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We show that the energy required by a turbulent flow to displace a given amount of fluid
through a straight duct in a given time interval can be reduced by modulating in time
the pumping power. The control strategy is hybrid: it is passive, as it requires neither a
control system nor control energy, but it manipulates how pumping energy is delivered
to the system (as in active techniques) to increase the pumping efficiency. Our control
employs a temporally periodic pumping pattern, where a short and intense acceleration
(in which the pumping system is on) followed by a longer deceleration (in which the
pumping system is off) makes the flow alternately visit a quasi-laminar and a turbulent
state. The computational study is for a plane channel flow, and employs direct numerical
simulations, which present specific computational challenges, for example the highly
varying instantaneous value of the Reynolds number, and the importance of discretisation
effects. Particular care is devoted to a meaningful definition of drag reduction in the present
context. The ability of the forcing to yield significant savings is demonstrated. Since only
a small portion of the parameter space is investigated, the best performance of the control
technique remains to be assessed.

Key words: turbulence control

1. Introduction

In the ever-growing field of flow control for turbulent drag reduction, techniques are
conventionally grouped into active and passive, with the latter typically including special
roughness (e.g. riblets) and other boundary treatments for which no control energy is
required. In this paper, concerned with skin-friction drag reduction in a turbulent plane
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channel flow, we demonstrate the success of an approach that requires no control system
or energy as in passive techniques, and delivers pumping energy in a time-varying manner,
eventually increasing the pumping efficiency.

Modulating in time the injection of the pumping power into the system is one of the
least considered (yet one of the simplest) approaches to flow control. Recent progress in
understanding the transient nature of turbulence points to the potential of an unsteady
power delivery, designed to move the flow back and forth between the laminar and
turbulent regimes. The strategy studied in this work, and preliminarily introduced by
Foggi Rota et al. (2023), consists of a periodic pumping with an on–off waveform, which
produces a sequence of accelerations and decelerations.

The literature concerning sudden flow accelerations and decelerations (Mathur et al.
2018), as well as periodic pulsatile flows (Xu, Song & Avila 2021), is vast. Since the
seminal study of Tu & Ramaprian (1983), the ability of the oscillating forcing to alter
the mean flow and to achieve drag reduction has been a debated issue. It has been
shown (see for example Manna, Vacca & Verzicco 2015) that a reduction of the mean
turbulent friction is possible by harmonically modulating the driving pressure gradient.
This strategy, however, requires a huge amount of extra energy, and results in an overall
decreased efficiency: the total energy would be better spent for conventional, steady
pumping.

Although most studies employ harmonic pulsations of the streamwise pressure gradient
superimposed on a steady component, it is also known that non-sinusoidal waveforms
(Brindise & Vlachos 2018; Ciofalo 2022) might produce a different response of the
flow, with the deceleration time and the acceleration intensity being the parameters that
transition is most sensitive to. For an efficient use of pumping energy, we employ a strategy
inspired by Iwamoto, Sasou & Kawamura (2007), who numerically studied a plane channel
flow (an experimental followup was presented by Souma, Iwamoto & Murata (2009), for
a pipe flow) driven by a time-varying pressure gradient −Π(t). The periodic function
−Π(t) was a square wave of period T , with average value −Π̄ , cyclically alternating
between a negative value −Π̄ − �Π during one half of the cycle and a positive value
−Π̄ + �Π (since �Π > Π̄ ) during the other half. By judiciously choosing the value
of the period, they found that the cycle-averaged skin friction can be reduced compared
with a canonical channel flow that produces the same flow rate. Recently, the same group
(Kobayashi et al. 2021) replicated the experimental study for a low-Reynolds pipe flow;
the parameter space was explored in depth by automatically generating more than 7000
waveforms producing approximately the same flow rate, and confirming the reduction of
the cycle-averaged skin friction. However, these promising results should be considered
together with their limitations. In their original study, the baseline Reynolds number was
highly subcritical, and only five periods and one waveform with a single amplitude were
investigated; moreover, the changing sign of Π(t) during the cycle implies that energy
recovery during one half of the cycle is needed to achieve true savings, which renders the
strategy technologically complex.

