
A provocative tale of unwinding

SUBHRANIL DE

1. Introduction
One fine spring morning, at some point, I was simply tearing a few sheets of
paper towel off a fresh roll. As the sheets came off and the roll rotated about
the vertical axle of the holder (Figure 1), I lazily pondered the geometry
lurking in the situation. I realised that sometimes I would let the roll rotate
as the unwound part moved straight until tearing, while at other times, I
might hold the roll in place and unwind the sheets around the roll. More
often, it would be some spontaneous combination of the two modes of
unwinding.

FIGURE 1: The paper towel roll rotates and unwinds

Further rumination about this commonplace act happened to rekindle a
happy memory from my college days. The memory of figuring out a simple-
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looking yet provocative physics problem in the classic book of problems by
I. E. Irodov [1].
In its slightly paraphrased version, the Irodov problem involves a vertical
cylinder fixed on a frictionless horizontal surface and a string that is tightly
wound around the cylinder. The free end of the string is attached to a
particle (which we call the bob in the rest of the paper) in motion, causing
the string to keep unwinding while its unwound part remains straight and
taut at all times. While I considered the various thought-provoking aspects
of this problem, I wondered, in accordance with the paper towel roll
scenario, what would happen if the cylinder in the Irodov problem is hinged
smoothly at its axis instead of being fixed in place. That is when intriguing
details started to unfold which also involves a due amount of calculus.
The next section is a review of a version of the original Irodov problem, and
then we delve into its aforementioned modification in the section that
follows thereafter.

2.  A review of the Irodov problem
The top view of the system at the initial instant  is shown in Figure 2a.
The cylinder of radius  is fixed in place with its centre at point . The
massless, inextensible, ideal string of indefinitely large available length is
tightly wound around the cylinder counterclockwise. The position of the bob
of mass  initially coincides with the point  on the circumference of the
cylinder, where both points  and  lie on the -axis. The initial velocity
of the bob is in the positive -direction, as shown.
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FIGURE 2a: The top view of the system at  with the cylinder of radius  fixed
on a frictionless horizontal plane, the initial velocity  of the bob of mass  being in

the positive -direction. 
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The string unwinds as time progresses while the bob moves accordingly
over the frictionless plane. Figure 2b shows the snapshot of the
configuration at some arbitrary later time . The unwound part of the string
is the straight line segment tangent to the cylinder at the point  and
connecting to the bob. Since the wound part of the string cannot slide along
the circumference of the cylinder, the length  of that unwound part of the
string must be equal to the circular arc length . Hence, if the angle
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subtended by  at the centre  is , thenPQ C φ

s = Rφ. (1)
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FIGURE 2b: The configuration of the system at a later time: The unwound part of the
string is the straight line segment tangent to the point  and connecting to the bob.
The length  of the unwound part is equal to the circular arc length . In addition,

for the unwound part, the point  serves as the instantaneous centre of rotation, with
the length of the bold arrows showing the velocities should be proportional to the

distance from .
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Regarding the motion of the unwound part of the string, the point  where
the string detaches from the cylinder, acts as the instantaneous centre of
rotation. Hence the velocity of any point on the unwound part is
perpendicular to the string as shown in Figure 2b with the bold arrows, its
magnitude being directly proportional to the distance from . Since the said
direction of the velocities is normal to the unwound part of the string, we
refer to this mode of unwinding of the string as the ‘normal mode’ of
unwinding. The resulting locus of the bob during the continued unwinding
process is an infinite spiral which is known as the ‘involute of the circle’ [2],
plotted in a zoomed-out view in Figure 3, which also shows the
circumference of the cylinder at the centre.
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FIGURE 3: The locus of the bob, which is an involute spiral of a circle. The centre of
the circular circumference is at the origin, with the circle appearing very small due to

the zoomed-out view.
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Regarding the dynamics of the system, the only external force on the bob is
the tension exerted by the string. This tension will be directed along the
string at any point, and therefore perpendicular to the velocity of the bob.
Consequently, the work done on the bob is zero, and thus, according to the
work-KE theorem in mechanics, the kinetic energy of the bob remains
unchanged. Hence

1
2mu2 = 1

2mu2
0,

From which it follows that

u = u0, (2)
i.e. the speed of the bob also remains unchanged.
Now, let us refer back to Figure 2b. Since the unwound part of the string,
being in the direction tangent to the cylinder at point , is perpendicular to
the radial direction , the angle through which the alignment of the
unwound part of the string changes during any given time interval is the
same as the increment of . However, at any given instant, since the point of
detachment  serves as the instantaneous centre of rotation for the unwound
part of the string including the bob, the speed  of the bob can be written as

Q
CQ

φ
Q

u

u = s
dφ
dt

, (3)

since  is the instantaneous angular speed of the unwound part of the

string.

