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Differential item functioning (DIF) is a standard analysis for every testing company. Research has
demonstrated that DIF can result when test itemsmeasure different ability composites, and the groups being
examined forDIF exhibit distinct underlying ability distributions on those composite abilities. In this article,
we examine DIF from a two-dimensional multidimensional item response theory (MIRT) perspective. We
begin by delving into the compensatory MIRT model, illustrating and how items and the composites they
measure can be graphically represented. Additionally, we discuss how estimated item parameters can vary
based on the underlying latent ability distributions of the examinees. Analytical research highlighting
the consequences of ignoring dimensionally and applying unidimensional IRT models, where the two-
dimensional latent space is mapped onto a unidimensional, is reviewed. Next, we investigate three different
approaches to understanding DIF from a MIRT standpoint: 1. Analytically Uniform and Nonuniform DIF:
When two groups of interest have different two-dimensional ability distributions, a unidimensional model
is estimated. 2. Accounting for complete latent ability space: We emphasize the importance of considering
the entire latent ability space when using DIF conditional approaches, which leads to the mitigation of
DIF effects. 3. Scenario-Based DIF: Even when underlying two-dimensional distributions are identical
for two groups, differing problem-solving approaches can still lead to DIF. Modern software programs
facilitate routine DIF procedures for comparing response data from two identified groups of interest. The
real challenge is to identify why DIF could occur with flagged items. Thus, as a closing challenge, we
present four items (Appendix A) from a standardized test and invite readers to identify which group was
favored by a DIF analysis.

Key words: multidimensional IRT, differential item functioning, compensatory and noncompensatory
MIRT models.

1. Introduction

Dimensionality has long posed challenges for testing practitioners attempting to model test
response data. Most tests inherently measure different composites of requisites skills outlined in
their test specifications. It is important to understand that response data represent an interaction
between examinees and the test items. While the resulting response data may appear unidimen-
sional for one group of examinees, it could manifest as multidimensional for another group. For
example, consider a math test that includes story problems that require both reading and math
skills to answer correctly. If the test is written at a 4th-grade reading level and administered to
fourth graders—some of whom may not read at the expected level—their responses may reflect
deficits in either reading or math skills or both. However, when the same test is given to fifth
graders who read at or above the fourth-grade level, the items should primarily differentiate based
on math skills rather than reading abilities. Thus, due diligence demands that test practitioners
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Table 1.
A compilation of seminal DIF methodology.

Method Seminal research

Chi-square using IRT parameter estimates Lord (1980), Cohen et al. (1993)
Hierarchical general linear modeling Williams & Beretvas (2006)
Invariance alignment Muthen & Asparouhov (2018)
IRT ICC area difference Raju (1988), Raju et al. (1995), Flowers et al. (1999)
Likelihood ratio test Thissen et al. (1988)
Logistic Regression Clauser and Mazzor (1998), Swaminathan & Rogers (1990)
Mantel–Haenszel (raw score) Holland et al. (1988)
Propensity Scoring Liu et al. (2016)
Random DIF De Boeck (2008)
Regularization techniques Bauer et al. (2020), Huang (2018)
Residual-based DIF Lim et al. (2022)
SEM using MIMIC modeling Fleishman and Lawrence (2003)
SIBTEST (raw score) Shealy & Stout (1993a,b)
Variance Estimators Camilli & Penfield (1997), Penfield & Algina (2006)

thoroughly examine the dimensionality of the response data for individual subgroups as well as
the entire test-taking population.

If the data are multidimensional, practitioners need to consider how the skills or subsequent
scoresmaybemisrepresented if the data aremodeled as unidimensional. Fitting a two-dimensional
model can help the practitioner understand substantively what composites are being measured
and if the potential for differential item functioning (DIF) exists

DIF is a standard post-administration subgroup analysis conducted to ensure that test items
do not favor one identifiable subgroup (e.g., males, females, whites, blacks, or Hispanics) when
compared conditionally to another. The goal is to confirm test fairness. Over the years, many
different approaches have been developed to detect DIF (Table 1). However, the challenge lies
not merely in statistically identifying when items significantly favor one group over another, but
rather in understanding the underlying reasons for why the DIF occurs.

Kok (1988), Ackerman (1992), Camilli (1992), and Shealy and Stout (1993a; 1993b have
hypothesized that DIF can occur when items inadvertently measure invalid skills, and the two
groups being examined have different ability distributions related to these invalid skills. These
researchers described DIF from a two-dimensional perspective as

εθ2 [Pi,Ref (u = 1|θ1, θ2)|θ1] �= εθ2 [Pi,Foc(u = 1|θ1, θ2)|θ1] (1)

where

– Pi,Ref and Pi,Foc represent the probability of correct response for the Reference and Focal
groups to item i,

– θ1represents the valid skill that is intended to be measured by the test publisher, and
– θ2 represents an invalid or unintended-to-be-measured-skill (e.g., speededness, test-

wiseness, reading ability on a test designed to measure mathematics ability) that affects
the correctness of an examinee’s response.

Even though the Reference and Focal group examinees have the same θ1 -level of proficiency,
DIF occurs because the θ2-latent ability distributions for the two groups are different. Equation
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(1) can only hold if

GRef (θ2|θ1) = GFoc (θ2|θ1) , (2)

where GRef and GFoc denote the conditional distribution of θ2 given fixed values of θ1. That is, for
DIF to occur itemsmustmeasure invalid skills and the two groups of interest being examinedmust
differ in their ability distributions on the invalid skill. It must be a “perfect storm,” both situations
must occur. If no invalid skills are being measured, then ability differences on any invalid skill are
moot and DIF should not occur. Likewise, if a test contains items that measure invalid skills, but
the two groups of interest have identical underlying distributions on these invalid skills, no DIF
should occur. Specifically, DIF manifests itself as a function of differences in underlying ability
distributions.

While most DIF researchers simulate DIF by changing the parameters for one group versus
another (and never stating why), our approach focuses on maintaining identical generating item
parameters for each group., we manipulate the underlying ability distributions ( i.e., GRef and
GFoc), resulting in distinct parameter estimates for each group. This perspective emphasizes the
interaction between the skill composites being measured and the underlying ability distributions
of the examinees. Consequently, it will be essential to focus initially on the two-dimensional IRT
model and review relevant notation and characteristics that do not occur in the unidimensional
IRT model.

In this address, we will build upon the five research studies cited above, and illustrate how
the multidimensional nature of a test can be used to comprehend and explore the underlying
mechanisms of DIF using multidimensional item response theory (MIRT). Our analyses assume
that testing practitioners have already conducted dimensionality assessments of their test response
data (e.g., using scree plots (Cattell, 1966) or specialized software such as DETECT (Zhang
& Stout, 1999) or DIMTEST (Stout, 1987) ) and in concert with test specifications, determined
that their response data exhibit a two-dimensional structure. Subsequently, two-dimensional item
response theory item parameters have been estimated.

The format for this article is as follows. First, a comprehensive review of the two-dimensional
compensatoryMIRTmodel is provided. This review includes an examination of how items can be
graphically represented in a two-dimensional latent ability plane by detailing response surfaces,
contour plots, item vector plots, and conditional centroid plots. Item vector plots provide insight
into the range of composites being measured and assist testing practitioners in providing validity
evidence regarding the test’s intended-to-be-measured skills. Items that measure the intended
skills identified in a test’s specifications typically lie in an identifiable “validity sector.”

Following this, the work of Wang (1985) and Camilli (1992) is explained, focusing on the
analytical derivation of the reference composite (RC) resulting from a unidimensional calibration
of two-dimensional data. Using the RC direction, a centipede plot is created to illustrate how
examinees’ latent abilities (θ1, θ2) are mapped onto the unidimensional IRT scale.

Next, Camilli’s (1992) work is examined, concentrating on the analytical derivation of uni-
dimensional two-parameter logistic (2PL) IRT item parameter estimates when the underlying
generating model is the two-dimensional compensatory MIRT model. Example results using
these derivations are demonstrated for a hypothetical 19-item test specifically designed to show-
case how changes in an examinee group’s underlying ability distribution affect the estimation of
â and b̂.

These explanations provide the terminology and graphical conceptualization as background
for three studies that explore how dimensionality and disparate underlying latent ability distri-
butions can influence DIF results. The first study adopts a strictly analytical approach, while the
final two studies utilize two DIF statistics that condition on the number correct scores: Mantel
–Haenszel (Holland et al., 1988) and Sibtest (Shealy & Stout, 1993a,b) . Simulated datasets
are created for illustrative purposes to emphasize how DIF can occur. The article concludes with
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a challenge based on DIF analyses conducted on standardized test data. Readers are encouraged
to inspect four items and identify the group indicated as significantly favored.

2. The Compensatory Two-Dimensional IRT Model

Before exploring MIRT models, it is best to examine the 2PL IRT model, which is widely
used in measurement and standardized testing. This model describes the probability of a correct
response for an examinee j , with latent ability θ j , responding to an item i , with difficulty and
discrimination values denoted by the parameters bi and ai, respectively. The model is written as

P
(
ui j = 1|θ j , ai , bi

) = 1.0

1.0 + e−1.7ai (θ jk−bi )
(3)

It should be noted that θ and b are on the same metric, (usually ranging from -3 to +3)
and b equals the θ value for which thep = .5. Graphically the model is represented as an item
characteristic curve (ICC), where the b is the θ value corresponding to the point of inflection and
a corresponds to 2.35 times the slope of the ICC at this point.