In this paper, we consider a time-varying pressure gradient that yields large reductions
of drag in a turbulent plane channel flow, using high-fidelity direct numerical simulations
(DNSs). A single temporal waveform for the pressure gradient, made by a simple on–off
sequence, is employed. The energetic efficiency of the procedure and its variation with the
control parameters are assessed, and the dynamics of relevant bulk quantities is discussed.

The paper is organised as follows: in § 2 we describe the problem set-up and the nature of
the forcing, providing details on our numerical methods and procedures. We also elaborate
on the concept of ‘drag reduction’, which becomes particularly delicate in the present
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Figure 1. (a) Temporal variation of the function Π(t) employed in the present work, with period T and duty
cycle ξ . The cycle-averaged value Π̄ is kept constant across the numerical experiments, as the maximum
intensity is Π̄/ξ . (b) Sketch of the money–time plane, with the energy E (money) needed to move the fluid
through the duct on the vertical axis, and the inverse of the required time on the horizontal axis. The continuous
line is the turbulent friction law, which describes all the uncontrolled flow states; the dashed line corresponds
to the laminar regime. The black dot on the turbulent line represents a generic uncontrolled flow state, while the
red dot, below the turbulent line, is a successfully controlled flow state, more efficient than the natural turbulent
flow. The four grey dots on the turbulent and laminar lines are flow states used to quantify control performance
(see text).

context, owing to the lack of a unique reference flow configuration to compare with. The
main results of the numerical study are presented in § 3, followed by concluding remarks
in § 4.

2. Problem set-up

2.1. The on–off pumping
The numerical study is carried out by DNS of the incompressible Navier–Stokes equations
in an indefinite plane channel. The geometry consists in two planar walls, separated by a
distance 2h; a Cartesian coordinate system is employed, with axes x, y and z aligned with
the streamwise, wall-normal and spanwise directions.

In the numerical simulation of a turbulent channel flow, a volumetric forcing is adopted
to drive the fluid. It is customary set to a constant value, or instead a continuously adjusted
value to maintain a constant flow rate (Quadrio, Frohnapfel & Hasegawa 2016). In the
present case, the forcing is a homogeneous, temporally periodic streamwise pressure
gradient −Π(t), whose waveform is a simple on–off pulsation with period T , switching
between a prescribed constant value and zero, as schematically shown in figure 1(a). Albeit
inspired by the earlier work of Iwamoto et al. (2007), the present forcing does not lead to
an adverse pressure gradient during the deceleration phase, and does not rely on energy
recovery.

Whenever the pressure gradient is time periodic, the number of parameters describing a
parallel duct flow increases from one (typically, the Reynolds number) to three (Akhavan,
Kamm & Shapiro 1991): in this work, they are the period T , the duty cycle ξ (i.e. the
fraction of period with active pumping, 0 < ξ ≤ 1) and the value of Π during the on
phase. The number of parameters reduces to two by constraining the cycle-averaged value
Π̄ of the pressure gradient to remain constant, as illustrated in figure 1(a). In the present
study, Π̄ is set equal to the pressure gradient of a conventional turbulent channel flow
at Reτ ≡ uτ h/ν = 180. Thus, the forcing term Π(t) switches between Π = Π̄/ξ for a
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fraction ξT of the period, and Π = 0 for the remaining part, i.e.

Π(t) =
⎧⎨
⎩

Π̄

ξ
for nT ≤ t < (n + ξ)T,

0 for (n + ξ)T ≤ t < (n + 1)T,

(2.1)

where the integer n indicates the generic nth forcing cycle.

2.2. The numerical set-up
Two different DNS solvers are used to ensure the robustness of the results. The first
code (Mazzino & Rosti 2021), primarily used to produce all quantitative information,
discretises the Navier–Stokes equations on a staggered Cartesian grid, with a hyperbolic
tangent distribution employed in the wall-normal direction. The spatial derivatives
are approximated using second-order finite difference schemes, while an explicit
Adams–Bashforth scheme is adopted for the time advancement, with a bound on the
Courant–Friedrichs–Lewy (CFL) number used to dynamically adjust the time step. The
pressure coupling is solved by implementing the fractional-step method proposed by Kim
& Moin (1985), with the resulting Poisson equation solved using a fast pressure solver.

