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Abstract

The disassembly of power batteries poses significant challenges due to their complex sources,
diverse types, variations in design and manufacturing processes, and diverse service conditions.
Human memory capacity and robot cognitive and understanding capabilities are limited when
faced with different dismantling tasks for end-of-life power batteries. Insufficient human-
computer interaction capabilities greatly hinder the efficiency of human-robot collaboration
(HRC) operations. The existing HRC relies heavily on the experience of operators, while the
existing disassembly system fails to update new disassembly strategies in real time when facing
new battery varieties. Therefore, this paper proposes an augmented reality-assisted human-
robot collaboration (AR-HRC) power battery dismantling system based on transfer learning. It
consists of three modules: AR-HRC knowledge modeling, dismantling subgraph similarity
assessment, and strategy transfer update. The AR-HRC knowledge modeling module aims to
establish an intelligent mapping from tasks to collaborative strategies based on part features.
Based on the evaluation of task similarity, the mobility assessment model divides subtasks into
similar and dissimilar classes. For similar subtasks, the original dismantling strategy can be
applied to the current task. However, for different subtasks, operators can issue instructions to
the AR-HRC system through the human-computer interaction function of AR and develop new
collaborative strategies based on actual conditions. Finally, a case study of power battery
dismantling is conducted, and the results show that compared to traditional pre-programmed
assembly, this system can improve dismantling efficiency and reduce cognitive burden.

Introduction

The improper recycling and disposal of heavy metals and organic electrolytes present in end-of-
life power batteries pose a serious threat to the environment. There is an urgent need to
investigate intelligent disassembly technologies to achieve large-scale and standardized manage-
ment of automotive power battery recycling. These technologies aim to enhance the flexibility,
reliability, and efficiency of power battery disassembly operations (Yu et al., 2022).

End-of-life power battery products exhibit various types, lengthy manufacturing processes,
and complex operational conditions. The recycling and disassembly of these batteries need to be
adaptable to the characteristics of multiple varieties, diverse end-of-life conditions, and incon-
sistent recycling volumes. This places significant pressure on the disassembly and recycling
industry. Additionally, designing efficient and automated disassembly lines presents challenges
due to different batches of end-of-life power batteries and the lack of historical disassembly
experience and information regarding diverse component connections.

The human-robot collaboration (HRC)manufacturingmodel has gained significant attention
as a popular research topic in recent years. It serves as a complex manufacturing system that
integrates human intelligencewith robotic automation capabilities, offering extensive application
prospects in the assembly of complex products. However, the restricted cognitive and under-
standing abilities of robots for diverse disassembly tasks, coupled with inadequate human-
computer interaction capabilities, significantly impede the efficiency of HRC operations. Con-
sequently, it is imperative to tackle the challenges related to representing and computing
heterogeneous information data in intricate disassembly processes. This requires conducting
thorough research on self-awareness techniques and their associated mechanisms for collabora-
tive robots, as well as exploring more efficient methods of human-computer interaction and
understanding. By doing so, the goal of achieving HRC in complex disassembly scenarios can be
accomplished. Currently, themajority of power battery recycling and disassembly enterprises still
rely on manual or semi-automated disassembly methods, resulting in challenges such as non-
standard disassembly practices, low levels of automation, and compromised safety measures.
Through the progressive promotion and implementation of robotics technology, its integration
into the disassembly of end-of-life power batteries will yield substantial benefits, including the
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enhancement of the working environment for workers, improved
disassembly efficiency, and optimized material recovery outcomes.

The efficient and safe disassembly of retired power batteries,
along with the subsequent classification and treatment of battery
enclosures, screws, cables, battery cells, and related sensors, plays a
crucial role in facilitating material recycling and batch reuse of end-
of-life power batteries. Furthermore, the energy utilization effi-
ciency achieved through this method would be superior to that of
conventional complete disassembly and recycling approaches.
Thus, investigating efficient disassembly approaches for power
batteries with various types and diverse service conditions using
intelligent disassembly technologies within the context of HRC
would enhance the flexibility and adaptability of disassembly
operations.