dφ
dt

Using (1), (2) and (3), we arrive at

u0 =
1
R

 s
ds
dt

,   u0 dt =
1
R

 s ds.or

Integrating, and using the initial condition that  at , we obtain
the variation of the unwound length  with time:

s = 0 t = 0
s

s = 2u0Rt. (4)

3.  The modified model with the smoothly hinged cylinder
Finally, we consider the modified system where the cylinder is now
smoothly hinged at its axis rather than being fixed in place. The
configuration at the start of the unwinding process still corresponds to
Figure 2a, with the cylinder initially stationary and the bob having an initial
velocity  in the positive -direction. However, as the string unwinds, the
tension in its unwound part exerts an external torque on the cylinder in the
counterclockwise direction, thereby causing an angular acceleration in the
same direction. A snapshot at some arbitrary later instant is depicted in
Figure 4.

u0 x
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FIGURE 4: The configuration of the system at a later time: The unwound part of the
string is the straight line segment tangent to the point  and connecting to the bob.

The length  of the said unwound part is equal to the circular arc length .
However, the point  on the circumference of the cylinder has moved to a new
position relative to its initial position on the -axis due to the counterclockwise

rotation of the cylinder about its axis.
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As shown in Figure 4, due to the counterclockwise motion acquired by the
cylinder, the point , fixed on the circumference of the cylinder, has moved
from its initial position on the -axis. However, the unwound part of the
string, the straight line segment tangent to the instantaneous point of
detachment  and connecting to the bob, still has length  that equals the arc
length  at the moment. Hence if the angle subtended by  at the centre

 is still denoted by , as shown, relation (1) still holds. 
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Now, in terms of the angle , the counterclockwise angle turned through by
the cylinder, the angular velocity of the cylinder, , is given by

θ
ω

ω =
dθ
dt

. (5)

For this modified system, the previously defined normal mode of unwinding
will now combine with a new parallel mode of unwinding, which is
introduced entirely due to the angular motion of the cylinder itself. Hence in
addition to the normal components of velocity on the unwound part of the
string, there will be a component of velocity on every point on the string that
is directed along the string. This ‘parallel’ component has a magnitude ,
the same as the instantaneous speed of any point on the circumference of the
rotating cylinder, precisely because the wound part of the string cannot slide
relative to the cylinder. For the bob in particular, the normal component
and the parallel component  are as shown in Figure 4, where, once again

Rω

u
w

w = Rω, (6)
while the instantaneous speed of bob is given by:

v = u2 + w2. (7)
One consequence is that the angle through which the alignment of the
unwound part of the string changes during any given time interval is the
same as the increment of  (instead of ), where  is the angle made by theψ φ ψ
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radial line  with the positive -direction, as shown in Figure 4. This

means the angular speed of the unwound part of the string is , which lets

us write the normal component of the velocity of the bob as

CQ x
dψ
dt

u = s
dψ
dt

. (8)

Now, as is evident from the Figure

ψ = φ − θ. (9)
Using (5) and (9) in (8), we obtain

u = s (dφ
dt

− ω) . (10)

At this point, we ask: What is the way to infer the detailed dynamics of the
system as the string keeps unwinding? The obvious quantities of interest are

 and . For all these quantities, we are interested learning how they
evolve with time.
s, ω u

First of all, let us consider the net mechanical energy content of the
cylinder-string-bob system. There is an external force exerted by the hinge
on the axis of the cylinder. However, since the axis does not ever undergo
any displacement, the work done by that hinge force is zero. In addition,
there are no dissipative internal forces within the system either. Therefore
the net mechanical energy of the system, which consists solely of the kinetic
energy of the cylinder and the bob, will remain conserved.
Considering the kinetic energy  of the cylinder and the kinetic energy

 of the bob, we write:
1
2Iω2

1
2mv2

1
2

Iω2 +
1
2

mv2 =
1
2

mu2
0, (11)

where the right-hand side above is the initial kinetic energy, and  is the
moment of inertia of the cylinder about its axis. Making use of (6) and (7),
we obtain from (11) after slight simplification:

I

(I + mR2) ω2 + mu2 = mu2
0. (12)

Next, we consider the angular momentum of the system (about the centre )
of the cylinder-string-bob system and the net external torque on it. Again,
the only external force on the system is the force exerted by the hinge, and
since it acts directly on the axis located at the centre  itself, its torque about
the same point in zero. Consequently the net angular momentum of the
system about the centre  will remain conserved.

