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On a completed generating function of locally
harmonic Maass forms

Kathrin Bringmann, Ben Kane and Sander Zwegers

Abstract

While investigating the Doi–Naganuma lift, Zagier defined integral weight cusp forms
fD which are naturally defined in terms of binary quadratic forms of discriminant D. It
was later determined by Kohnen and Zagier that the generating function for the function
fD is a half-integral weight cusp form. A natural preimage of fD under a differential
operator at the heart of the theory of harmonic weak Maass forms was determined by
the first two authors and Kohnen. In this paper, we consider the modularity properties
of the generating function of these preimages. We prove that although the generating
function is not itself modular, it can be naturally completed to obtain a half-integral
weight modular object.

1. Introduction and statement of results

Throughout we let k > 4 be an even integer. While investigating the Doi–Naganuma lift [DN67],
Zagier [Zag75] defined for D > 0 the function

fD(τ) := fk,D(τ) := Dk− 1
2

∑
Q∈QD

1

Q(τ, 1)k
(τ ∈ H),

where QD is the set of integral binary quadratic forms

[a, b, c](X,Y ) := aX2 + bXY + cY 2

of discriminant D ∈ Z. Note that fD has been renormalized from Zagier’s original definition.
The function fD is a cusp form of weight 2k, while the generating function

Ω(τ, z) :=
∑
D>0

fD(τ)e2πiDz (z ∈ H)

for the fD is a modular form of weight k + 1
2 in the z variable [KZ81]. As was shown by

the first two authors and Kohnen in [BKK12], the functions fD have natural weight 2 − 2k
preimages FD = F1−k,D under the operator ξ2−2k := 2iy2−2k(∂/∂τ), which is central in the
theory of harmonic weak Maass forms. In this paper we investigate the modularity properties of
the generating function

Ψ(τ, z) :=
∑
D>0

FD(τ)e2πiDz.
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In [BKK12], it was shown that FD exhibits discontinuities along the geodesics defined by

ED := {τ = x+ iy ∈ H : ∃a, b, c ∈ Z, b2 − 4ac = D, a|τ |2 + bx+ c = 0}.

Hence, as a function of τ , the set of discontinuities of Ψ is dense in the upper half plane.
Nonetheless, the function is still well defined at each point τ ∈ H and we investigate the
modularity property of Ψ as a function of z whenever τ is fixed. However, unlike in the case of
Ω, Ψ is not itself modular, but may be naturally completed to a function which is modular of
weight 3

2 − k as a function of z. This mirrors the mock theta functions of Ramanujan, which
are themselves holomorphic but may be completed to nonholomorphic modular objects called
harmonic weak Maass forms. The mock theta functions are in a class of functions called mock
modular forms, which have naturally appeared in a variety of applications. Their benefit has
been observed in the areas of partition theory (for example, [And07, BGM09, BO06, BO10,
Bri08]), Zagier’s duality [Zag02] (for example, [BO07]), and derivatives of L-functions (for
example, [BrO10, BrY09]). To give another example, they have also recently appeared in Eguchi,
Ooguri, and Tachikawa’s [EOT11] investigation of moonshine for the largest Mathieu group M24.
For a good overview of mock modular forms, see [Ono09, Zag09].

We now return to the properties of the functions FD. In addition to being natural preimages
of the functions fD, the FD are locally harmonic Maass forms. Such functions satisfy weight
2− 2k modularity and are annihilated (away from a certain set of measure zero) by the weight
2− 2k hyperbolic Laplacian

∆2−2k := −y2
(
∂2

∂x2
+

∂2

∂y2

)
+ i(2− 2k)y

(
∂

∂x
+ i

∂

∂y

)
(τ = x+ iy).