In summary, HRC has been applied in many fields, but there is
relatively little research in the field of disassembly and recycling.
Disassembly work is an experiential task, and the efficiency of
disassembly is closely related to the experience of operators. Previ-
ous research has shown that operators require a longer training
period. Retired power batteries have a large inventory, multiple
models, and changes in retirement status. Therefore, large-scale
disassembly and recycling need to meet the requirements of flexi-
bility. To address the issues discussed above, this paper proposes a
knowledge transfer (KT)-based reality-assisted human-robot col-
laboration (AR-HRC) power battery disassembly approach. The
approach consists of three parts, including the development of the
knowledge graph, disassembly subgraph similarity matching, and
KT updating. The proposed approach contributes in the following
ways: first, it introduces a KT-based AR-HRC system that caters to
the flexible disassembly requirements of power batteries with
various varieties and retirement conditions. Secondly, it proposes
a KT-based AR-HRC disassembly sequence planning method that
generates disassembly sequence KGs by modeling and separately
considering static and dynamic data. In addition, a similarity
matching method based on disassembly subgraphs is developed
that encodes dynamic data, combines it with static data, and
comprehensively assesses the procedure similarity. In the end, the
AR-based KT updating approach is designed that incorporates the
operator’s decisions with existing strategies through real-time
interactive functionality of AR, resulting in the generation of new
disassembly strategies based on the actual disassembly situation.

Literature review

Traditional HRC

HRC refers to the cooperative work between humans and robots,
where they collaborate on specific tasks to achieve particular object-
ives. Recent advancements in modern technology, particularly in
artificial intelligence and machine learning, have been reshaping
the landscape of HRC. However, the majority of HRC tasks are
currently performed by humans. Some research efforts have
attempted to use structured programming to control robots for
automated disassembly, but these approaches often overlook the
highly dynamic disassembly environment and the uncertainties
related to the historical service conditions of power batteries.
Consequently, scaling up and applying such solutions on a wide
scale becomes challenging (Parsa and Saadat, 2021). To address
these challenges, Lv et al. (2021) proposed a novel framework for
HRC assembly based on the digital twin technique, which enhances
the efficiency and safety of power battery assembly. Additionally,

Jiang et al. (2022) constructed a structured digital twin model from
data obtained from human-computer interactions, providing an
effective tool for physical simulation and control. These research
endeavors signify significant progress in the field of HRC and lay
the foundation for further advancements in automated disassembly
and other collaborative tasks.

Robot task planning has long been a prominent area of research
in the field of robotics. It involves selecting a sequence of actions
and constraint conditions that enable a robot to change its state and
manipulate objects from an initial state to a desired target state.
These planning methods are typically leverage artificial intelligence
techniques and are customized and extended to address different
task definitions and achieve diverse solutions. For instance, in
complex multi-stage tasks, a hierarchical planning approach is
adopted to break down the overall robot task into simpler tasks
(Wöhlke, 1992). Researchers have also explored motion planning
and decision-making in uncertain situations, such as real-time
online planning and decision-making of intelligent robot behaviors
in cluttered environments (Zeng et al., 2018). However, despite the
significant progress made in this area, there exists a common
limitation—planners often require the representation of system
state information in computable symbolic form, which necessitates
pre-definition by experts in symbolic logic. This limitation greatly
restricts the applicability of task-planning approaches. Addition-
ally, many of these research studies are still confined to laboratory
settings and have yet to be extensively deployed in engineering
applications.

TraditionalHRC approaches rely on separatemodels for design-
ing HRC strategies and robot motion path planning. This lack of
correlation between differentHRC tasks poses challenges for adapt-
ing HRC systems to dynamic disassembly scenarios. Furthermore,
HRC is often limited to a single mode, which hinders the flexibility
required for disassembling different product varieties under diverse
retirement conditions.

AR assisted HRC

Augmented reality (AR) is a technology that combines computer-
generated virtual objects with real-world scenes, seamlessly inte-
grating virtual elements into the user’s perception of the environ-
ment. This is achieved using cameras and computer graphics
algorithms to overlay virtual objects onto real-world images or
videos, creating an immersive and interactive experience for users
(Cheng et al., 2020). In the context of manufacturing systems,
AR-based software can be employed to enhance the interaction
betweenmobile robots and operators. By connecting unmarked AR
tools to robot controllers, natural human-computer interaction can
be facilitated (Kousi et al., 2019).

Wei et al. proposed a distributed cognition-based AR-assisted
collaborative assembly positioning method to address the chal-
lenge of sharing augmented assembly instructions among mul-
tiple operators (Fang et al., 2022). To tackle the problem of
mismatched pins in complex aviation connectors, Li et al.
(2020) combined AR with deep learning techniques to provide
flexible and mobile automatic inspection services. Cheng et al.
(2020) proposed an AR dynamic image recognition technique
based on deep learning algorithms for identifying dynamic
images. Jia and Liu (2020) developed an AR-based collision
detection system for simulating real glass collision detection,
aiming to reduce experimental costs and risks associated with
physical experiments. Palmarini et al. (2018) conducted
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experiments demonstrating that users have higher levers in
robots when using an AR interface compared to traditional
graphical user interfaces (GUI). The AR interface provided
real-time feedback and visual cues, enhancing the user’s percep-
tion of robot actions and intentions. AR systems can offer real-
time feedback and guidance to operators during collaborative
assembly tasks with robots. Information about the assembly
process can be overlaid into the operator’s field of view using a
head-mounted display, and communication between the oper-
ator and the robot can be facilitated through a voice command
interface (Green et al., 2010; Liu and Wang, 2017). Chan et al.
(2022) employed an AR interface to set virtual robot motion
trajectories and rendered virtual models of robots and workpieces
onto real ones, providing visual indications of position calibra-
tion results and task context.