C

C

C
Let us refer back to Figure 2a. Since at , the velocity  of the bob as
well as its radial position  are both in the same direction (which happens
to be the positive -direction), the angular momentum of the bob about the
centre  is zero. As for the cylinder, it is at rest at this initial instant, so its
angular momentum will be trivially zero. Hence the net angular momentum
of the system that we start with is zero, and since it does not change with
time, this net angular momentum about the centre  will be zero at all times.

t = 0
CP
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Now let us refer to Figure 4 again. At this point, the angular momentum of
the cylinder is simply  counterclockwise. As for the bob, its parallel
component of velocity  has a moment arm equal to , and therefore
has a contribution to the angular momentum of , in the
counterclockwise direction. The normal component of velocity  has a
moment arm equal to , and therefore has a contribution to the angular
momentum in the amount of , in the clockwise direction. Adding all the
contributions to the angular momentum of the cylinder-string-bob system,
we write

Iω
w = Rω R

mwR = mR2ω
u

s
mus

(I + mR2) ω − mus = 0. (13)
Now, for the sake of compactness, we express  as I

I = μmR2, (14)
where  is a positive number. Next, without losing generality, we define the
following dimensionless quantities:

μ

s∗ =
s
R

; (15)

t∗ =
tu0

R
; (16)

u∗ =
u
u0

; (17)

w∗ =
w
u0

; (18)

and  ω∗ =
ωR
u0

. (19)

It is worth mentioning that the angular variables , ,  are dimensionless
already. Moreover, the way  is defined in (15), a comparison with (1)
shows it to be one and the same with , i.e.

φ θ ψ
s∗

φ

s∗ ≡ φ. (20)
Making use of (14), (17) and (19) in (12), after simplifying we write:

ηω∗ 2 + u∗ 2 = 1, (21)
where  η = μ + 1. (22)

Similarly, making use of (14), (15), (17), (19) and (22) in (13), we write: 

ηω∗ − u∗s∗ = 0. (23)
At the same time, making use of (15), (17), (19) and (20) in (10), we obtain
the expression

u∗ = s∗ (ds∗

dt∗ − ω∗) . (24)
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Using (24) in (23), we obtain after rearranging

ω∗ =
s∗2

s∗2 + η (ds∗

dt∗ ) . (25)

Substituting (25) back into (24) gives us upon rearranging

u∗ = s∗ ( η
s∗2 + η) ds∗

dt∗ . (26)

Now, using (26) in (21), after substantial rearranging we obtain

η
s∗

s∗2 + η
ds∗

dt∗ = 1 (27)

η
s∗

s∗2 + η
 ds∗ = dt∗.or

Integrating the above with the initial condition that  at , after
rearranging we obtain

s∗ = 0 t∗ = 0

s∗ =
1
η

(t∗ + η)2 − η2. (28)

Next, using (28) in (25), we obtain

ω∗ =
1
η

(t∗ + η)2 − η2

t∗ + η
. (29)

Finally, using (28) in (26), we arrive at

u∗ =
η

t∗ + η
. (30)

Regarding the parallel component of the velocity of the bob, from (6), (18)
and (19), we can easily conclude that , thus letting us write from
(29)

w∗ ≡ ω∗

w∗ =
1
η

(t∗ + η)2 − η2

t∗ + η
. (31)

It is worth noting that the behaviour of the system pertaining to the original
Irodov problem with the cylinder fixed in place, i.e. the one detailed in
Section 2, is recovered as , as expected.η → ∞
Before we move on to the next section, we look at one more quantity that is
worth our attention, namely the orientation of the straight, unwound part of

the string. Since , it follows from (25) that ω∗ =
dθ
dt∗

dθ =
s∗ 2

s∗ 2 + η
 ds∗.
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Integrating the above with the initial condition  when , we
obtain

θ∗ = 0 s∗ = 0

θ = s∗ − η tan−1 ( s∗

η) . (32)

Then, with the use of (9) and (20) in (32), we arrive at

ψ = η tan−1 ( s∗

η) . (33)

4.  The salient features of the findings
It is quite straightforward to verify using (28), (29), (31) and (30),

respectively, that ,  and , where the

subscript  refers to the limiting value of a quantity as .

s∗
∞ = ∞ ω∗

∞ ≡ w∗
∞ =

1
η

u∗
∞ = 0

‘∞’ t∗ → ∞
One striking feature of our results is a transition in the mode of unwinding.
We recall that at , the (dimensionless) normal and parallel
components of the velocity of the bob are  and , respectively,
commensurate with a purely normal mode. However, we note that as

, the values of the two quantities approach  and ,

respectively. This implies the conclusion:

t∗ = 0
u∗ = 1 w∗ = 0

t∗ → ∞ u∗ = 0 w∗ =
1
η

Although the unwinding process starts in a purely normal mode, it switches
asymptotically to a purely parallel mode in the limit !t∗ → ∞
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FIGURE 5: The plot of  and , according to (30) and (31), respectively, for
, indicating an asymptotic transition from a purely normal to a purely parallel

mode of unwinding. 