Denoting, for Q = [a, b, c] ∈ QD,

Qτ :=
1

y
(a|τ |2 + bx+ c),

the functions FD are explicitly defined by

FD(τ) :=
2

β
(
k − 1

2 ,
1
2

) ∑
Q∈QD

sgn(Qτ )Q(τ, 1)k−1ψk

(
Dy2

|Q(τ, 1)|2

)
.

Here we use the convention that sgn(0) = 0, and

ψk(v) := 1
2β
(
v; k − 1

2 ,
1
2

)
is a special value of the incomplete β-function, which is given, for s, w ∈ C satisfying Re(s),
Re(w) > 0, by

β(v; s, w) :=

∫ v

0
ts−1(1− t)w−1 dt.

Moreover, for Re(s),Re(w) > 0, we denote β(s, w) := β(1; s, w). Note that we have renormalized
the definition of FD given in [BKK12].

To complete Ψ, we define, for D ∈ Z,

GD(v; τ) := − 1√
π

∑
Q∈QD

sgn(Qτ )Q(τ, 1)k−1Γ

(
1

2
; 4πQ2

τv

)
(z = u+ iv), (1.1)

where
Γ(s;w) :=

∫ ∞
w

ts−1e−t dt (w > 0, s ∈ C)
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is the incomplete gamma function. We denote the generating function for the GD by

Ψ∗(τ, z) :=
∑
D∈Z
GD(v; τ)e2πiDz.

We then define the completion of Ψ by

Ψ̂(τ, z) := Ψ(τ, z) + Ψ∗(τ, z). (1.2)

Note that, as a function of τ , the function −GD exhibits the same singularities as FD, and hence
the singularities vanish when summing them together. As a result, the function Ψ̂ is real analytic
in both variables. To state the modularity properties of Ψ̂, we set, for κ ∈ 1

2Z,

Γ :=

{
SL2(Z) if κ ∈ Z,
Γ0(4) if κ ∈ 1

2Z\Z.

Let Mκ denote the space of real analytic functions f : H→ C satisfying weight κ ∈ 1
2Z modularity

for Γ, with the additional restriction that f is in Kohnen’s plus space whenever κ ∈ 1
2Z\Z. For

a formal definition of Kohnen’s plus space, see the comments preceding Lemma 2.2.

Theorem 1.1. As a function of z, Ψ̂(τ, z) is an element of Mk+ 1
2
, while as a function of τ it is

an element of M2−2k.

Remarks. (i) One can show that, as a function of z, Ψ̂ satisfies the growth conditions of a cusp
form, i.e. vk/2+1/4|Ψ̂(τ, z)| is bounded on H. However, the corresponding growth condition in τ
is not satisfied by Ψ̂.

(ii) Since the functions FD exhibit discontinuities along certain geodesics, it is somewhat
surprising that Ψ̂ is real analytic in τ .

The function Ψ̂ is furthermore naturally connected to Ω and indefinite theta functions
through the weight lowering operator Lw := Im(w)2(∂/∂w), which sends functions satisfying
weight κ modularity to functions which satisfy weight κ− 2 modularity. The theta functions we
require are

Θ1(τ, z) := iv
3
2

∑
D∈Z
Q∈QD

Q(τ, 1)k−1Qτe
−4πQ2

τve2πiDz

and (the projection into Kohnen’s plus space of) Shintani’s [Shi75] (nonholomorphic) classical
theta kernel

Θ2(τ, z) := 2iv
1
2 y−2k

∑
D∈Z
Q∈QD

Q(τ, 1)ke−4πQ
2
τve2πiDz.

Although these two theta functions have known modularity properties, we supply direct proofs
of this modularity in Lemma 2.2 for the reader’s convenience. Specifically, the function Θ1(τ, z)
is a weight k − 3

2 indefinite theta function for Γ0(4) in Kohnen’s plus space in z and satisfies
weight 2 − 2k modularity for SL2(Z) in τ . The function Θ2(−τ , z) is a weight k + 1

2 indefinite
theta function for Γ0(4) in Kohnen’s plus space in z and satisfies weight 2k modularity for SL2(Z)
in τ .