Traditional AR-HRCmethods in the past have relied mainly on
static 3D models, which involve combining virtual information
with the real world to assist users in completing tasks, particularly
in assembly scenarios. However, these traditional approaches
encounter challenges in effectively leveraging prior knowledge
and adapting to dynamic disassembly tasks in the presence of
various product varieties and diverse retirement conditions.

HRC based on transfer knowledge

In recent years, there has been a growing focus on cognitive
computing and cognitive intelligence in the field of HRC, with
notable advancement. Cognitive processes can be divided into
two main stages: perception and cognition. Through perceiving
data and the environment inHRC scenarios, cognitive abilities such
as learning, reasoning, and problem planning are continuously
acquired, making at a forefront area of research in HRC.

Li et al. proposed a method that utilizes graph-matching
networks to learn the similarity between graph-structured objects
(Chan et al., 2022). This approach incorporates the attention
mechanism to encode two graph structures into embedding,
which are then inputted into an attention network to calculate
the similarity score between them (Li et al., 2019). Qu et al.
proposed an adaptive planning method based on the digital twin
model for HRC disassembly of end-of-life lithium-ion batteries.
This method considers the state and health of the battery, as well
as the efficiency and safety of HRC. By considering the charac-
teristics of the battery and the components that require disassem-
bly, this approach can automatically adjust the disassembly
strategy and collaboration method to optimize disassembly effi-
ciency and reduce risks (Qu et al., 2023).

The application of knowledge graphs (KG) has been promin-
ent in the field of robot assembly and disassembly. Utilizing robot
knowledge and knowledge-based task specifications in robot sys-
tems, as well as knowledge-based disassembly methods, can
enhance the analysis of product disassembly and maintainability
(Stenmark and Malec, 2015). Cognitive robot agents equipped
with disassembly-related knowledge can further enhance the
automation level of the automatic disassembly process (Vongbu-
nyong et al., 2015; Favi et al., 2016). Similarly, developing know-
ledge-based systems that incorporate specific knowledge and
skills can effectively improve disassembly efficiency (Lie et al.,
2018). In addition, KG sub-technology has also found applica-
tions in this domain. For example, ontology-based dynamic mod-
eling methods are used for knowledge modeling applications,
enabling the reflection of the current state and dynamic

capabilities of industrial robots in the disassembly process, as well
as mining association relationships from disassembly process data
(Zheng et al., 2017). In terms of knowledge reasoning application,
ontology-based and case-based reasoning methods have facili-
tated fully automated and cost-saving disassembly decision-mak-
ing processes for products (Sylla et al., 2018). The emerging field
of collaborative assembly between humans and robots has gar-
nered significant attention in industrial robotics. In the context of
HRC, semantic knowledge-based reasoning frameworks can assist
intelligent devices in deriving the intention of human-computer
interaction during the teaching process (Akkaladevi et al., 2021).

The lack of updated awareness and technology in disassembly
waste products has hindered the ability to design efficient disas-
sembly operation strategies for retired power batteries, taking into
account their types, service conditions, and other relevant factors.
In various industries, product similarity is often observed in aspects
such as composition structure, operational data, and functional
characteristics, among others. The attributes of products play a
crucial role in determining their assembly and disassembly pro-
cesses. Therefore, investigating the mechanism of knowledge reuse
between similar products is highly significant in enhancing the
efficiency of disassembly strategy design. By leveraging existing
knowledge and experience from similar products, it becomes pos-
sible to optimize and streamline the disassembly processes, leading
to improved efficiency and effectiveness.