McKinley and Reckase (1982) extended the unidimensional 2PL to the multidimensional
case, M2PL, which can be written as

P
(
ui j = 1|θ j , ai , di

) = 1.0

1.0 + e−1.7(
∑m

k=1 aikθ jk+di )

where ai is a vector of discrimination parameters, di is a scalar difficulty parameter for item
i, and θ j is a vector of ability parameters for person j . It is important to note that di is added in the
logit, so unlike in the 2PL model, negative values represent difficult items. For each dimension,
there is a discrimination parameter and a latent ability. However, regardless of the number of
dimensions, there is only one difficulty parameter because in this model a difficulty parameter for
each dimension is indeterminate, i.e., there is an unlimited number of ai and di values that yield
the same probability of correct response.

To find equivalent counterparts to the unidimensional discrimination and difficulty they made
the following substitution: a point in the ability space is redefined as:

θ j = ζ j cosα j ,

where ζj is the distance from the origin to the point, and αj is the angle created from the point to
the j th axis. Using this trigonometric substitution, the model can then be written as

P
(
ui j = 1|ζ j , ai ,α j , di

) = 1.0

1.0 + e−(ζ j
∑m

k=1 aik cosα jk+di)
.

To find the location of the steepest slope in the α-vector direction, it is necessary to compute the
second derivative with respect to ζj and set it equal to zero. Like the unidimensional 2PL model,
the maximum slope in αj direction occurs when Pi j =.5. McKinley and Reckase (1982) defined
the multidimensional discrimination analog to the unidimensional a-parameter for item i as

MDISC = ai =
√∑m

k=1
a2ik, (4)
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Figure 1.
Graphic representation of the response surface for the compensatory model and its corresponding contour.

and the M2PL parameter corresponding to the unidimensional difficulty parameter, bi , can be
written as:

MDIFF = bi = −di√∑m
k=1 a

2
ik

= −di
ai

. (5)

For this presentation, the focus will be on the two-dimensional case and the probability of
correct response to item i is expressed as

P
(
ui j = 1|θ1 j , θ2 j , a1i , a2i , di

) = 1.0

1.0 + e−1.7(a1i θ1 j+a2i θ2 j+di )
. (6)

Graphically, this function represents an item response surface. For an item i , we can inspect the
surface plot or the contour plot to gain further insight. Using the software program, Mathematica
(Wolfram, 2020) allows one to manipulate the item parameters and observe changes in the
response surface. Such a Mathematica plot is shown in Fig. 1. The plot is configured to enable the
user to change the item parameters using the parameter sliding bars on the left of the plot. The
surface plot is also rotatable for viewing from different perspectives.

Some researchers refer to the M2PL as “partially compensatory,” because the abilities are
additive in the logit, allowing for compensation (i.e., being high on one ability can “compensate”
for being low on the second ability) can occur. As shown in Fig. 2, the equiprobability contour plot
for an item with M2PL parameters a1 = a2 = 1.0 and d = .0, two examinees, A and B, having
exact opposite ability profiles such as high on θ1 and low on θ2 versus low on θ1 and high on θ2

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 11:30:44, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


TERRY A. ACKERMAN, YE MA 9

Figure 2.
Contour plot of compensatory model item with a1 = a2 = 1.0 and d=.0.

can have the same probability of correct response. This occurs because of the additive nature of
the logit of the M2PL model. When a1 = a2, p(θ1i , θ2i) = p(θ1 j , θ2 j) for all examinees i and
j where the sum θ1 + θ2 equals the same value (e.g., p(θ1 = 2, θ2 = -2)= p(θ1 = 0, θ2 = 0)
= p(θ1 = -2, θ2 = 2). Note, that the slopes of the contours are all equal to -a1/a2, and all (θ1,
θ2) combinations such that θ2= (-a1/a2)(θ1) will have the same probability of correct response
or lie on the same equiprobability contour. Furthermore, when a1 = 0 or a2 = 0 there is no
compensation and the model is equivalent to the 2PL unidimensional model. That is, when a2 =
0, p(θ1, θ2) = p(θ1) and when a1 = 0, p(θ1, θ2) = p(θ2).

2.1. Item Vector Representation

The drawback that occurs in the representation of M2PL two-dimensional items is that only
one surface or contour can be examined at a time. This problem can be solved by representing
items in the two-dimensional latent ability plane as a vector. This is accomplished using the
following guidelines (Reckase, 2009) :

• All vectors lie on lines that pass through the origin.
• Vectors can lie only in the first and third quadrants because the a-parameters are constrained

to be positive.
• Vectors representing easy items lie in the third quadrant; those representing difficult items

lie in the first quadrant. (Note that if a1 is negative the vector will lie in the second quadrant
and if a2 is negative the vector will lie in the fourth quadrant.)

• The tail of the vector lies on the p =.5 equiprobability contour and the vector is always
orthogonal to this contour.

Using the derived information for multidimensional discrimination and difficulty, these vec-
tors are created where the length of the vector indicates how discriminating the item is equal to
MDISC (4). The tail of the vector lies on the p = .5 equiprobability contour. The signed distance
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Figure 3.
Illustration of the direction of maximum slope for a compensatory item projected onto the latent ability plane to form its
item vector.

from the origin perpendicular to this contour is the unidimensional analog of difficulty, MDIFF
(5). The angular direction from the θ1-axis indicates the (θ1, θ2)-composite of ability that the item
i is best measuring:

αi = cos−1
( a1i
MDISC

)
.

As illustrated in Fig. 3, vectors are projections, indicating the composite direction of maximum
discrimination or maximum slope onto the latent ability plane. As is shown, the corresponding
contour with the response surface over the third quadrant is removed so that the projected item
vector is illustrated in relationship to the underlying contour surface. The greater the discrimination
of the item, the steeper the response surface, causing the corresponding contours to become closer
together and the greater the length of the vector. Vectors of easy items appear in the third quadrant
and vectors representing difficult items are in the first quadrant.

Angle item vectors differ by only a few degrees these nuances cannot be attributed solely to
phrasing or vocabulary. Itemwriters and psychometricians need to examine the content sectors that
contain different item contents or test specifications. These sectors help determine which (θ1, θ2)-
composites an itemmeasures best (Ackerman, 1991) . Ultimately, these content sectors will help
in understanding or defining the θ1 and θ2 latent abilities and defining an imposed unidimensional
score scale.

Item vectors are often color-coded based on their content classification. Ideally, vectors with
the same content should cluster in a narrow content sector, indicating that they are measuring
similar (θ1, θ2)-composites. For example, consider a standardized graduate admissions test with
101 items. In Fig. 4, observe how different content areas occupy unique sectors. The one vector
in quadrant two had a negative a2 value.

2.2. The Validity Sector

Ackerman (1992) defined the validity sector as the sector containing vectors of items mea-
suring practitioner-determined valid composites. Unlike the 101-item test shown above, most
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Figure 4.
Item vectors for a standardized 101-item test with three content areas.

standardized tests yield vectors that can be enclosed by a 30◦–45◦ degree sector as illustrated in
Fig. 5. In this figure, the green item vectors (and red dotted RC) are enclosed in a 45◦ validity
sector and are believed to be vectors of items measuring the valid (θ1, θ2)-composites as described
in the test’s specifications. Items whose vectors (red) fall outside the validity sector should be
examined for DIF because they are likely measuring invalid or nuisance dimensions. DIF has
the potential to occur if the groups of interest differ in their distributions of underlying abilities
on these invalid skill composites. Ma et al. (2023) demonstrated that differences in multidimen-
sional latent ability distribution on the invalid dimension can result in DIF especially when items
measure primarily the invalid dimension. The insight gained from item vectors and the validity
sector can guide psychometricians in refining assessments, ensuring validity, and understanding
the intricate interplay of latent abilities.

2.3. Score Scale Consistency Using Conditional Centroids

Another way to understand how DIF can occur from a two-dimensional perspective is to
examine whether an imposed unidimensional score scale consistently represents the same (θ1,
θ2)-composite as one progresses across the observable score scale. When different parts of the
unidimensional score scale represent different skill composites, score scale consistency breaks
down.

For example, consider the 101-item test represents a dimensional scenario in which there is a
lack of score scale consistency. That is, the same (θ1, θ2)-composite is not being measured equally
well throughout the observable score range. To examine scale consistency, “centroid” plots can
be created to show (θ̄1, θ̄2) for each number correct observed score, x , (i.e., (θ̄1, θ̄2)|X = x). This
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Figure 5.
A validity sector enclosing item vectors (green) for a 60-item standardized test. Vectors outside the sector (red) are
measuring composites that could result in DIF. (Color figure online)

plot should be linear across the latent ability plane, indicating consistent measurement of (θ1,
θ2) across the scale. In the top illustration of Fig. 6, centroid plots for each content category are
graphed across the score range. The Analytic Reasoning tends to be linear representing primarily
differences in θ1. Logical Reasoning and Reading Comprehension represent differences in θ2, but
not consistently. However, the results of this test are reported as a single score. The lower figure
shows the centroid plot for the total test score scale. Scores in the range from 0 to 35 represent
differences in the θ1-ability. Scores in the range from 35 to 80 indicate differences in the θ2-ability.
Scores from 85 to 100 represent proficiency differences in the upper θ1-ability. Work by Strachan
et al. (2022) found that if there is a confounding of difficulty and dimensionality (e.g., easy items
measure one dimension and difficult items measure a second dimension) the composite may not
be linear.