Theorem 1.2. (i) The image of the function Ψ̂ under the lowering operator in z equals

Lz
(
Ψ̂(τ, z)

)
= Θ1(τ, z). (1.3)
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(ii) The image of the function Ψ̂ under the ξ-operator in τ equals

ξ2−2k,τ
(
Ψ̂(τ, z)

)
=

−2i

β
(
k − 1

2 ,
1
2

)Ωk(τ,−z)−Θ2(−τ ,−z). (1.4)

Remark. Bruinier, Funke, and Imamoḡlu communicated to us that they obtained results
analogous to our Theorems 1.1 and 1.2 for the case k = 0 [BrFI2]. Their approach is based
on extending the theta lift considered in [BrFI1] to meromorphic modular functions.

This paper is organized as follows. In § 2 we use a theorem of Vignéras [Vig77] to supply a
direct proof of the modularity of Θ1 and Θ2. Section 3 is devoted to holomorphic projection, which
is a key ingredient in the proof of Theorem 1.1. Section 4 is centered around the convergence of
Ψ̂ and its real analyticity. The modularity of Ψ̂ is established in § 5.

2. Indefinite theta functions

For κ ∈ 1
2Z, a finite index subgroup Γ ⊆ SL2(Z), and a character χ, we say that a function

f : H → C is modular of weight κ for Γ with character χ if for every M =
(α β
γ δ

)
∈ Γ one has

f |κM = χ(δ)f . Here |κ is the usual weight κ slash operator.
To show the modularity of the indefinite theta functions which we encounter in this

paper, we will employ a result of Vignéras [Vig77]. For this, we define the Euler operator
E :=

∑n
i=1wi(∂/∂wi). As usual, we denote the Gram matrix associated to a nondegenerate

quadratic form q on Rn by A. The Laplacian associated to q is then defined by ∆ := 〈∂/∂w,
A−1(∂/∂w)〉. Here 〈·, ·〉 denotes the usual inner product on Rn.

Theorem 2.1 (Vignéras). Suppose that n ∈ N, q is a nondegenerate quadratic form on Rn,
L ⊂ Rn is a lattice on which q takes integer values, and p : Rn → C is a function satisfying the
following conditions.

(i) The function f(w) := p(w)e−2πq(w) times any polynomial of degree at most 2 and all
partial derivatives of f of order at most 2 are elements of L2(Rn) ∩ L1(Rn).

(ii) For some λ ∈ Z, the function p satisfies(
E − ∆

4π

)
p = λp.

Then the indefinite theta function

v−
λ
2

∑
w∈L

p(w
√
v)e2πiq(w)z

is modular of weight λ+ n/2 for Γ0(N) and character χ · χλ−4, where N and χ are the level and
character of q and χ−4 is the unique primitive Dirichlet character of conductor 4.

We use Theorem 2.1 to show the modularity of the theta functions Θ1 and Θ2. To state the
modularity, recall that Mκ denotes the space of real analytic functions f : H → C satisfying
weight κ ∈ 1

2Z modularity for Γ, with the additional restriction that f is in Kohnen’s plus space
whenever κ ∈ 1

2Z\Z. Here we say that a function satisfying weight `+ 1
2 modularity is an element

of Kohnen’s plus space if its Fourier expansion has the shape∑
(−1)`n≡0,1 (mod 4)

an(v)e2πinz.
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Lemma 2.2. (i) As a function of z, Θ1(τ, z) ∈ Mk− 3
2
. Furthermore, as a function of

τ , Θ1(τ, z) ∈M2−2k.

(ii) As a function of z, Θ2(−τ , z) ∈Mk+ 1
2
. As a function of τ , Θ2(−τ , z) ∈M2k.