In the field of intelligent manufacturing, there is a growing
desire to enable production machines to achieve automation and
even intelligence through the application of intelligent algorithms
(Schoettler et al., 2020). One such algorithm, deep reinforcement
learning, is capable of strengthening itself by obtaining feedback
through continuous interaction with the environment. This
mechanism allows it to establish a self-learning and self-evolving
process within themanufacturing domain (Tan et al., 2010;Wang
et al., 2018). The advantages of deep reinforcement learning have
led to its widespread application in various manufacturing scen-
arios, with ongoing improvements in its practical implementa-
tion (Ding et al., 2019). For instance, the research team at the State
Key Laboratory of Digital Manufacturing Equipment and Tech-
nology of Huazhong University of Science and Technology has
leveraged the maximum entropy reinforcement learning frame-
work in the context of shaft hole assembly. This approach enables
the learning of effective assembly strategies, with the added
benefit of skill transferability between tasks, making it applicable
to real-world assembly scenarios while minimizing the need for
interaction in the physical environment (Arana-Arexolaleiba et
al., 2019). Lv et al. (2022)) proposed a strategy transmission
method for intelligent HRC assembly. In this framework, the
participating robots are regarded as agents utilizing reinforce-
ment learning, and the approach incorporates transfer learning
principles. Reinforcement learning has significantly enhanced
the learning ability and intelligence level of robots, particularly
in acquiring control strategies in fixed scenes. However, the
generalization ability of the reinforcement learning model is
often limited, resulting in poor stability and usability in dynamic
operational environments.

Previous research on HRC based on KT has primarily focused
on transferring operational strategies across different product var-
ieties. These approaches typically involvemodeling static data using
natural language processing models and transferring similar pro-
cesses from a source domain to a target domain. However, when
dealing with end-of-life power batteries of different varieties and
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retirement conditions, obtaining information solely from previous
static data is insufficient. Real-time scene perception is necessary to
acquire the retirement status of power batteries in actual disassem-
bly scenarios.

AR can address these challenges by reducing the cognitive
burden on operators and providing real-time information on the
disassembly status and retirement conditions of power batteries
through scene perception. AR leverages its convenient and efficient
human-computer interaction capabilities to develop and learn new
disassembly methods in real time, as well as update knowledge.
During subsequent disassembly processes, when encountering
tasks with similar retirement conditions, existing disassembly strat-
egies can be efficiently applied through KT to perform effective
disassembly operations.

Research method

Framework of AR-HRC system based on KT

The framework of the proposed KT-based AR-HRC system is
depicted in Figure 1. The systemutilizes scene perception to capture
the actual disassembly scenario, which includes the operator’s
skeleton key point positions, action information, tools used, and
the disassembly status of the power battery. These captured elem-
ents are then utilized to construct the corresponding scene graph.
Subsequently, the disassembly subgraph is extracted from the scene
graph. The feature vectors of the constructed subgraph are com-
pared with the corresponding process subgraphs in the existing
disassembly KG using similarity measurement. If the similarity
score exceeds a predefined threshold, it indicates the existence of
corresponding disassembly methods in the existing knowledge.
Consequently, the system can retrieve and present the disassembly
information related to the corresponding process for AR-HRC.
Conversely, if the similarity score falls below the threshold, it
signifies that no applicable methods are present in the DT-based
data manager. In such situations, the operator is required to issue

instructions to the robot through AR, devise new disassembly
strategies based on the actual circumstances, and save the new
strategies.

AR-HRC knowledge modeling

The AR-HRC system based on KT encompasses both static and
dynamic data in the modeling phase. Static data modeling
involves information that can be obtained before the actual dis-
assembly process commences. On the other hand, dynamic data
refers to real-time information acquired during the disassembly
process. To handle static data described in natural language text,
such as process flow cards and rulebook, natural language pro-
cessing techniques are employed. These techniques include
entities, their attributes, and relationships hidden within natural
language text that are automatically extracted. The extracted
information is then stored in a graph database in the form of
RDF triplets. For dynamic data acquired in real time through
scene perception, such as power battery disassembly status and
robot running status, a semantic mapping mechanism in D2R
Open-source software is utilized. This mechanism converts the
real-time data into RDF triples. To express complex relationships
between entities or entity attributes in relational databases, a
simple binary relation is employed. The specific techniques used
are shown in Figure 2:

Static data modeling
The disassembly process of HRC encompasses multi-dimensional
data, including products, robots, and processes. To achieve a con-
sistent and standardized representation of these heterogeneous data
sources and establish a foundation for future disassembly know-
ledge discovery, the information modeling is performed using a
knowledge graph. The KGmodel layer of the disassembly process is
constructed to enable a knowledge-based description of the multi-
dimensional data, such as products, robots, and processes, involved
in the HRC disassembly process. The disassembly task pattern layer

Figure 1. Framework diagram of AR-HRC system based on KT.
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describes the division of multiple task units required to complete
the disassembly operation. It reflects the procedural objectives and
outlines the specific execution process for the disassembly of prod-
uct components through a series of steps. Figure 3 illustrates how
different disassembly operations can be carried out by humans,
robots, or in collaboration. The symbols used in the figure corres-
pond to the operator (H), robot (R), augmented reality (AR), power
battery (B), component (A), part (P), feature (F), operation (O),
tool (T), and function (Fun).

