J. Functional Programming 4 (2): 125-126, April 1994 © 1994 Cambridge University Press 125

Type systems for object-oriented programming

Functional programming has had a broader impact on computing than the
design of a few specific functional languages. One of its contributions is a deeper
understanding of type systems. This special issue of The Journal of Functional
Programming focuses on the difficult and important question of type systems for
object-oriented programming.

This issue had an unusual gestation. When I heard of Kim Bruce’s expository
paper on a type system for object-oriented programming, I immediately invited him
to submit it for publication in JFP. Papers by Pierce and Turner and by Abadi
then came to my attention, and I solicited them as well. By this point we had a
bonus-size special issue, without the usual mechanism of a call for papers. Mitchell
Wand graciously provided an introduction that carefully compares the approaches
of the three papers.

This issue provides an overview of the state-of-the-art, but it is certainly not the
last word. Further submissions on this topic are most welcome.

An extra-size issue requires extra work. Thanks are due to the contributors and
referees for the effort they have put into producing an extraordinary issue.

—PHILIP WADLER

Introduction

Object-oriented programming (OOP) has become one of the cornerstones of mod-
ern programming methodology. Yet there is little agreement on what object-oriented
programming is. Different object-oriented languages typically implement different
collections of facilities, and heated discussions of which facilities are necessary for
true object-oriented programming flare up regularly.

In the light of these discussions, this issue of JFP presents three papers that study
the theoretical bases of object-oriented programming. These papers illustrate the
variety of choices that can be made in the design of a theory of OOP.

Kim Bruce’s paper, ‘A Paradigmatic Object-Oriented Programming Language:
Design, Static Typing, and Semantics’, seeks to model via denotational semantics
as many features of conventional object-oriented languages as is possible within
the functional framework. He defines a language that supports classes, objects,
methods, hidden instance variables and inheritance. He presents static typing rules
for the language, and then gives a model for his types using PERs. He shows the
soundness of the typing rules by giving a denotational semantics, and showing that
the semantics is sensible: if a phrase has static type o, then its denotation is a value

5 FPR 4

https://doi.org/10.1017/50956796800001015 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800001015