Proof. Since the proofs are entirely analogous, we only show part (1). To prove the modularity
in z, we use Theorem 2.1 with q(a, b, c) = b2 − 4ac, L = Z3, and

p(a, b, c) = QτQ(τ, 1)k−1e−4πQ
2
τ .

One sees directly that

p
(√
va,
√
vb,
√
vc
)

= v
k
2QτQ(τ, 1)k−1e−4πQ

2
τv.

We next note that
|Q(τ, 1)|2 = Q2

τy
2 +Dy2. (2.1)

It is then straightforward to show that

D + 2Q2
τ =

2

y2
|Q(τ, 1)|2 −D (2.2)

is positive definite. From this, one can easily verify that condition (i) of Theorem 2.1 is satisfied.
A straightforward calculation yields

E(p(a, b, c)) =
(
k − 8πQ2

τ

)
p(a, b, c)

and
∆(p(a, b, c)) = 4π

(
3− 8πQ2

τ

)
p(a, b, c).

Thus λ = k− 3 in Theorem 2.1. This gives that Θ1(τ, z) is an indefinite theta function of weight
k − 3

2 for Γ0(4). Since k − 2 is even, one sees that the plus space condition is clearly satisfied
for Θ1.

To prove the modularity in the τ variable, we directly apply translation and inversion. By
making the change of variables b → b + 2a and c → a + b + c, term by term comparison shows
that

Θ1(τ + 1, z) = Θ1(τ, z).

Similarly, the change of variables a→ c, b→ −b, and c→ a implies that

Θ1

(
−1

τ
, z

)
= τ2−2kΘ1(τ, z). 2

3. Holomorphic projection

In this section we introduce the holomorphic projection operator and investigate some of its
basic properties. In the integer weight case, these properties were first proven by Sturm [Stu80]
and a good overview may be found in [Zag92, Appendix C]. For a translation invariant function
f : H→ C we write its Fourier expansion as

f(z) =
∑
r∈Z

cr(v)e2πirz. (3.1)

We formally define the weight κ holomorphic projection of f by

πκ(f)(z) := πκ,z(f)(z) :=
∑
r∈N

cre
2πirz,
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where

cr :=
(4πr)κ−1

Γ(κ− 1)

∫ ∞
0

cr(t)e
−4πrttκ−2 dt. (3.2)

Here Γ(s) is the usual gamma function.

It is useful to have the following reformulation of the holomorphic projection operator.

Lemma 3.1. If f : H→ C is a translation invariant function, then

πκ(f)(z) =
(κ− 1)(2i)κ

4π

∫
H

f(τ)yκ

(z − τ)κ
dx dy

y2
, (3.3)

for every 1 < κ ∈ 1
2Z for which the right-hand side of (3.3) converges absolutely.

Remark. In the case where κ ∈ Z, the integral in Lemma 3.1 appears in the proof of the trace

formula for the Hecke operators established in [Zag76].

Proof. Using the fact that f is translation invariant, we rewrite the integral on the right-hand

side of (3.3) as ∫ ∞
0

yκ−2
∫ 1

0
f(x+ iy)

∑
n∈Z

1

(z − x+ iy + n)κ
dx dy.

After inserting the Fourier expansion of f , the result follows by a special case of the Lipschitz

summation formula [Lip89], which yields

∑
n∈Z

1

(w + n)κ
=

(−2πi)κ

Γ(κ)

∑
n∈N

nκ−1e2πinw (w ∈ H). 2

We henceforth extend the definition of the holomorphic projection operator to be the right-

hand side of (3.3) for every (not necessarily translation invariant) function f for which the

integral converges absolutely. Note that the image of any such function is clearly holomorphic

by either definition of the holomorphic projection operator. Indeed, the holomorphic projection

operator acts trivially on holomorphic functions.

Lemma 3.2. If f : H→ C is holomorphic and the right-hand side of (3.3) converges absolutely,

then

πκ(f) = f.