Such inconsistency makes score interpretation and certain psychometric procedures such as
equating and computer adaptive testing pool development incredibly challenging. This variation
also affects DIF procedures that group examinees according to their number correct scores for
conditional analyses because different scores reflect different skills.

2.4. Reference Composite: Mapping a 2PL Scale in a Ttwo-Dimensional Latent Space

Wang (1985) demonstrated that when calibrating multidimensional data, the estimated uni-
dimensional 2PL model essentially combines latent abilities into a weighted composite known as
the reference composite (RC). The RC is key because it indicates the (θ1, θ2)-composite being best
measured by the unidimensional IRT θ -scale and the number correct score scale. It is important
to note that for, say a two-dimensional two-item test, the RC (θ1, θ2)-composite does not directly
correspond with the composite skills being measured by either of the two items. This has impor-
tant implications for how to substantiate or define the unidimensional scale for a test containing
two-dimensional items. The RC is a useful tool for demonstrating the parallelism of multiple two-
dimensional test forms. That is, after calibration and rescaling, the RCs of parallel forms should
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Figure 6.
Conditional centroid plots for each content category (top) and total test score (bottom).

align closely within measurement error and other constraints based on the test specification (e.g.,
cut score measurement precision, content constraints).

For the two-dimensional case, Wang (1985) determined that the RC is a function of the
L’A’AL matrix, where A is the n x 2 matrix of discrimination parameters for a given n-item test
and L is the Cholesky decomposition of the underlying θ1 − θ2 variance–covariance matrix, �.
The angle between the positive θ1-axis and the RC can be calculated as the arccosine of the first
element of the eigenvector associated with the larger of the two eigenvalues of the L’A’ALmatrix.

A simple example will help to clarify. Assume a two-item case where a1 = 1.3, a2 = .4 and
d = −1.2 for Item 1 and a1 =.4, a2 =1.3 and d = −1.2 are the parameters for Item 2. The
item vectors for Item 1 and Item 2 are, respectively 17.10◦ and 72.90◦ from the positive θ1-axis,
respectively. Assume further a group of examinees, Group A, whose two-dimensional underlying

ability is N

[(
0
0

)
,

(
1.0 .0
.0 .5

)]
and Group B’s underlying distribution is N

[(
0
0

)
,

(
.5 .0
.0 1.0

)]
.

The Cholesky decomposition of �A is

[
1.0 .0
.0 .7071

]
for both groups and the L’A’AL matrix is
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equal to

[
1.8500 .7353
.7353 .9250

]
. This matrix is negative definite. The eigenvalues of this matrix are

2.2562 and.5187 and the eigenvector that corresponds to the larger eigenvalue is

[−.8753
−.4835

]
. The

squared elements sum to 1.0, so this eigenvector can be considered as direction cosines. The
angle associated with the RC can be computed by taking the arccosine of the absolute value of
the elements since the L’A’AL matrix is negative definite. These calculations indicate that the
RC for the Reference group lies 28.91◦ from the positive θ1-axis. Similarly, the RC for the Focal
group lies 61.09◦ from the positive θ1-axis. Notice the angular difference between the RCs is
32.18◦, which is the angular between the red dashed RC and green dashed RC figure in Fig. 7.
The underlying joint and marginal distributions, RCs, and item vectors are also displayed in the
figure.

Trying to compare scores from different RCs can be problematic because it could result in
examinees being ordered differently on the two RCs. Ramsay (1990) and Junker and Stout (1991)
examined the effects of differential ordering in a DIF context. Even though DIF procedures that
condition upon the number correct score may not be sensitive to the dissimilar substantive inter-
pretation of the two RCs, they are sensitive to differential ordering. This situation is graphically
illustrated on the right in Fig. 7. In this diagram, two examinees, X and Y, would have one ordering
if they are in the Focal group and orthogonally mapped onto the RCFOC, but a reverse ordering if
they belong to the Reference group and are mapped onto RCREF.

In an attempt to overcome scalingproblems,DIFmethodologies use different approaches.DIF
analyses that use IRT methodology (Raju 1988) require that before comparing item characteristic
curves for Reference and Focal groups, the item parameters for one group must be rescaled
and placed on the other group’s scale. This can be accomplished using either a mean–mean or
mean–sigma rescaling (Kolen & Brennan, 2014) . It should be noted that these linking/rescaling
procedures apply optimally when the reference composites have identical composite directions.
They are designed to account formean and standard deviation scale differences that are established
in calibrating response data to fit a unidimensional model.

DIF Methodologies are not designed to compensate for scale differences that would occur
when scales represent different ability composites. The greater the angular separation between the
RCs, the less effective rescaling becomes. For example, consider an extremely unrealistic case. If
the RC for the Reference group is 10◦, the RC for the Focal group is 70◦, placing the Focal group
parameters on the Reference group’s scale would adjust primarily θ1 differences, but the Focal
group’s scale would primarily measure θ2. This problem is discussed further in Study 1 below.
Several researchers, including Li and Lissitz (2000) and Oshima et al. (2000), examined linking
from a multidimensional perspective which would align the RC’s for two distinct groups, before
adjusting for scale differences.

It should be further noted that the Mantel–Haenszel accomplishes rescaling by including the
studied item in the calculation of the total score. Sibtest calculations utilize a regression correction.
It is important to recognize that these rescaling techniques work optimally when the RC’s angular
directions are similar. Because the RC direction can vary for different content subsets of items,
Shealy and Stout (1993a,b) recommend that practitioners identify valid test items to ensure the
conditioning score (i.e., RC) represents a valid composite. As the number of items on a test
increases, (say > 40), the influence of any one item decreases. Usually, the RC lies within the
validity sector.

Additional research by Ackerman and Xie (2019) compared Camilli’s approach two other
two unidimensional approaches to explore how well they capture the representation of two-
dimensional latent ability space. Carlson (2017) and Strachan et al. (2020) conducted research in
which the RC is nonlinear when there is a confounding of difficulty and dimensionality. Addition-
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Figure 7.
RCs for twogroups having different underlying ability distributions based on a two-item test (left) and orthogonalmappings
upon the composites for two examinees, X and Y, (right).

Figure 8.
RCs for the 101-item test for the three subsections and the total test.

ally, Ma et al. (2023) evaluated the efficiency of DIF detection using both Camilli’s approach and
the projective IRT approach (Ip, 2010) when potential DIF items fell outside the validity sector.

The contour plot of the standardized 101-item test is displayed in Fig. 8. Within this plot are
the RCs for the three individual content areas, as well as the total test. The RCs align with the
direction of the sector containing content vectors. Interestingly, the wide angular range of the
content RCs results in curved contours for higher score categories, resembling patterns seen in
the noncompensatory model (10).

2.5. Centipede Plot: Graphically Mapping the Two-Dimensional IRT Latent Ability Space Onto
the Unidimensional IRT Scale

This RC enables one to create an interesting visualization of how the two-dimensional latent
ability plane gets mapped onto the unidimensional ability scale. This mapping can be illustrated
by a “centipede” plot. In this type of plot, the compensatory model (6) test characteristic curve
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Figure 9.
Two perspectives illustrating the mapping of the two-dimensional latent abilities onto the expected number correct score
scale.

is first drawn in the RC-direction. Then, vectors are drawn from the generated (θ1, θ2) to their
expected score, obtained using the estimated θ̂ . Figure9 displays two perspectives of a centipede
plot for a 40-item test: one from a side view and another from an overhead view. The vertical axis
represents the proportion correct true score. Vectors are displayed for a sample of 200 examinees.
It is informative to observe which (θ1, θ2)-combinations map onto the same proportion correct
true scores. This information helps psychometricians and test developers explore how regions of
the latent ability space with opposite (θ1, θ2)-profiles, (high, low) vs (low, high), get mapped onto
the same conditioning number correct score and thus will be in the same 2x2 contingency table
often used in DIF approaches such as the Mantel–Haenszel.