The disassembly process is presented in formula (1).

P = H ∪ R ∪ AR ∪ Bf g (1)

where H represents the operations that the operator needs to
perform in this process, R represents the operations that the
working robot needs to perform in this process, AR represents
the functions accomplished by AR, and B represents the changes
in the disassembly status of the power battery. With the mode
layer of the disassembly process KG, it becomes possible to
capture the overall HRC disassembly process of the power battery,
assisted by AR.

The mode layer of the disassembly process knowledge graph
primarily focuses on describing the division of multiple task units
and operations required to complete the disassembly operation. It
provides insights into the flow and progression of the disassembly

operation. The disassembly process knowledge graph (DPKG)
mode layer is presented in formula (2).

DPKG= A ∪ P ∪ 0 ∪ T ∪ Sf g (2)

whereA represents the component, P represents the connector,O
represents the operation or disassembly method performed, T repre-
sents the tools required for disassembly, and S represents the semantic
relationship between disassembly units. The details are presented in
formula (3). It expresses the operations or functions that robots,
humans, and ARs need to perform in a disassembly sequence of
power batteries, as well as the connection relationships between the
components of the dismantled power batteries in this process.

S=
Xn

i, j= 1
Is Ai,Pj

� �� �

∪
Xn

i, j = 1
Before Ai,Aj

� �
∪
Xn

i, j = 1
After Aj,Ai

� �
∪
Xn

i, j = 1
Parell Aj,Ai

� �

∪
Xn

i, j = 1
Before Oi,Oj

� �
∪
Xn

i, j = 1
After Oj,Oi

� �
∪
Xn

i, j = 1
Parell Oj,Oi

� �

∪
Xn

i = 1

Has B,AIð Þ∪ H,Oið Þ∪ R,Oið Þ∪
Xn

i = 1

Realize AR,Funið Þ

∪
Xn

i,j = 1
ConnectorBy Ai,Pj

� �
∪
Xn

i,j = 1
Operated Pi,Oj

� �

∪
Xn

i,j = 1
Use Oi,Tj

� �

(3)

Dynamic data modeling
The end-of-life management of retired power batteries requires adap-
tation to diverse varieties, varying decommissioning conditions, and
the need for mass disassembly and recycling. However, the traditional
knowledge graph technique for disassembling retired power batteries
is insufficient in offering adequate guidance strategies due to limita-
tions posed by factors such as service life and variety. As the disas-
sembly data continues to be continuously updated, the sequential
dynamic KG emerges as a valuable resource for providing guidance
schemes for novel disassembly tasks and enhancing work efficiency.
Dynamic data can be obtained through scene perception, and the
scene perception module is shown in Figure 4.

The dynamic update of the KG is achieved through memory
fusion, which involves matching and merging external knowledge

Figure 2. Task data and environmental data acquisition for HRC.

Figure 3. Disassembly process KG mode layer.
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with its own memory. A multi-level representation model is utilized
tomatch, correlate, and fuse inherentmemory and learningmemory.
Since static data lacks temporal characteristics, it is initialized as
knowledge in inherent memory. In conjunction with real-time scene
perception of the power battery to be disassembled, algorithmmod-
ules such as semantic similarity, semantic correlation, contextual
relationships, and entity disambiguation are used to match the
entities within the instance. This process facilitates memory fusion,
leading to the generation of learning memories to be stored. Conse-
quently, temporal relationships connect both the learning memory
and the knowledge entities in the inherent memory. The update of
the KG comprises two main layers: the pattern layer and the data
layer.Updating theKGpattern layer, acting as a template, enables the
automatic population of multi-level instance data based on the
corresponding ontology pattern layer. During the update of the
power battery disassembly KG, manual correction is supported by
the integration of learningmemory and inherentmemory. Addition-
ally, adjustments are made to the ontology model architecture and
parameters of the KG to enhance its knowledge applicability. Refer to
Figure 5 for a visual representation of these processes.

Figure 5. Dynamic update of KG of decommissioned power battery disassembly.

Figure 4. Scene perception graph.

Figure 6. Comparison chart of atlas before and after updating.
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Figure 6 presents an illustrative example that demonstrates the
comparison of spectra before and after an update. In this scenario, if
the P1 connector between A1 and A2 is lost due to scene awareness,
it results in the disappearance of its entity, as well as its relationship
with A1 and A2, and the associated operations. Simultaneously, the
detection of damage to the A1 component allows for the indication
of its damage situation through its corresponding attributes.