Proof. We follow the proof of Proposition 1 in [Kli90, § 6]. We make the change of variables
ζ = (τ − z)/(τ − z) in (3.3) to get

πκ(f)(z) =
κ− 1

4π

∫
H
f(τ)

(
2iy

z − τ

)κ dx dy
y2

=
κ− 1

π

∫
B1

f̃(ζ)
(
1− |ζ|2

)κ−2
dζ1 dζ2,

where ζ = ζ1 + iζ2, B1 := {ζ ∈ C | |ζ| < 1} and

f̃(ζ) = (1− ζ)−κf

(
z − ζz
1− ζ

)
.
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The function f̃ is holomorphic on B1 since f is holomorphic on H. Using polar coordinates
ζ = Reiϑ, we get

πκ(f)(z) =
κ− 1

π

∫
B1

f̃(ζ)
(
1− |ζ|2

)κ−2
dζ1 dζ2

=
κ− 1

π

∫ 1

0
R(1−R2)κ−2

(∫ 2π

0
f̃
(
Reiϑ

)
dϑ

)
dR.

Using Cauchy’s integral formula we immediately see that, for 0 6 R < 1,

1

2π

∫ 2π

0
f̃
(
Reiϑ

)
dϑ = f̃(0) = f(z),

and so

πκ(f)(z) = f(z)(κ− 1)

∫ 1

0
2R
(
1−R2

)κ−2
dR = f(z). 2

An easy change of variables in (3.3) immediately implies that holomorphic projection
commutes with the weight κ slash operator.

Lemma 3.3. If the right-hand side of (3.3) converges absolutely for κ ∈ 1
2Z, then for every

M ∈ SL2(Z),

πκ(f)|κM = πκ(f |κM).

Combining Lemmas 3.1 and 3.3 yields the following special case.

Lemma 3.4. If |f(z)|vr is bounded on H and κ ∈ 1
2Z satisfies κ > r + 1 > 1, then for every

M ∈ SL2(Z),

πκ(f)|κM = πκ(f |κM). (3.4)

Moreover, |πκ(f)(z)|vr is bounded on H.

Proof. Making the change of variables x → x(y + v) + u and then y → yv, we may bound the
integral of the absolute value by∫ ∞

0

yκ−2

(1 + y)κ−1

∫ ∞
−∞

|f(xv(1 + y) + u+ ivy)|
(x2 + 1)

κ
2

dx dy

� v−r
∫ ∞
0

yκ−r−2

(1 + y)κ−1
dy

∫ ∞
0

1

(x2 + 1)
κ
2

dx. (3.5)

Here we have used the assumed bound for f . The integral over x converges for κ > 1 and the
integral over y converges for κ > r + 1 > 1. Lemma 3.3 now yields (3.4), while (3.5) further
implies that |πκ(f)(z)|vr is bounded on H. 2

The next proposition constitutes the main step used to prove the modularity of Ψ̂ as a
function of z claimed in Theorem 1.1.

Proposition 3.5. Suppose that f : H→ C is a translation invariant function for which |f(z)|vr
is bounded on H and κ ∈ 1

2Z satisfies κ > r+ 1 > 1. If πκ(f) = 0 and Lz(f) is modular of weight
κ− 2 for Γ ⊆ SL2(Z), then f is modular of weight κ for Γ.

Proof. Since Lz commutes with the slash operator, the modularity of Lz(f) implies that for
M ∈ Γ,

Lz(f |κM − f) = Lz(f)|κ−2M − Lz(f) = 0.
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Thus,
f |κM − f

is holomorphic. Hence by Lemma 3.2,

πκ(f |κM − f) = f |κM − f.

However, combining Lemma 3.4 with the fact that πκ(f) = 0 then yields

0 = πκ(f)|κM − πκ(f) = πκ(f |κM − f) = f |κM − f. 2

4. Convergence and singularities of Ψ̂

We first prove absolute convergence of Ψ̂. The following lemma proves useful for this purpose as
well as providing the growth conditions necessary to apply holomorphic projection in the next
section.