The second code (Luchini & Quadrio 2006), used to verify selected cases and to confirm
the robustness of the most important claims, solves the normal-velocity normal-vorticity
formulation of the Navier–Stokes equations as introduced by Kim, Moin & Moser (1987).
The equations are spatially discretised with a spectral method along the homogeneous
directions, while fourth-order compact and explicit finite difference schemes are adopted
to approximate derivatives along the wall-normal direction. A partially implicit approach,
combining the explicit third-order low-storage Runge–Kutta and the implicit second-order
Crank–Nicolson schemes, is used for the temporal advancement of the equations, with the
time step adjusted according to the CFL number imposed.

The present simulations involve pressure gradients and, consequently, flow rates that
vary during the period T; this poses important challenges in terms of time and space
discretisation. An extremely accurate time integration is needed, much as in stability and
transition problems: the value of the CFL number, that typically assumes values at or
above unity in turbulent channel flow simulations as long as the stability limit of the time
integration scheme allows (Choi & Moin 1994), is kept at 0.1 here, since it has been
verified that higher values lead to spurious results affected by the time step size.

Several discretisations, in terms of size of the computational domain and spatial
resolution, are considered. The latter is typically expressed in plus or viscous units; in the
present, unsteady flow, a reference Reynolds number must be selected to define viscous
units. Since the chosen value of Π̄ corresponds, for a steady forcing, to the value Reτ =
180, the + units employed throughout the paper are defined for Reτ = 180. The core of the
study uses grid spacings of �x+ = 6.6 and �z+ = 3.3 along the homogeneous directions,
with a minimum grid size of �y+ = 0.5 at the wall and a maximum of �y+ = 3.2 at
the centreline. Such sizes would be more than adequate for a conventional channel flow
at Reτ = 180, but require further consideration here: in fact, during the pumping cycle,
the instantaneous value of Reτ grows by up to three times compared with the reference
Reτ = 180. Unfortunately, correspondingly finer meshes would lead to a computational
load we cannot afford. However, we have confirmed with a simulation on a coarser mesh
(with �x+ = 13.2, �z+ = 6.6 and �y+ = 0.6–4.1) that the key quantity, i.e. the energy
saving, computed for the best performing case, is essentially unchanged, with a relative
1 % variation only. Furthermore, a few forcing cycles have been recomputed with two
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successively refined grids, up to �x+ = 2.2, �z+ = 1.1, �y+ = 0.09–1.2. Although the
number of cycles was insufficient for a proper statistical assessment, we have obtained the
same temporal evolution for the key quantities described in figure 3.

Results are also sensitive to the size of the computational domain. All cases have been
preliminarily run on a computational box with Lx = 3πh, Ly = 2h and Lz = 1.5πh, but
all those providing drag reduction have been recomputed with the wall-parallel size of the
computational domain increased to 6πh × 3πh, correspondingly increasing the number
of grid points. Two additional checks, with computational domains of (Lx, Lz) = (9πh ×
4.5πh) and (Lx, Lz) = (16πh × 3πh), are discussed in § 3.1.

The production simulations, starting from an initial flow field at Reτ = 180, are run
for nineteen cycles for cases leading to drag increase, and thirty six for the others. In the
cycle-averaging procedure the first cycle is always discarded, as it bears memory of the
initial condition.

2.3. A meaningful way to evaluate performance
A proper metric is needed to evaluate the performance of the pumping strategy.
The prescribed pressure gradient is constrained to always have a cycle-averaged value
corresponding to that of a canonical turbulent channel flow at Reτ = 180. It would thus
be natural to compare the achieved flow rate with that at Reτ = 180, and discover that the
flow rate can be almost doubled. However, there is an extra energy cost that needs to be
factored in, so that an increased flow rate is not sufficient to define a successful control.
Instead, it must be verified that the amount of energy required by the unsteady pumping
gets used more efficiently than by the standard steady pumping.