3. Analytically Estimating 2PL Item Parameters from a Two-Dimensional Latent Space

Although most tests are multidimensional, practitioners often fit unidimensional IRT models
to the response data. Camilli (1992) analytically determined how the unidimensional 2PL model
can be extracted from data where the true model is a two-dimensional model (6). The estimated
unidimensional IRT model can be expressed in terms of the two underlying factor scores as,

ευ2 [P(u = 1 |υ1, υ2)| υ1] =
∫ +∞

−∞
P (u = 1|υ1, υ2)G(υ2|υ1) dυ2, (7)

where ευ2 is the expected value of the unidimensional item response function anchored over
the factor score, υ1, the RC; υ2 is the second factor score which is orthogonal to υ1, the first factor
score, and G(υ2|υ1) is the underlying conditional distribution (Camilli, 1992, p.133). Using this
formulation, Camilli derived the formulas to calculate the unidimensional â and b̂ as

â j = a
′
jW1

√
2.89 + a

′
jW2W

′
2a j

(8)
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Figure 10.
Projected unidimensional ICC for a M2PL item with a1 = 1.5, a2 = 0, and d =.5, and a reference composite (RC) angle
of 45◦ yielding 2PL â = .73 and b̂ = −.47.

and

b̂ j=
d j − a

′
jμ

a jW1
. (9)

where a j is the two-dimensional discrimination vector for theM2PLmodel (4), d j is the difficulty
parameter for the M2PL model, W1 and W2 are the first and second standardized eigenvalues of

thematrix L
′
A

′
AL, whereA is thematrix of discrimination parameters for all the items on the test

and L
′
L is the Cholesky decomposition of the two-dimensional latent ability variance–covariance

matrix �. A visual representation using (7), (4), and (9) is illustrated in Fig. 10. For all items, the
unidimensional ICCs would lie in the RC plane.

Amore detailed graphical example for a projected ICC forM2PL itemwith a1 = 1.5, a2 = 0,
and d = .0, and a RC- angle of 45◦ and an underlying a bivariate normal with a mean vector of
{0,0}and the covariancematrix,�, as [{1,.4}, {.4,1}] yielding â = .73 and b̂ = −.47 is illustrated
in Fig. 10. In this figure, the components of Camilli’s formulation (7) are illustrated including the
translucent M2PL response surface, the contour of this surface, the RC (ν1), the second principal
component, ν2, and the estimated unidimensional 2PL ICCwith calculated p values (see values in
green) for v1 = {−2,−1, 0, 1, 2}. The complete calculations to derive these values are provided
in Appendix B.
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Figure 11.
Item vectors for a hypothetical 19-item test.

3.1. Illustration of Changes in a Two-Dimensional Latent Ability Distribution can Affect â and
b̂ Values Using Camilli’s Formulation

Using (6) and (7), one can observe how changes in the underlying two-dimensional distribu-
tion of an examinee population impact the direction of the RC and consequently affect estimated
a-parameters. As an item’s vector angle approaches the angle of the RC, the estimated unidimen-
sional â-parameter increases. Conversely, when an item’s vector angle deviates from the RC’s
angular direction, the estimated â becomes smaller. For illustrative purposes, consider a generated
test of 19 items. The vectors of these items span angles in 5◦ increments from 0◦ to 90◦. Assume
all items have an MDISC value of 1.5 and an MDIFF value of −1.0. (Note in (6) the d-parameter
is added in the logit, thus these would be considered to all be difficult items.) The vectors for this
test are shown in Fig. 11. These parameters were selected for illustration purposes only and would
never reflect an actual test. In most cases, real tests have more items and item vectors typically
lie within a relatively narrow validity sector (e.g., 30◦-45◦). Only in extreme distributional cases
would the RC be pulled out of the validity sector.

Using (6), â values were calculated for all items under four different two-dimensional

latent ability distributional conditions: N

[(
0
0

)
,

(
1 .0
.0 1

)]
, N

[(
0
0

)
,

(
1 .5
.5 1

)]
, N

[(
0
0

)
,

(
1 .0
.0 .5

)]
,N

[(
0
0

)
,

(
.5 .0
.0 1

)]
. The RC-angles for these cases are 45◦, 52.15◦, 60.22◦; and

22.78◦, respectively. As the correlation increased, the RC began to shift in the 45◦ direction.
When the variances of the two groups are unequal, the RC shifts toward the axis of the ability
with the greater variance. The results are displayed in Fig. 12 (top). For each of the four distri-
butional conditions, the â’s tend to approach the MDISC value (4) as an item’s angular direction
aligns more closely with that of the RC. These trends are depicted in the plot by the respective
colored vertical lines. The range of â was (.52 (0◦) to.66(45◦)), (.44(0◦) to.67(60◦)), (.34(0◦)
to.72(75◦)), and (.34(90◦) to.72(15◦)) for the four respective conditions.

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 11:30:44, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


TERRY A. ACKERMAN, YE MA 19

Figure 12.
Estimated a-(top) and b values (bottom) for different underlying ability distributions.

Additionally, twomore conditionswere considered in the calculationof b̂: N

[(
1
0

)
,

(
1 .0
.0 1

)]

and N

[(
0
1

)
,

(
1 .0
.0 1

)]
. Although mean differences do not affect the RC or â, they do affect

b̂, along with changes in variances and correlations. Figure12 (bottom) shows how the estimated
difficulties change as the items’ measurement angles vary in reference to the RC (denoted by the
colored vertical lines). The range of b̂ was 1.41(0◦) to.99(45◦)), 1.62 (0◦) to 1.00(50◦), 2.01(0◦)
to 1.00 (60◦),−2.01(90◦) to−1.00 (30◦),−2.82(0◦) to−1.41(90◦) and−2.82(90◦) to−1.41(0◦)
for the six respective conditions. As an item’s angular direction approaches the angle of the RC,
the closer the b̂ value will be to the item’s MDIFF value (5).

Figure13 presents a composite graph containing the 19 M2PL response surfaces and the RC
plane (depicted in green, top left panel). The RC plane intersects the latent probability space at a
45o angle from the θ1 axis. Additionally, the 19 ICCs are graphed in the RC plane (right panel).
The top right panel shows the test characteristic surface and the corresponding contours, marked
by the reference composite (indicated by the red arrow). Drawn in blue is the test characteristic
curve (sum of the estimated 19 unidimensional ICCs using (4) and (9). This illustrates how
closely the analytical estimates of a and b align with the two-dimensional model. Notably, the
unidimensional TCC is not as steep as the TCS, indicating that the discrimination parameters may
be underestimated. Wang (1986) previously compared 2PL estimates derived from generated and
real data with estimates using the two-dimensional compensatory model. However, more research
needs to be done in this area.
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At the bottom of Fig. 13 are the 19 ICCs. The red ICCs represent vectors furthest from the
45◦ and have the lowest â values or flattest ICCs. The green ICCs correspond to item vectors with
angles closest to the RC angle that have the largest â values or steepest ICCs.

In the next sections, three studies are examined. Each study provides a different perspective
on how DIF can occur when response data are two-dimensional. The goal is to provide further
insights for testing practitioners enabling them to conduct more informed DIF analyses and better
understand the underlying causes when DIF occurs.

4. Study 1: DIF Illustrated Analytically Using Unidimensional IRT Item Calibration of a
Two-Dimensional Latent Space

For this example, two pieces of research are foundational. The first builds upon the work of
Shealy and Stout (1993a,b) and Ackerman (1992). This research identifies one of the causes of
DIF. Imagine a scenario where valid items measure the intended to-be-measured ability, θ1, while
the test also contains items that inadvertently measure invalid skills, denoted as θ2. By adopting a
multidimensional perspective, we can estimate the potential for DIF by calculating the difference
between the conditional expectations of the Reference and Focal groups, E [θ2R |θ1]−E [θ2F |θ1].
Assuming the regression of θ2 on θ1 is linear and homoscedastic, we can express the expected
conditional difference, ECD, as follows:

ECD = E [θ2R |θ1] − E [θ2F |θ1]
= (

μθ2R − μθ2F
) +

(
ρR

σθ2R

σθ1R

) (
θ1 − μθ1R

) −
(

ρF
σθ2F

σθ1F

) (
θ1 − μθ1F

)
, (10)

where for the Focal group, θ1F, and θ2F are the two latent variables that are bivariate normally
distributed with mean vector components μθ1F and μθ2F and variance–covariance is given as

(
θ1F
θ2F

)
∼ N

[(
μθ1F

μθ2F

)
,

(
σθ1F ρFσθ1Fσθ2F

ρFσθ1Fσθ2F σ2F

)]
,

and for the Reference group, θ1R and θ2R are the two latent variables that are bivariate normally
distributed with mean vector components μθ1R and μθ2R and variance–covariance is given as

(
θ1R
θ2R

)
∼ N

[(
μθ1R

μθ2R

)
,

(
σθ1R ρFσθ1Rσθ2R

ρRσθ1Rσθ2R σ2R

)]
.

Equation10 serves as a “Rosetta stone” for understanding how the potential for DIF could
occur. If we have estimates of the characteristics of the underlying ability for the two groups of
interest, we gain insight into how different parameters of the Reference and Focal distributions
contribute to conditional differences with the potential for DIF. The conditional difference serves
as a weighting of the differences between ICCs that have been calculated separately for each
group and then rescaled.While the ECD is not a DIF analysis, it becomes valuable when subgroup
distributional differences are estimated. It helps identify the potential for DIF to be significant
using more traditional DIF approaches (e.g., Sibtest, Mantel–Haenszel). When the ECD is close
to zero no DIF should be expected. If the ECD results in a constant value, uniform DIF could
occur. Uniform DIF occurs when the rescaled ICCs for two groups differ only in their difficulty
or b̂ values (i.e., one group consistently has a lower probability of correct response across all
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Table 2.
Generating compensatory model parameters for a 10-item test.