Lemma 4.1. Suppose that Q+ is a positive definite ternary quadratic form and v > 0. Then the
sum

vk/2+1
∑

a,b,c∈Z
|aτ2 + bτ + c|k−1e−2πQ+(a,b,c)v (4.1)

converges absolutely and is bounded as a function of v.

Remark. This lemma can be proven more generally with an arbitrary number of variables and
an arbitrary homogeneous polynomial. Without a precise reference, we provide a proof for the
special case required in this paper. The general case would follow by the same argument, but we
choose to only include this case to clarify the exposition for the reader.

Proof. We first note that
|aτ2 + bτ + c| �τ |a|+ |b|+ |c|.

Furthermore, since Q+ is positive definite, there exists a constant δ > 0 such that

2πQ+(a, b, c) > δ
(
a2 + b2 + c2

)
.

Therefore, (4.1) can be bounded by

v
k
2
+1

∑
a,b,c∈Z

(|a|+ |b|+ |c|)k−1e−δ(a2+b2+c2)v.

By the binomial theorem, it suffices to bound sums of the type∑
a,b,c∈N0

a`1b`2c`3e−δ(a
2+b2+c2)v

with `1 + `2 + `3 = k − 1. Using [Zag06, Proposition 3], one obtains, for v → 0,∑
n∈N

n`e−δn
2v = v−

`
2

∑
n∈N

(n
√
v)`e−δ(n

√
v)2

∼ v−
1
2
(`+1)

∫ ∞
0

w`e−δw
2
dw � v−

1
2
(`+1).

Combining the above bound with the obvious exponential decay of (4.1) as v →∞ then yields
the claim of the lemma. 2

Proposition 4.2. The sums defining the two summands Ψ and Ψ∗ of Ψ̂ in (1.2) converge
absolutely.
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Proof. By [BKK12, (4.6) and (4.11)], one easily deduces that FD converges absolutely and grows

at most polynomially as a function of D. Therefore Ψ converges absolutely.

We next move to showing the absolute convergence of Ψ∗. By the well-known bound

Γ
(
1
2 ; r
)
� e−r (r > 0),

one obtains ∑
a,b,c∈Z

|Q(τ, 1)|k−1Γ
(

1

2
; 4πQ2

τv

)
e−2πDv �

∑
a,b,c∈Z

|Q(τ, 1)|k−1e−2πv(D+2Q2
τ ). (4.2)

However, (2.2) is positive definite, and hence Lemma 4.1 implies the absolute convergence of Ψ∗.

2

We next rewrite Ψ̂ in terms of other special functions. In order to do so, we fix τ0 = x0 + iy0
∈ H. For r ∈ R, we use the Gauss error function

erf(r) :=
2√
π

∫ r

0
e−t

2
dt

to define

gk(r) :=
1

Γ
(
k − 1

2

) ∫ ∞
0

erf
(
rt

1
2
)
e−ttk−

3
2 dt.

Furthermore, we formally define

Ψ1(τ, z) := −
∑
D∈Z
Q∈QD

Q(τ, 1)k−1(sgn(Qτ0)− erf(2Qτ
√
πv))e2πiDz (4.3)

and

Ψ2(τ, z) :=
∑
D>0
Q∈QD

Q(τ, 1)k−1
(

sgn(Qτ0)− gk
(
Qτ√
D

))
e2πiDz. (4.4)

We then rewrite Ψ̂ in the following lemma.

Lemma 4.3. The sums Ψ1 and Ψ2 are absolutely convergent and

Ψ̂ = Ψ1 + Ψ2. (4.5)

Before proving Lemma 4.3, we first rewrite gk.

Lemma 4.4. We have

gk(r) = sgn(r)− 2

β
(
k − 1

2 ,
1
2

) sgn(r)ψk

(
1

1 + r2

)
.