Similarity assessment of disassembly subtasks

Power batteries of different varieties and retirement conditions
often exhibit similar disassembly structures and processes. The
knowledge base stores local topological structures that share similar
representations. Accumulated raw data allows for swift retrieval of
solutions from the knowledge base. Disassembly process know-
ledge is stored in the KG as triplets, facilitating rapid identification
of identical or similar disassembly processes through disassembly
subgraph similarity. Figure 7 demonstrates the combination of
dynamic data acquired during the actual disassembly process with

the original static data, resulting in the generation of a disassembly
process subgraph. This subgraph is then matched with existing
disassembly process cases in the knowledge base. Graph-matching
neural networks are utilized to assess the similarity between two
subgraphs, determining the similarity of the corresponding disas-
sembly processes.

Table 1 presents component node IDs along with their corres-
ponding node triplets. The system utilizes the cross-linear KG

Figure 7. Similarity calculation of cross-domain migration for HRC disassembly strategies.

Table 1. Partial component node IDs and corresponding node triplets

ID Components and parts Triplet

0 Lower shell 0 234 2

1 Cell lid 1 432 5

2 Separator 2 182 53

3 Module 3 230 6

4 Cooling system 4 164 80
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alignment via Graph graph-matching neural network (GMNN) as
its graph-matching model. To enhance matching efficiency, this
model does not evaluate the equivalence of relationships between
two subgraph nodes. Consequently, the relationship within a triplet
can be substituted with any number, which serves no semantic
purpose other than denoting a relationship between the two nodes.

AR-HRC KT update

As illustrated in Figure 8, in the proposed framework, the process
subgraph of the current disassembly product is compared with the
corresponding process subgraphs in the existing disassembly KG
using a graph-matching neural network to assess their similarity.
The resulting similarity score is then evaluated against a threshold.
If the similarity score exceeds the threshold, it signifies the presence
of similar processes in the knowledge repository. Conversely, if the
score falls below the threshold, it indicates the absence of similar
processes.

For the process that is similar to historical ones, correspond-
ing disassembly strategies can be retrieved from the knowledge
repository. However, for dissimilar tasks, a human-robot inter-
active self-learning approach is employed. In this approach, the
human operator guides the robot through AR for the disassem-
bly task, and the experience is stored in an experience pool. The

scene perception module records the retirement status of the
power battery, disassembly states, and human operations during
the process. AR and the robot work together to acquire collab-
orative strategy knowledge, complementing and enhancing the
information in the knowledge repository. The updated know-
ledge graph is adjusted through AR. Compared to the conven-
tional approach of humans using robot control panels for
strategy development and path planning, formulating strategies
through AR-based HRC is more efficient. With AR, the human
operator can interact with the robot’s digital twin anytime and
location by using the AR operation panel to develop strategies
and plan paths, while the physical robot remains synchronized
with its digital twin. Moreover, the results of scene perception
can be visually displayed to users through AR, providing a more
intuitive experience.

As illustrated in Figure 9, in situations where the internal
hexagonal screw slips and cannot be loosened with an Allen
wrench, and there is no existing strategy in the knowledge reposi-
tory, the operators must devise a new strategy based on their
experience. In this case, a drilling machine is required to grind
the slipping screw into a slightly larger internal hexagon shape.
Subsequently, a larger-sized Allen wrench is used to unscrew it.
During the grinding process, the robot is responsible for securing
the work piece connected to the screw. Specific instructions and

Figure 8. AR-HRC KT update.
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fixation point coordinates are provided to the robot for executing
the corresponding operation. The scene perception module iden-
tifies the three-dimensional positions of the various components,
and AR provides a visual representation to operators, allowing
them to intuitively determine the three-dimensional positions of
the components. Through AR-HRC, operators can manipulate the
virtual robot to reach the specified positions. Importantly, the
physical robot maintains synchronized poses with the virtual robot
throughout this process.

Case study

Disassembly environment

The AR-HRC disassembly environment encompasses various
elements, including multiple data sources, entities, and dynamics
characteristics. It consists of a worker, a robot, AR glasses, depth
cameras, power batteries, tools, and a workbench. Figure 10 shows
cases of the AR-HRC disassembly environment, which leverages
digital twins and can be segregated into two sections: the virtual
disassembly environment and the physical disassembly environ-
ment. The digital twin system integrates four primary modules:
(1) the virtual simulation module: executes the current collabora-
tive strategy and generates heterogeneous data related to the dis-
assembly process. It simulates the actions and interactions of the
virtual components involved in the disassembly task; (2) the data