Item a1 a2 d

1 .614 .000 −.579
2 1.270 .013 .422
3 1.081 .021 −.109
4 .698 .020 −.533
5 1.331 .052 .233
6 1.001 .049 .124
7 .961 .056 −.726
8 .764 .052 .415
9 .932 .072 .074
10a .050 1.250 −.200

a This item is considered to be a biased item.

levels of θ). When ECD is a function of θ (e.g., .4θ), it suggests that nonuniform DIF could occur.
Nonuniform DIF occurs when the rescaled ICCs for two groups differ only in their discrimination
or â values (i.e., for some levels of θ the Reference group has a higher probability of correct
response, while for other levels of θ the Focal group has a higher probability of correct response).

The second approach involves a systematic analytic approach to explore DIF and builds upon
the research by Camilli (1992). In this study, we investigate scenarios where unidimensional 2PL
item parameters are analytically estimated even when the true model is the M2PL model. This
situation characterizes practitioners who ignore the dimensionality of their test data, as described
by Equations (4) and (9). For illustration purposes, we created a ten-item two-dimensional set
of items. The M2PL item parameters are shown in Table 2. The first nine items fall in a narrow
validity sector andprimarilymeasure θ1.However, Item10 serves as a potentialDIF item, primarily
measuring θ2 with a vector angle of 87.72◦. A vector plot of the ten items is shown in the upper left
panel of Fig. 14. Although the same parameters for all ten items were used for both the Reference
and Focal groups, their underlying ability distributions differ. Consequently, their RCs will also
differ, leading to distinct unidimensional item parameter estimates. Using Camilli’s formulation,
Equations (4) and (9) were used to examine three different cases with dissimilar underlying
distributions for the Reference and Focal groups. After calculating the â- and b̂ values, the item
parameters for the Reference group were placed on the Focal group’s scale, using a mean–mean
transformation (Kolen & Brennan, 2014) .

In Table 3, results are presented for two cases in which the Focal group and Reference group
underlying ability distributions are identical and three caseswhere the distributions are different. In
this table, the underlying bivariate normal distributional parameters and the angular direction of the
RC for each group are listed in the first two columns. The third column provides the ECD based on
each group’s distributional parameters. In the fourth and fifth columns are the 2PL â and b̂ values
for Item 10 using Camilli’s formulation (4) and (9) for each group. Note that once the Reference
parameters were calculated, they were rescaled using a mean–mean transformation. In the final
column, the ICC differences are designated as displaying no DIF, uniform DIF, or nonuniform
DIF. It is essential to reemphasize that DIF is caused by the underlying ability distributional
differences.

As can be seen in the first two rows of Table 3, when the underlying distributions are identical,
the ECD =.0, and the â and b̂ values for Item 10 are identical. Thus, whenever the underlying
distributions are identical, regardless of the different composites being measured by the items,
there should be no DIF.
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Figure 14.
Graphical displays of the item vectors, and the underlying Reference (red) and Focal (green) distributions for each of the
three cases outlined in Table 3. (Color figure online)

4.1. Case 1: Unequal μθ1- and Unequal μθ1 Values: Uniform Bias

This case has two parts, one in which the Reference and Focal groups have mean differences
in θ1 and mean differences in θ2. ECD differences were 2 and −2, respectively. There were
no â differences. However, when the Reference group had the greater θ1-mean, Item 10 was
much easier for the Reference group with b̂ = 1.78 compared to b̂ = −.24 for the Focal group.
Conversely, the Reference group had the greater mean for θ2, the Reference group’s b̂ = −2.30
versus b̂ = 1.73 for the Focal group. Notably, the RC-angle was 26.68o for both groups. Since
these examples resulted in only b̂ differences, they were an indication of uniform DIF.

4.2. Case 2: Unequal η Variance: Nonuniform Bias

In Case 2a, the Reference group has σ 2
θ1

=2.5 and σ 2
θ2

=1. and ρ = .4, whereas the Focal

group has σ 2
θ1

=.5 and σ 2
θ2

=1.0 and ρ = .4.Note that the σ 2
θ1
is five times larger for the Reference

group. In Case 2b, the variance differences were on θ2: σ 2
θ1

=2.5 for the Reference group and

σ 2
θ2

=.5 for the Focal group. The ECD was -.31θ1 and the RC angles were 16.40◦ and 42.05◦
for the Focal group and 37.78◦ and 18.23◦ for the Reference group for Case 2a and Case 2b,
respectively. In both of these cases, both â and b̂ differed between the two groups resulting in
nonuniform DIF.
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Table 3.
Analytical results of estimated 2PL itemparameters for Item10 for theReference andFocal group based on their underlying
different distributions.

Distributions Estimated 2PL parameters for Item 10
Focal Reference ECD Focal Reference1 DIF?2

â b̂ â b̂

Identical Distributions: ρ = 0

N

[(
0
0

)
,

(
1 .0
.0 1

)]
3.12o N

[(
0
0

)
,

(
1 .0
.0 1

)]
3.12o 0 .05 1.69 .05 1.69 No

Identical Distributions: ρ =.4

N

[(
0
0

)
,

(
1 .4
.4 1

)]
26.68o N

[(
0
0

)
,

(
1 .4
.4 1

)]
26.68o 0 .29 −.33 .29 −33 No

Case 1a: θ1-Mean Difference: ρ =.4

N

[( −1
0

)
,

(
1 .4
.4 1

)]
26.68o N

[(
1
0

)
,

(
1 .4
.4 1

)]
26.68o −2 .29 −24 .29 1.58 U

Case 1b: θ2Mean Differences: ρ =.4

N

[(
0

−1

)
,

(
1 .4
.4 1

)]
26.68o N

[(
0
1

)
,

(
1 .4
.4 1

)]
26.68o 2 .29 1.73 .29 −1.90 U

Case 2a: θ1-Variance Differences: ρ =.4

N

[(
0
0

)
,

(
2.5 .63
.63 1.0

)]
16.40o N

[(
0
0

)
,

(
.5 .28
.28 1.0

)]
37.78o −.31θ1 .40 −.24 .16 −.55 NU

Case 2b: θ2-Variance Differences: ρ =.4

N

[(
0
0

)
,

(
1.0 .63
.63 2.5

)]
42.05 N

[(
0
0

)
,

(
1.0 .28
.28 .5

)]
18.23 −.35θ1 .21 −.45 .55 −.20 NU

Case 3: Correlational Differences

N

[(
0
0

)
,

(
1 .2
.2 1

)]
16.17o N

[(
0
0

)
,

(
1 .8
.8 1

)]
40.67o .6θ1 .18 −.50 .53 −.21 NU

1Reference group estimated parameters were rescaled to the Focal group’s scale using the mean–mean
transformation
2U = Uniform DIF; NU = Nonuniform DIF.

4.3. Case 3: Unequal Correlations: Nonuniform Bias

In this case, the θ1- and θ2 means and variances are equal but the correlations differ: Reference
ρθ1,θ2 = .8 and Focal ρθ1,θ2 = .2. The expected difference is E [ηR |θ ] − E [ηF |θ ] =.6θ . The
RC-angles were 16.17◦ for the Focal group and 40.67o for the Reference group. Again, both â
and b̂ differed between the groups indicating nonuniform DIF.

Using the software package Mathematica (Wolfram, 2020) , Ackerman and Xie (2019)
created a DIF Graphical Simulator. This simulator allows researchers to change the underlying
two-dimensional latent distributions for the Reference and Focal groups as well as theM2PL item
parameters for a given suspect item. A graphical example is given in Appendix C.

5. Study 2: Examining the Effect of Different Conditioning Scores on DIF Analyses

Ackerman and Evans (1994) employed two DIF approaches that are standard DIF analysis
by testing practitioners, Mantel–Haenszel and Sibtest. We will first provide a brief background of
each approach and then examine how the approaches were used to assess the effect of changing
the conditioning scores and attempt to account for the complete latent ability used by examinees
to respond to a hypothetical two-dimensional test. The biggest cause of DIF when conditioning on
raw scores (e.g., Mantel–Haenszel) is that the raw score may not always account for the complete
latent ability space that examinees used to respond to the items. In this study, two DIF statistics
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Table 4.
A 2 x 2 contingency used in the MH computation.

Group 1 (Correct) 0 (Incorrect) Total

Reference (R) A j B j NRj
Focal (F) C j D j NF j
Total N1. j N0. j N .. j

were used: the Mantel–Haenszel (MH) (Holland et al., 1988) and Sibtest βu (Shealy & Stout,
1993a,b) . Both statistics are conditional analyses grouping subjects by their number correct score.

5.1. Background: Mantel–Haenszel and Sibtest DIF Detection Methods

When calculating the MH-statistic for item i , we consider two groups of examinees: the
Reference group and the Focal group. The Focal (F) group typically represents a minority group
(e.g., Hispanic examinees). The Reference (R) group is frequently a nonminority group (e.g.,
White examinees). Examinees from each group are matched based on their number correct score.

For each score category j , a 2 x 2 contingency table (Table 4) is created. This table notes
the frequency of correct and incorrect answers for each group, along with the marginal and total
frequencies. It is tacitly assumed that examinees in the same contingency table are matched on
their latent abilities, that they used to respond to the item being examined. The centipede plot
above (Fig. 9) illustrates how even though examinees may have the same number correct score,
they could have quite different two-dimensional latent ability profiles.