Proof. Using the fact that

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

we compute

g′k(r) =
2

β
(
k − 1

2 ,
1
2

)
(1 + r2)k

. (4.6)
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Moreover gk(0) = 0 since erf(0) = 0. Thus

gk(r) =
2 sgn(r)

β
(
k − 1

2 ,
1
2

) 2 sgn(r)

β
(
k − 1

2 ,
1
2

) ∫ |r|
0

1

(1 + t2)k
dt.

Making the change of variables t→
√

1/t− 1 easily gives the claim of the lemma. 2

Proof of Lemma 4.3. First recall that

erf(
√
πt) = sgn(t)

(
1− 1√

π
Γ

(
1

2
;πt2

))
. (4.7)

By Proposition 4.2 the function Ψ̂ converges absolutely. We add

Ψ3(τ, z) :=
∑
D∈Z
Q∈QD

(sgn(Qτ0)− sgn(Qτ ))Q(τ, 1)k−1e2πiDz (4.8)

to Ψ and subtract it from Ψ∗. We then compare the Dth Fourier coefficient (with respect to e2πiu)
on both sides of (4.5). Combining (4.7) and Lemma 4.4, it remains to show that Ψ3 converges
absolutely and that whenever D 6 0,

sgn(Qτ ) = sgn(Qτ0). (4.9)

To show absolute convergence, we rewrite (4.8) in the notation of [Zwe02, Lemma 2.6] and then
apply Lemma 4.1. We set q(a, b, c) = b2 − 4ac, c1 = (−1, 2x,−|τ |2), and c2 = (−1, 2x0,−|τ0|2).
Denoting the bilinear form associated to q by B(u1, u2) = q(u1+u2)−q(u1)−q(u2), one computes
for w = (a, b, c):

q(c1) =−4y2 < 0,

q(c2) =−4y20 < 0,

B(c1, w) = 4yQτ ,

B(c2, w) = 4y0Qτ0 ,

B(c1, c2) =−4
(
|τ0|2 − 2xx0 + |τ |2

)
< 0.

By [Zwe02, Lemma 2.6], the quadratic form

Q+(w) := q(w) +
B(c1, c2)

4q(c1)q(c2)−B(c1, c2)2
B(c1, w)B(c2, w) (4.10)

is positive definite. Moreover, [Zwe02, (2.13)] implies that∑
a,b,c∈Z

|Q(τ, 1)|k−1|sgn(Qτ0)− sgn(Qτ )|e−2πq(a,b,c)v �
∑

a,b,c∈Z
|Q(τ, 1)|k−1e−2πQ+(a,b,c)v. (4.11)

Since Q+ is positive definite, Lemma 4.1 implies that the above sum converges.
To obtain (4.9), we note that since Q+(w) is positive definite, for every w 6= 0 with q(w) 6 0

we have
B(c1, c2)

4q(c1)q(c2)−B(c1, c2)2
B(c1, w)B(c2, w) > −q(w) > 0.

Noting that B(c1, c2) < 0 and, for τ 6= τ0,

4q(c1)q(c2)−B(c1, c2)
2 = −16

(
(y20 − y2)2 + 2(x− x0)2(y20 + y2) + (x− x0)4

)
< 0,

we have
B(c1, w)B(c2, w) > 0.
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Thus we conclude that

sgn(Qτ ) = sgn(B(c1, w)) = sgn(B(c2, w)) = sgn(Qτ0). 2

5. Modularity and holomorphic projection

In this section, we prove Theorems 1.1 and 1.2. As indicated before Proposition 3.5, a key step
in determining modularity is to use holomorphic projection. In order to do so, we first show that
Ψ1 satisfies the growth conditions necessary to apply Lemma 3.4.

Lemma 5.1. The function vk/2+1|Ψ1(τ, z)| is bounded.

