function to only small gap sizes and
use the far-field approach when the particles are far from one another.

We also note that advective effects of the solute particles, which are neglected here, can
induce similar stable and unstable fixed points in the dynamical system (Lippera et al.
2020). Thus, one may adapt the presented approach to identify the possible scenarios for
the relative motion when the Péclet number is not identically zero.
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