Summing over the contingency tables for item i and using a continuity correction, the MH
statistic is calculated as

MHi =
[∣∣∣

∑
j A j − ∑

j E
(
A j

)∣∣∣ − 1
2

]2

∑
j V ar

(
A j

) ,

where the expected value of Cell A frequency is given as

E
(
A j

) = NRN1. j

N.. j

and the variance of cell A frequencies equals

Var
(
A j

) = NRj NF j N1. j N0. j
(
N.. j

)2 (
N.. j − 1

)

Typically, the MH statistic is used to test the null hypothesis that for each raw score category
j the odds of a Reference group examinee answering the item correctly equals the odds that a
Focal group examinee will answer the item correctly (Holland et al., 1988) . That is, if pRj and
pF j ; are the probabilities of a Reference and Focal group examinee answering the item correctly,
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respectively, and qRjand qF j are the probabilities of a Reference and Focal group examinee
answering the item incorrectly, respectively,

Ho : pRj
qR j

= pF j

qF j
j = 1, . . . ,K

is tested against the alternative of uniform DIF,

H1 : pRj
qR j

= α
pF j

qF j
α �= 1, j = 1, . . . , K

where Ho is the null hypothesis, H1 is the alternative hypothesis, and α is the common odds
ratio in the K 2 x 2 tables. Uniform DIF occurs when the rescaled, unidimensional item response
functions differ only in difficulty. When Ho is true, MH is distributed as χ2 with 1 degree of
freedom. It should be noted that for a given examinee, the score (i.e., 0 vs 1) on the item being
examined is part of the conditioning score.

DIF according to (Shealy & Stout, 1993a,b) , should be conceptualized by examining the
difference in certain marginal item characteristic curves for the two groups of interest:

P (Xi = 1|Θ = θ)

∫
Pi [θ, η] f (η|θ) dη,

where Pi [θ, η] is theM2PLmodel (Eq 1) and f (η|θ) is a specified group’s conditional distribution
of the nuisance dimension, η, given a fixed value of θ , the target ability. That is, for a fixed value
of θ , Pi (Xi = 1|Θ = θ) is obtained by averaging Pi [θ, η] over η. That is, Pi (Xi = 1|Θ = θ) is
the ICC if the differences in the nuisance direction are integrated out. Y*

An estimate of the SIBTEST test statistic is given as

β̂U =
n∑

h=0

p̂h
(
Ȳ Rh − ȲFh

)

where

p̂h = (GRh − GFh)∑n
j=0 (GRh − GFh)

,

and GRh and GFh are the number of examinees in the Reference and Focal groups at the valid
score X = h. The Sibtest test statistic is computed as

βU = β̂U

σ̂ (β̂U )
.

where the standard deviation in the denominator is calculated as

σ̂ (β̂U ) =
{

n∑

h=0

p̂2k

[
1

GRh
σ̂ 2 (Y |h, R) + 1

GFh
σ̂ 2 (Y |h, )

]}2

,

The test statistic has an approximate N (0,1) distribution when no DIF is present. Unlike the
MH statistic, an examinee’s score on the studied item is not part of the conditioning score. Sibtest
resolves rescaling issues by means of a regression correction (Shealy & Stout, 1993a,b) .
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5.2. DIF Detection with Different Conditioning Scores

Using the Mantel–Haenszel and Sibtest statistics, Ackerman and Evans (1994) examined the
impact of different conditioning scores on DIF results. Specifically, they looked at generated two-
dimensional compensatory data where θ was the valid skill and η represented the invalid skill.
The testing scenario involved a 30-item test measuring (θ , η)-composites spanning measurement
angles from 0◦ to 90◦, in 3◦ increments. A vector of these items is displayed in Fig. 15. All
items had a difficulty parameter (di ) value of zero and an MDISC value of 1.5. The Reference
and Focal groups had different latent ability distributions. The bivariate normal distributions for

the Reference and Focal were N

[(
1

−1

)
,

(
1 .4
.4 1

)]
and N

[(−1
1

)
,

(
1 .4
.4 1

)]
, respectively.

Three different sample size pairings were used but results were similar for each pairing. The
results shown here are for the pairing NRef = 1000, and NFoc = 500.

The purpose of comparing the four different conditioning scores is to illustrate that DIF can
occur when one has not accounted for the complete latent ability space. Here are the details for
each conditioning variable:

– To condition on θ , the transformation used is Xθ = 10(θ) + 25. In this case, the ability η

is not accounted for and DIF should increase the more the ability η is required (i.e., as the
angle of the item vector increases toward 90◦).

– To condition on η, the transformation used is Xη = 10(η) + 25 was used. When condi-
tioning on η the ability θ is not accounted for, and DIF should increase the more the ability
η is required (i.e., as the angle of the item vector decreases toward 0◦).

– The number correct score is equivalent to the case where θ = η, (i.e., the RC angle is at
45◦). Items that require an equal weighting of both skills, (i.e., a1 = a2), should show no
DIF. However, DIF should increase as items require more of θ -skill (item vectors approach
0◦) or more of η (items approach 90◦).

– Finally, to condition on (θ , η) the latent ability plane was divided into 64-square regions
using an 8 x 8 grid (Fig. 16). All examinees in the same square of the grid were assigned the
same conditioning score, (i.e., examinees in the square -3 ≤ θ1 < −2.25 and 2.25 < η≤
3 would be assigned a conditioning score of 1). Note that the conditioning score does not
enter the calculation of either DIF statistic, but rather ensures that examinees with the same
abilities are placed into the same 2 x 2 conditioning table. When the conditioning score
is a function of (θ , η), the complete latent ability is accounted for and there should be no
DIF.

Results of the DIF analyses using the four different conditioning scores are illustrated in
Fig. 17. When the conditioning score was the number correct, both DIF procedures consistently
identified items 1–9 and 22–30 as showing DIF 100% of the time. When the conditioning score
was a linear transformation of the generating θ, items 9–30 were consistently rejected 100% of
the time. Slight differences were observed betweenMH and Sibtest βU results. βU appeared to be
more sensitive to DIF. Its rejection rate increased faster than MH as the angular composite of the
item deviated from 0°. This is shown by the fact that the rejection rate reached or exceeded .9 by
Item 7 for βU , whereas it did not occur until Item 9 forMH. Note that rather than using the Sibtest
regression correction for βU , the conditioning variable was based on a latent trait parameter.

As hypothesized, the opposite results occurred when the valid test direction was along the
η-axis. That is, items measuring θ (i.e., Items 1–23) consistently exhibited DIF in favor of the
Reference group. For the final analysis, the 64 score categories matching examinees on both θ

and η were used as the conditioning scores. The results, as shown in Fig. 19, showed no DIF
for any of the 30 items, regardless of the DIF procedure. However, it is important to recognize
that this purely hypothetical testing situation would not occur in practice. Its purpose was to
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Figure 15.
Item vectors for the 30-item symmetric test and conditioning score composite directions.

Figure 16.
Overlaying an 8 x 8 grid on the (θ , η) latent ability plane with Reference (red) and Focal (green) underlying and marginal
distributions. (Color figure online)

illustrate the significance of underlying group distributional differences interacting with items
that measure a spread of two-dimensional composite skills. Identifying the specific composite
skills being measured remains a genuine challenge for testing practitioners. Several studies have
examined using multiple conditioning scores, such as those by Clauser et al. (1996) and Mazor
et al. (1998), in an attempt to condition on the complete latent ability space.
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Figure 17.
MH and SIBTEST DIF results by item for each of the four condition scores.

6. DIF Even Though Reference and Focal Two-Dimensional Distributions are Identical

6.1. The Two-Dimensional Noncompensatory MIRT Model

Up to this point, the discussion has centered around how DIF can occur when items measure
invalid skill composites and the two groups of interest have different ability distributions related
to the invalid skill. Interestingly, DIF can also occur when the underlying two-dimensional ability
distributions are identical and the vectors corresponding to the test items lie in a very narrow
validity sector (e.g., a unidimensional test). This phenomenon was examined by Ackerman and
Evans (1994), Bolt and Johnson (2009), and Ackerman et al. (2014). They found that DIF can
occur when a two-dimensional test contains items for which different groups of students use
distinct approaches to solve the same problem. These divergent solution strategies could occur
due to pedagogical differences in how students were taught to information, particularly in items
such as “story” problems. For instance, one group might have been explicitly taught to combine
pieces of information, whereas another group was not instructed to integrate or combine these
pieces.

In Ackerman and Evans (1994) and Ackerman et al. (2014), the different strategies were
are modeled using two distinct MIRT models. The integration strategy was modeled using the
compensatory model (6), and the nonintegration strategy was modeled using the MIRT noncom-
pensatory model developed by Sympson (1978). This does not allow for compensation and can
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Figure 18.
Contour and difference plots for a matched noncompensatory and compensatory item.

be expressed as

PNC
(
ui j = 1|θ1 j , θ2 j , a1i , a2i , b1i , b1i

) =
[

1.0

1.0 + e(a1i (θ1 j−b1i)

] [
1.0

1.0 + e(a2(θ2 j−b2i)

]
.