analysis and processing module: upon receiving the simulation
data, this module analyses the transmission effect of the HRC
strategy. It assesses how well the collaborative strategy is being
executed and identifies areas for optimization. It transforms the
optimized strategy into actual control commands that drive theAR-
HRC system; (3) the AR-HRCphysical controlmodule: receives the
control commands generated by the data processing module and
transfers them to the digital twin of the robot. The real robot then
follows the actions of the virtual robot, replicating the operations in
the physical disassembly environment; and (4) the AR-HRC know-
ledge update module: as humans are assisted by AR and the robot,
this module facilitates the acquisition of collaborative strategy
knowledge. It enables the system to learn and accumulate relevant
information to enhance and complement the existing knowledge
base. Operators can utilize AR to adjust the updated graph, ensur-
ing that the system remains up-to-date and aligned with the latest
insights. The specific functionalities and visualization content pro-
vided by AR are depicted in Figure 11, including AR simulation,
disassembly strategy updates, scene awareness, and AR disassembly
guidance.

Construction of disassembly diagram for power batteries

The data layer is the most fundamental level in a knowledge graph,
which includes actual data, facts, and entities. These data are usually
organized in the form of graphs, where nodes represent entities and

Figure 9. Example diagram of new strategy development.

Figure 10. Disassembly environment.
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edges represent relationships between entities. The pattern layer is
located above the data layer and defines the structure, semantics, and
constraints of entities and relationships in the data layer. The pattern
layer includes definitions of entity types, attributes, relationship types,
and constraints. We defines the relationships between humans, AR,
robots, tools, and batteries through the knowledge graph pattern layer.
In this section, the Protégé ontology modeling tool was used to
construct the disassembly processKGpattern layer for the disassembly
process, as depicted in Figure 12. The ontology modeling form
employed can be expressed using the RDF/XML language, which
facilitates easy parsing by computer programs. Therefore, it serves as
a suitable data template file for the KG data layer.

Once the disassembly sequence KG schema layer was obtained,
the structural information concerning the disassembly between
components was obtained by integrating CAD models and disas-
sembly operational manuals. Subsequently, the instance data layer

was developed using neo4j, as illustrated in Figure 13. In the figure,
the red nodes represent power battery models, the blue nodes
represent component units, the light blue nodes represent part
units, the dark blue nodes represent connector units, the pink nodes
represent the disassembly operations corresponding to the current
part, and the gray nodes represent the tools used.

Disassembly subgraph similarity matching

This experiment used the S471 standard C package and S472
standard G package as objects for similarity matching experiments.
The S471 package consisted of 137 nodes and 277 triplets, while the
S472 package consisted of 145 nodes and 366 triplets. These data-
sets were used for training the model. The hardware resources
utilized in the experiment included a GTX 1080Ti graphics card
and 8GBmemory. The hyperparameters of this model are shown in

Figure 11. AR visualization content.

Figure 12. DPKG pattern layer.
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Table 2. As shown in Figure 14, it can be observed that the entity
alignment loss achieved a minimum value of 0.366, while the
classification accuracy reached a maximum value of 0.724.

Demolition system comparison test

Comparative experiment on collaborative disassembly of slipping
screws
In this experiment, the objective was to address a scenario where the
mechanical arm needed to reach a specific position to fix a com-
ponent when the screw slipped. The operator was assisted in

grinding the screw into a larger size and then unscrewing it. A total
of 10 individuals conducted 20 collaborative experiments each, and
the results presented in Table 3 represent the average outcomes
from all the experiments. The findings indicate that the AR-HRC
method achieved a time of 18.34 s, which is shorter than the 23.48 s
required by the Pre-programming method. This improvement can
be attributed to the AR-HRC method’s ability to swiftly acquire
accurate position information through AR, enabling the robot to
navigate efficiently without unnecessary deviations. In contrast,

Figure 13. DPKG data layer.

Figure 14. Entity alignment loss (left), classification accuracy (right).

Table 2. Hyper-parameters

Learning rate 0.01 Hidden dimension 128

Batch size 128 Number of epochs 20

Table 3. The performance of collaborative disassembly with different methods

Method Collaboration time Collision rate

AR–HRC 18.34 s 0.2%

Pre–programming 23.48 s 2.2%
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pre-programming methods lack the capability to obtain real-time
and precise position information through AR, leading to subopti-
mal robot paths. Moreover, the collision rate of the AR-HRC
method was observed to be 0.2%, significantly lower than the
2.2% collision rate associated with Pre-programming. This reduc-
tion can be attributed to the AR-HRCmethod’s ability to detect the
distance between the robot’s digital twin and key points on the
operator’s skeleton. By maintaining a safe distance, the AR-HRC
method proactively stops the robot and alerts the operator through
AR in situations where the distance falls below the predefined safety
threshold.