u∗ w∗

η = 2

In Figure 5, we plot  and , as obtained from (30) and (31) for ,
Incidentally, this example corresponds to a situation where the cylinder in
the system is represented by a uniform cylindrical shell that has the same
mass as that of the bob, so that  as defined in (14), thus making

u∗ w∗ η = 2

μ = 1
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 according to (22).η = 2
Next we consider the long-time dependence of the rate of unwinding. As
deduced from (4), in the case of the cylinder fixed in place,  at all
times. However, for our modified system with the hinged cylinder, one can
show from (28) without difficulty that, although for small  the relation

 still holds, for large  the nature of the variation becomes ,
i.e. at large enough times the unwinding happens at an effectively constant
rate, irrespective of the value of . This transition is manifest in the plots in
Figures 6a and 6b, for the same example value of .

s∗ ∝ t∗

t∗

s∗ ∝ t∗ t∗ s∗ ∝ t∗

η
η = 2
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FIGURES 6a and 6b: The (dimensionless) length  plotted against  for (a) small
values of  and (b) large values of , for . In (a), the plot resembles one-half
of a horizontally situated parabola around its vertex, corresponding to an effective
variation of , as expected for small values of . In (b), the linear behaviour
is manifest for large values of .

s∗ t∗

t∗ t∗ η = 2

t∗ ∝ s∗ 2 t∗

t∗

Finally, we focus our attention on the rotation of the unwound part of the
string, which brings us to what is perhaps the most fascinating and non-trivial
aspect of our findings. Putting  in (33), we readily deduce thats∗ → ∞

ψmax = lim
s∗ → ∞

ψ = η 
π
2

. (34)

The above relation implies that for any finite value of , however large, the
maximum angle through which the unwound part of the string rotates is
finite, approaching that value asymptotically as time goes on. This is in
stark contrast with the case of the cylinder fixed in place, for which the
unwound part of the string rotates through indefinitely large angles while the
bob traverses a spiral that is the circle involute.

η

As an example, for , the value of  as obtained from (34) is
, which is about .

η = 2 ψmax

2 (1
2π) 127.3°
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η = ∞(b)

η = 2(a)

FIGURE 7: The positions of the unwound part of the string, plotted for twenty
equally spaced values of , namely , along with the

position of the bob at the end of the string, for (a) , and (b) , i.e. with
the cylinder effectively fixed in place. 

s∗ s∗ ∈ {0.5,1.0, … ,9.5,10.0}
η = 2 η = ∞

In Figure 7 the positions of the unwound part of the string, along with the
positions of the bob at the end of the string, are plotted for twenty equally
spaced values of  in the course of the unwinding process. The starting
configuration is still the one shown in Figure 2a. Figure 7a, which uses

, it shows how the orientation of the unwound part of the string tends
to saturate as the unwinding continues, corresponding to a  value of

 as obtained from (34). As a contrast, the plots in Figure 7b, which
pertains to a cylinder effectively fixed in place, shows an ongoing rotation
of the unwound part of the string that is destined to continue rotating
through indefinitely large angles, while the bob traverses an infinite spiral
locus as mentioned before.

s∗

η = 2
ψmax

127·3°

Figure 8 shows the plots of the loci of the bob for (a) , (b) , (c)
, (d) , (e)  and (f) . The case of ,

which is effectively that of the cylinder fixed in place, reproduces the
infinite spiral which is the involute of the circumference of the cylinder. For
every other case, with a finite value of , the locus tends to straighten up at
some point, commensurate with the final alignment of the string. The
respective  values in degrees, as obtained from (34) are (a)

, (b) , (c) , (d) , (e)
 and (f) , respectively. 

η = 2 η = 4
η = 16 η = 36 η = 100 η = ∞ η = ∞

η

ψmax

ψmax = 127.3° ψmax = 180° ψmax = 360° ψmax = 540°
ψmax = 900° ψmax = ∞
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(a) η = 2 (b) η = 4 (c) η = 16

(d) η = 36 (e) η = 100 (f) η → ∞

FIGURE 8: The loci of the bob plotted for (a) , (b) , (c) , (d)
, (e)  and (f)  (cylinder effectively fixed in place). 

η = 2 η = 4 η = 16
η = 36 η = 100 η → ∞

We leave the reader with a further thought-provoking extension of the
problem: If the system is still situated on a frictionless horizontal plane, but
this time with the cylinder and the bob both free to move in the course of the
unwinding, then how will the details of the unwinding process play out?
Assume that just like in the case detailed in this paper, the cylinder is
initially at rest and the bob, which is initially touching the cylinder, is
imparted a normal velocity to initiate the unwinding process. Here is a hint:
the conserved quantities in this case will be the net linear momentum of the
cylinder-string-bob system, its net kinetic energy, and the net angular
momentum about the centre of mass of the system.
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