(11)

This model is essentially the product of two 2PL (1) models, with a discrimination and
difficulty parameter for each dimension. Unlike the compensatory model (6) which assumes the
abilities from different dimensions can compensate for each other, the noncompensatory model
treats them independently. PNC’s multiplicative nature ensures that PNC can never be larger than
the maximum value of either dimension’s 2PL model.

The multiplicative nature of this model causes the response surface equiprobability contours
to become curved. That is, unlike the compensatory model contours which are always parallel
lines, the noncompensatory model contours are always parallel curves, the larger the a values, the
more discriminating the item and the closer together the equiprobability curves. A contour plot
of a noncompensatory response surface where a1 = a2 = 1.6 and b1 = b2 = −.47 is displayed
in the left panel in Fig. 18. In the left panel, the letters A, B, and C denote three different (θ1,
θ2)-profiles, (high, low), (low, low), and (low, high), respectively. Notice that all lie on the same
equiprobability contour or have the same probability of correct response.

6.2. DIF Study Simulation Using Matched Compensatory and Noncompensatory Items

A 30-item test was created where the primary focus was on measuring θ1 and θ2 equally (i.e.,
the item vectors were enclosed in a narrow validity sector from 40◦ to 50◦.) For the Reference
group, all 30 items were modeled using the compensatory model (6). For the Focal group, for
items 1–10 and 15–30 the probability of correct response followed the compensatory model, but
for items 11–14, the probability of correct response was determined using the noncompensatory
model (11) that matched their compensatory counterparts. To estimate noncompensatory item
parameters that would match the compensatory for items 11–14, the approach proposed by Spray
et al. (1990) was used. Specifically, PNC parameters were estimated by minimizing the function

N∑

i=1

{[PC (θ i , a, d) − PNC (θi , â, b̂)] }2
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Table 5.
Compensatory and Noncompensatory item parameters matched on p value for a given underlying ability distribution.

Compensatory Noncompensatory
Item a1 a2 d p a1 a2 b1 b2 p

11 .4 .4 .0 .50 .64 .64 −.86 −.86 .50
12 .8 .8 .0 .50 1.13 1.13 −.51 −.51 .50
13 1.2 1.2 .0 .50 1.14 1.14 −.51 −.51 .50
14 1.6 1.6 .0 .50 1.25 1.25 −.47 −.47 .50

for 2000 randomly generated examinee abilities from the latent underlying bivariate normal dis-

tribution, N

[(
0
0

)
,

(
1 .4
.4 1

)]
. The Nminimize function in Mathematica (2020) was used for this

optimization. This process was repeated for 10 replications for each of the four items to ensure that
the estimates obtained were not unduly influenced by the samples selected or the starting values.
The matched set of parameters for items 11–14 are displayed in Table 5. In Fig. 18, the center
panel contains the equiprobability contour plot for the matched Item 14 compensatory item. The
right panel displays the compensatory—noncompensatory difference contour for item 14. From
this plot, it appears that the compensatory item 14 and the noncompensatory item 14 would pro-
duce similar probabilities of correct response for examinees in the first and third quadrants, but
noticeably different probabilities for examinees in the third and fourth quadrants.

Response data were generated for 1000 examinees for both the Reference and Focal groups
using the same underlying bivariate distribution. A DIF analysis was conducted for each item
using the Mantel–Haenszel and Sibtest procedures using the software program difR (Magis et
al., 2010) . This process was replicated 100 times. For each item, we calculated the proportion of
times it resulted in significant DIF using each method. The results are graphed in Fig. 19.

There was a clear demarcation between the items. Items 12–14, which were modeled discor-
dantly, were flagged more frequently (65% to 85% of the replications) than the remaining items.
All significant DIF results favored the Reference group, which is cross-validated by the right
panel of Fig. 18 which shows the probability of correct response in quadrants 2 and 4 was greater
for the compensatory model. These results parallel the findings of Ackerman and Evans (1994)
which illustrated that DIF detection for two groups using different models was affected greatly
by the discrimination power of the items. The MDISC value for item 11 was only.4, whereas for
the remaining items it was.8, 1.2, and 1.6, respectively. It was also noted that for the remaining 24
matched items, some had Type I error rates as high as.12%, possibly affected by the condition-
ing total score for each group. The contour of the test characteristic surface for the Focal group
exhibited a slight curve, resembling the contour of a noncompensatory item. Interestingly, even
when conditioning on both θ1 and θ2, as illustrated in Study 2 above, the DIF for groups using
two different MIRT models did not disappear as shown by Ackerman (2014).

7. The True Challenge: Substantively Identifying the Cause of the Manifested DIF

At a large national testing company, we routinely conducted DIF analyses after each admin-
istration using the Mantel–Haenszel procedure. Two DIF analyses were conducted, one looking
for gender DIF (comparing Males vs Females) and a second analysis looking at racial DIF
(comparing White Examinees vs Black Examinees). We would often share these results with the
content editors to see if they could explain our DIF results. Sometimes we would do a “blind” test.
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Figure 19.
Mantel–Haenszel and SIBTEST DIF results for each of the 30 items.

That is, we would assemble a set of items flagged for significant DIF.We also included a few items
that did not show DIF. We asked the editors to determine which items exhibited significant DIF
and which group was favored. Below are four actual items which item writers found very difficult
to explain the DIF results. Using your psychometric knowledge and DIF expertise, determine if
the items below favored Males, Females, White examinees, or Black examinees, or showed No
DIF. While statistically detecting DIF is straightforward, understanding why it occurs is the true
challenge! Answers are provided in Appendix A.
Item 1
The Cold War threatened to erupt into a “hot” war in October 1962 when President Kennedy
demanded that the Soviet Union

A. dismantle naval bases located in Nicaragua.
B. withdraw all troops from South Korea.
C. remove all missiles and missile bases located in Cuba.
D. return captured American pilot Gary Powers to the USA.

Item 2
In comparison with normal males, those with Klinefelter’s syndrome have:

A. 1 extra X-chromosome
B. 1 fewer Y-chromosome
C. 1 extra Y-chromosome
D. 2 extra X-chromosomes

Item 3
A bell was found fastened at a fork in a branch 15 feet from the ground in a 40-year-old tree. A
person claimed that the bell was fastened to the tree about six feet from the ground when the tree
was 10 years old. Of the following, the best evaluation of this story is that the claim is:

A. true, because the bell moved upward as the tree grew taller.
B. true, because the bell was fastened to a forked branch, which grew rapidly upward.
C. false, because trees do not grow taller that quickly.
D. false, because upward growth in trees occurs at the terminal buds, not within the trunk

or branches.

Item 4
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A customer at a service station asks the attendant to put 30 pounds of air in my right rear tire.”
Assuming that the tire is completely flat, air will be pumped into the tire until the:

A. tire’s weight increases by 30 pounds.
B. air pressure inside the tire equals the atmospheric pressure.
C. air pressure inside the tire is 30 pounds per square inch greater than the atmospheric

pressure.
D. air pressure inside the tire is 30 times greater than the atmospheric pressure.

8. Summary and Concluding Remarks

It is widely recognized that test response data often exhibit multidimensionality. Due dili-
gence requires that testing practitioners should first examine the dimensionality of their data. By
identifying the dominant dimensions and mapping them onto a test’s specifications, each dimen-
sion can be well defined. Additionally, practitioners need to be vigilant and identify unintended
skills that are being measured. Using this foundational analysis, appropriate calibration model(s)
can be selected. These models play a crucial role in estimating item parameters, scaling examinee
abilities, and understanding the potential for DIF to occur. Research by Kok (1988), Ackerman
(1992), Camilli (1992), and Shealy and Stout (1993a,b) hypothesized that DIF can result when a
test measures invalid or unintended skills and the groups of interest exhibit distinct conditional
ability distributions on these skills for different levels of the valid skill.

Using this perspective as a starting point, this article provides a detailed examination of
the two-dimensional compensatory MIRT model. Graphical representations of two-dimensional
item response surfaces and their corresponding contours were examined. These plots provide
a deeper understanding of how items perform across the latent ability space. Plots of items as
vectors indicating the (θ1, θ2)-composite that each item is optimally measuring were illustrated
and discussed. Vectors of valid items should lie within a sector, termed the validity sector. Further
insight about (θ1, θ2)-composite consistency across the observable score scale was illustrated
using plots of conditional centroids. Finally, centipede plots, detailing how examinees’(θ1, θ2)-
abilities get mapped onto the unidimensional θ -scale were explained. Such graphical analytics, in
concert with knowledge of underlying ability distributions for subgroups of interest, can provide
detailed insight into the potential for DIF to occur.

The article then focused on the analytical work of Wang (1985) and Camilli (1992). They
demonstrated how data generated using the two-dimensional compensatory model can be mapped
onto a unidimensional 2PL IRT scale, referred to as the reference composite (RC). Addition-
ally, they showed how estimated 2PL IRT item parameters can be derived given estimates
of the underlying two-dimensional bivariate normal examinee ability distribution parameters
(μθ1 , μθ2 , σθ1 , σθ2 , ρ) and the compensatory model (6) item parameters (a1, a2, and d). Spe-
cific examples were provided to illustrate how 2PL IRT parameter estimates can change as the
underlying two-dimensional ability distributions change.