Experiment with evaluating overall disassembly efficiency
In the overall disassembly efficiency experiment, 10 operators were
selected to conduct 20 disassembly tests per person, and MR-
HRCD and pre-programming were conducted 10 times each.
Two experiments were conducted alternately to prevent an increase
in operator proficiency after 10 rounds of one experiment. The
overall efficiency of the latter experiment has greatly improved. The
10 participants in the experiment had a male-to-female ratio of 1:1,
all aged between 20 and 40 years old, including experienced old
operators and inexperienced new operators, its ratio is one-to-one.
Record the disassembly time of each experiment, remove the lowest
and highest datasets for each experiment, and then take the average
of the remaining eight sets of 80 sets of data for each person. At the
same time, the working time and waiting time of operators and
robots in each experiment were recorded. Working time refers to
the total time spent by amachine or person on all operations in each
experiment. The waiting time is the total time between two oper-
ations of the machine or person in each experiment, as shown in
Figure 15. The total time is equal to the working time of the robot
plus the waiting time of the robot. The overall time for the AR-HRC
method was found to be 928 s, significantly lower than the 1157 s
required by the pre-programming method. The working hours and
waiting times of operators and robots using the AR-HRC method
were observed to be lower compared to the pre-programming
method. This can be attributed to the fact that pre-programming
methods often result in redundant robot paths, as their motion
trajectories, speeds, and start times are pre-determined and cannot
be adjusted. In contrast, the efficiency of the operator may vary
during the operation, leading to waiting time between robot
actions. The AR-HRC system, through real-time scene perception,
obtains accurate position information of the human body and
objects, as well as ongoing operations. This facilitates timely assist-
ance and enables optimal route planning for the robot. Conse-
quently, the AR-HRC method reduces the working hours for
robots and the waiting times for operators. The visualization pro-
vided by AR also enhanced the work efficiency of operators,

resulting in reduced work time for operators and decreased waiting
time for robots.

This study selected two mainstream retired power battery
models (S471 and S472, respectively) for method validation. The
results showed that the AR-HRC system can improve the disas-
sembly efficiency of retired power batteries and the safety of HRC.
The proposed method can be applied to other retired power battery
models, as long as the system learns the dataset of the relevant
battery models. Based on the conditions of the university labora-
tory, the experimental results have proven that it can meet the
requirements of improving disassembly efficiency and HRC safety.
Hardware equipment is used in industrial applications.

Conclusions and future work

The proposed AR-HRC framework demonstrates effective
improvements in the responsiveness of disassembly systems. The
characteristics of the AR-HRC system are described from three
aspects: intelligent generation of AR-HRC policies, similarity
assessment, and policy transfer methods. Based on experimental
analysis, the relevant conclusions can be drawn:

1) AKT-based AR-HRC system is proposed to address the flexible
disassembly requirements of various types of power batteries
and retirement conditions. This system enables adaptable dis-
assembly processes tailored to different scenarios.

2) A KG-based method for AR-HRC disassembly sequence plan-
ning is introduced. The disassembly sequenceKG is generated by
modeling both static and dynamic data. This approach provides
a comprehensive representation of the disassembly process.

3) A disassembly subgraph similarity matching method is pro-
posed, which encodes dynamic data and evaluates process
similarity by combining it with static data. This method
enables efficient retrieval of similar disassembly processes
from the knowledge base.

4) A KT update method based on the AR technique is presented,
which integrates operator decisions with existing strategies
through real-time interaction using AR. This allows for the
generation of new disassembly strategies based on the actual
disassembly situation.

Compared with previous related research, the proposed
approach can improve human-computer interaction ability,
shorten operators training time, and adapt to the disassembly
requirements of multiple types of power batteries. With the popu-
larization of electric vehicles, battery recycling and reuse have
become increasingly important. This system can be used in the
disassembly process of battery recycling, automatically identifying
battery components, achieving efficient disassembly and sorting. It

Figure 15. Comparison diagram of HRC disassembly efficiency.
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would help provide reliable technical support for battery recycling
and recovery. This system can also be used in the fields of training
and education to provide training on battery disassembly skills for
practitioners. Through AR technology, virtual combat scenarios
can be achieved, helping operators master the skills and technical
points of battery disassembly, and improving work efficiency and
safety. The AR-HRC system based on transfer learning can serve as
a customized solution, providing personalized battery disassembly
systems for enterprises. However, there are limitations in this study.
The disassembly scenario requires different retirement conditions,
and the recognition effect of instance segmentation will not be as
good as its recognition effect in assembly scenarios. Considering the
complexity of the disassembly scene, future research can explore
incorporating scene graph representations to provide users with
more intelligent and user-friendly AR assistance. Additionally,
utilizing point clouds for 3D modeling, recognition, analysis, and
development of the practical disassembly environment can
enhance the quality of digital twin modeling.
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