Proof. Since Ψ1 = Ψ∗−Ψ3, it suffices to bound Ψ3 and Ψ∗. By (4.11) and Lemma 4.1, Ψ3 may be
estimated against a constant times v−k/2−1. We next bound Ψ∗ by (4.2). Since (2.2) is positive
definite, Lemma 4.1 concludes the proof. 2

By Lemma 5.1, we may now apply holomorphic projection in z to Ψ1. If the dependence on
τ is clear, then we suppress it in what follows. We write

Ψ1(z) =
∑
D∈Z

cD(v)e2πiDz,

where
cD(v) := −

∑
Q∈QD

Q(τ, 1)k−1(sgn(Qτ0)− erf(2Qτ
√
πv)).

Lemma 5.2. One has that
Ψ̂ = Ψ1 − πk+ 1

2
(Ψ1). (5.1)

Thus, in particular,
πk+ 1

2

(
Ψ̂
)

= 0.

Proof. By (4.5), the lemma is equivalent to the statement that

πk+ 1
2
(Ψ1) = −Ψ2.

By Lemmas 5.1 and 3.4, we may apply holomorphic projection to Ψ1 since k > 3. Using the
definition (3.2) of holomorphic projection, we compute

πk+ 1
2
(Ψ1)(z) =

∑
D∈N

cDe
2πiDz

with

cD =
(4πD)k−

1
2

Γ(k − 1
2)

∫ ∞
0

cD(v)e−4πDvvk−
1
2
dv

v

=−(4πD)k−
1
2

Γ(k − 1
2)

∑
Q∈QD

Q(τ, 1)k−1
∫ ∞
0

(sgn(Qτ0)− erf(2Qτ
√
πv))e−4πDvvk−

1
2
dv

v
.

We consider both integrals separately. The first summand is evaluated immediately by using the
integral representation of the gamma function and the result follows by the definition of gk. 2

We now prove Theorem 1.2.
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Proof of Theorem 1.2. Note that by Lemma 5.2,

Lz
(
Ψ̂(τ, z)

)
= Lz(Ψ1(τ, z)),

because πk+ 1
2
(Ψ1) is holomorphic as a function of z. Hence (1.3) follows directly by

d

dr
erf(r) =

2√
π
e−r

2
.

In order to prove (1.4), we use Lemma 4.3 and apply Lτ to Ψ1 and Ψ2. Using the fact that

Lτ (Qτ ) =
1

2i
Q(τ, 1), (5.2)

one obtains
Lτ (Ψ1(τ, z)) = −y2kΘ2(τ, z).

Using (4.6) and (5.2), a short calculation using (2.1) shows that

Lτ
(
Ψ2(τ, z)

)
=

iy2k

β
(
k − 1

2 ,
1
2

)Ω(−τ , z). 2

We now use the modularity of Θ1 proven in Lemma 2.2(1) to obtain Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.2(1), we have that

Lz(Ψ) ∈Mk− 3
2
.

Furthermore, by Lemma 5.2, we know that

πk+ 1
2

(
Ψ̂
)

= 0.

Now note that Lemma 3.4 implies that πk+ 1
2
(Ψ1) satisfies the same growth conditions as Ψ1.

Hence Lemma 5.1 together with (5.1) implies that Ψ̂ satisfies the growth conditions necessary
to apply Proposition 3.5 and we conclude that Ψ̂ is modular of weight k+ 1

2 in z. Recalling that
k is even, a direct inspection of the Fourier expansion yields that Kohnen’s plus space condition
is satisfied.

The modularity in τ follows by the same changes of variables given in the proof of Lemma 2.2.
To complete the proof, we note that the function Ψ̂ is real analytic due to the definitions (4.3)
and (4.4) in the representation (4.5). 2
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BrFI1 J. Bruinier, J. Funke and Ö. Imamoḡlu, Regularized theta liftings and periods of modular
functions, J. Reine Angew. Math., to appear.
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