We then reviewed three studies that illustrate how DIF can occur using a two-dimensional
framework:

• The first study investigated how DIF can occur for an invalid item, one that deviates
significantly from the validity sector. DIF results were examined across four different
distributional scenarios. This study identified which distributional differences result in
uniform DIF and which produce nonuniform DIF.

• The second study emphasized the importance of considering the complete latent ability
space when using DIF. conditional approaches. Simulations revealed that DIF occurred
when examinees were matched solely on their θ1 value, or only their θ2 value, or on their
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number correct score where θ1 = θ2. However, when examinees were matched on their
(θ1, θ2)-groupings, no DIF occurred.

• The third study detailed an educational scenariowith identical underlying two-dimensional
distributions for the two groups. Despite this similarity, certain items displayed DIF. The
DIF occurred for items where one group’s responses were generated using the compen-
satory model and the other group’s responses were generated using the noncompensatory
model. These models were chosen to simulate different response strategies that resulted
from different instructional pedagogies.

The paper concludes with a test for readers to correctly identify the Mantel–Haenszel DIF anal-
ysis results for four given items from a nationally administered standardized test. This involves
determining which examinee group was favored for each item or whether the results indicated no
DIF. Conducting DIF analyses is relatively straightforward thanks to computer programs written
for all the approaches listed in Table 1. Substantively explaining the results is where the real
challenge lies. Psychometricians and item writers must collaborate to interpret DIF findings. One
should also never discount the possibility of Type I error!

Generated sets of item parameters in this study were created specially to provide insight
for the testing practitioner about how underlying ability distributions or different response styles
can affect examinee performance and consequently unidimensional item parameter estimation
to create DIF. They are not realistic. Real data are very messy, to say the least. We will never
know the true item parameters, the true latent abilities, or whether the data are unidimensional
or multidimensional. Only when we simulate data do we know the truth. It is paramount that
psychometricians and testing practitioners always remember the words of wisdom by the noted
British statistician George Box “Essentially, all models are wrong, but some are useful” (Box &
Draper, 1987).
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Appendix A

Groups indicated as being favored in the Mantel–Haenszel analysis.

Item 1: Male examinees
Item 2: Black examinees
Item 3: No DIF
Item 4: Male examinees. This is the only item which has a possible explanation: that males, for

the most part, know more about cars than females.
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Appendix B

Example illustrating formulation of how the unidimensional 2PL model gets mapped into a two-
dimensional latent ability space:

ευ2 [P(u = 1 |υ1, υ2)| υ1] =
∫ +∞

−∞
P (u = 1|υ1, υ2)G(υ2|υ1) dυ2.

Assume you want to find the unidimensional 2PL â and b̂ value for a two-item test where the
two-dimensional compensatory parameters are given as A = [{1.5, 0}, {0, 1.5}] and D = {.5, .5}
and the underlying model is given as

P
(
ui j = 1|θ1 j , θ2 j , a1i , a2i , di

) = 1.0

1.0 + e−1.7(a1i θ1 j+a2i θ2 j+di )
.

It is also given that the underlying two-dimensional distribution is a bivariate normal with a mean
vector of {0,0}and the covariance matrix, �, as [{1,.4}, {.4,1}]. Note these are chosen only for
illustration purposes. Item 1 measures only θ1 and item 2 measures only θ2.
Following the work of Wang (1986) and Camilli (1992), we first determine the Cholesky decom-
position, L, of �. L[{1., 0.4}, {0., 0.91651}]. To compute the reference composite, we first
need to calculate the L’A’AL matrix which equals, {2.25, 0.9}, {0.9, 2.25}. The eigenvalues
of this matrix are 3.15, 1.35} and the eigenvectors associated with the eigenvalues, wij, are
{0.7071, 0.7071}, {−0.7071, 0.7071}.
The reference composite is then calculated as the arccosine of the first element of the eigenvector
associated with the largest eigenvalue. The arccosine of.7071 corresponds to 45◦ which corre-
sponds to the reference composite direction from the positive θ1-axis. This is the composite that
would represent the unidimensional θ -scale if the data were fit to the 2PL model.
It should also be noted that the first and second factor scores, υ1 and υ2 are then defined as:

(
υ1
υ2

)
=

[
w11

(
θ1−μθ1

) + w12
(
θ1−μθ1

)

w21
(
θ1−μθ1

) + w22
(
θ2−μθ2

)

]

=
[

.7071θ1 + .7071θ2
−.7071θ1 + .7071θ2

]

In Fig. 20, the left panel is a contour plot of Item 1 with the reference composite (υ1) direction
indicated with a solid red arrow and the perpendicular υ2 direction indicated with a dotted red
arrow. We then substitute υ1 and υ2 in for θ1 and θ2 in the compensatory model to get

p
(
ui j = 1|υ1, υ2

) = 1.0

1.0 + e−1.7(1.5 υ1+.0υ2+.5)
.

To determine G (υ2|υ1), we must first rotate the bivariate normal distribution 45o and
then determine the conditional distribution. Assuming � is the original covariance � =[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
and Rθ is the rotation matrix,

Rθ =
[

(cos 45◦) − ( sin 45◦)
(sin 45◦)+ ( cos 45◦)

]
=

[ √
2
2

−√
2

2√
2
2

√
2
2

]
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Figure 20.
The contour graph of the original item response surface with direction of first (ν1) and second principal component (ν2)
(left) and contour surface rotated 45◦ (right).

Figure 21.
A contour plot of the original bivariate normal distribution (left) and the contour plot of the rotated distribution (right).

then the rotated mean vector, μ’, and rotated covariance matrix, �’, are given by μ
′ = Rθμ =

√
2
2

[
μ1 − μ2
μ1 + μ2

]
and �

′ = Rθ�RT
θ = 1

2

[
σ 2
1 + σ 2

2 − 2ρσ1σ2 σ 2
1 − σ 2

2
σ 2
1 − σ 2

2 σ 2
1 + σ 2

2 + 2ρσ 1σ2

]
, where σ 2

1 ,

σ 2
2 and ρ are the original variances and correlation of the original random variables.

The rotated mean vector is [0,0] and the rotated covariance matrix, �
′
is [{.6,0}, {0,1.4}]. The

formula for the conditional distribution of G(υ1|υ2) equals (Fig. 21)

G (υ1|υ2) =∼ N

(
μY + ρ

σY

σX
(x − μX ) , σ 2

Y

(
1 − ρ2

))
=∼ N (0, 1.4) .

In Fig. 22 on the left are conditional normal distributions, G (υ1|υ2) , for υ1 = -2, -1,0,1,2. On
the right are the conditional ICCs, p

(
ui j = 1|υ1, υ2

)
, for υ1 = -2, -1,0,1,2.

Using the formula

(
ui j = 1|υ1, υ2

) =
∫ +6

−6
P(u = 1|υ1, υ2)G(υ2|υ1)dυ2
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Figure 22.
Conditional normal distributions, G (υ1|υ2) , for υ1 = -2, -1,0,1,2 (left) and conditional ICCs, p

(
ui j = 1|υ1, υ2

)
, for

υ1 = -2, -1, 0, 1, 2 (right).

Figure 23.
Estimated unidimensional ICC with five estimated (υ1, p) values plotted.

4where dυ2 =.001 we can estimate the unidimensional ICC for values of υ1 values of -2, -1,0,1,2.
These values are.13,.34,.64,.86, and.95, respectively. Using Camilli’s derivational formulas,

â j = a
′
jW1

√
2.89 + a

′
jW2W

′
2a j

and

b̂ j=
d j − a

′
jμ

a jW1
.

we obtain the 2PL item parameter estimates: â = .73 and b̂ = −.47. Fig. 23 shows the estimated
ICC using the â and b̂ and the five color-coded estimated (υ1, p) values. Figure24 illustrates
three different perspectives of all the elements of Camilli’s formulation, including the M2PL
response surface and corresponding contour plot, the RC (v1) which represents the estimated uni-
dimensional scale, v2 (the orthogonal second principal component, the RC plane, the underlying
conditional latent ability distribution, G (υ1|υ2), and the estimated unidimensional ICC.
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Figure 24.
Three different perspectives of different elements that were used in the mapping of the two-dimensional compensatory
model onto a unidimensional ICC.

Appendix C

Ackerman and Xie (2019) created a DIF Graphical Simulator. This simulator enables researchers
to modify the underlying two-dimensional latent distributions for the Reference and Focal groups
and the M2PL item parameters for a given suspect item. Using the Camilli (1992) analytical
derivations, the 2PL unidimensional discrimination (a) and difficulty (b) parameters are estimated
and the resulting ICC is illustrated. A mean–mean transformation is used to place the Focal
group’s estimated parameters onto the scale of the Reference group. The transformed ICCs are
then displayed, and the degree of misfit, defined as:

∑θ=3
θ=−3 (P(θ)Ref − P(θ)Foc)

2, is calculated.
The DIF Graphical Simulator is shown in Fig. 25
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Figure 25.
The graphical display is shown by the DIF Graphical Simulator.
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