A tool that is well suited for this assessment was introduced by Frohnapfel, Hasegawa &
Quadrio (2012). They represented in the so-called money–time plane the pumping energy
E required to move a given amount of fluid through a straight duct in a given time vs
the quantity h/Ub (with Ub the bulk velocity), which represents the time taken by a fluid
particle to travel for the reference length h, referring to the first variable as money and to the
second as time or (in)convenience. A natural turbulent flow is represented on this plane by
a point which moves along a line (representing the turbulent friction law) as the Reynolds
number is changed. The line can be drawn by e.g. resorting to the Blasius correlation
(Schlichting 1979) to link the friction coefficient Cf with the Reynolds number, so that
Cf ∝ U−1/4

b and E ∝ U7/4
b . In figure 1(b), the money–time plane is sketched (with the

variable on the horizontal axis changed to Ub/h with respect to the original version) with
the addition of the laminar line, where Cf ∝ 1/Ub and E ∝ Ub. The plane is partitioned
in three regions. Theoretical arguments (Fukagata, Sugiyama & Kasagi 2009) ensure that
the region below the laminar line is unreachable (even with active control, provided that
the control energy is accounted for). The goal of successful flow control, which increases
the energy efficiency of the flow, is to reach a point in the graph that sits in the grey area
below the turbulent line (as the red dot in figure 1). No unique way exists to move the
natural flow state (black dot in figure 1) towards the laminar line.

To make the present analysis quantitative, a figure of merit is required. It can describe
either energy savings, or improved performance or both. Energy saving is expressed by
the distance along the vertical axis between the controlled flow with energy expenditure
Ec and the point on the turbulent curve with the same flow rate and energy expenditure
Et. Thus, the energy figure of merit Se for the savings is Se = (Et − Ec)/(Et − E�), where
the denominator Et − E� accounts for the impossibility of reaching below the laminar
curve, and thus represents the maximum possible savings. An analogous indicator that
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Figure 2. The DNS results (filled coloured symbols) compared with the reference uncontrolled flow
(continuous line), the laminar flow (dashed line) and relevant results taken from the literature. The colour
of the filled symbols encodes the forcing period, and their shape refers to the value of the duty cycle. The
results from Iwamoto et al. (2007), Kobayashi et al. (2021) and opposition control data reported by Frohnapfel
et al. (2012) are represented as blue, red and yellow crosses, respectively. The black dot on the reference line
corresponds to Reτ = 180.

quantifies the improved convenience is defined by considering the achieved flow rate: Sc =
(1/Ub,t − 1/Ub,c)/(1/Ub,t − 1/Ub,�).

3. Results

3.1. Control performance
The study samples the parameter plane T − ξ in twenty points with the finite difference
code introduced in § 2. Eighteen points were determined after a previous, less resolved
analysis (Monti 2015) carried out with the spectral code, where the periods T+ ∈
[3600, 10 800, 14 400] and the duty cycles ξ ∈ [0.005, 0.0125, 0.025, 0.0375, 0.05, 0.1]
were considered. (Note again that, as stated above, viscous units are defined for a
conventional channel flow at Reτ = 180.) Two additional points at the longer period
T+ = 18 000 and ξ ∈ [0.025, 0.1] are added to complete the dataset. The successful cases
(namely, those with T+ = 10 800, ξ ∈ [0.025, 0.1] and all those with the longest periods
T+ = 14 400 and T+ = 18 000) are run on the largest computational domain.

The outcome of the study is plotted in figure 2 on the money–time plane, where the two
quantities on the coordinate axes are now made dimensionless with Reb (convenience) and
Cf Re2

b (energy). The quantities Ub and Cf are time averaged over the cycles, once the first
cycle is discarded. Denoting the time average with an overbar, in particular, we compute
Cf = (2/ρ)(ΠUb/Ū3

b). The point corresponding to the canonical turbulent channel flow
at Reτ = 180 (or Reb ≈ 2800) is also plotted; by definition, it sits on the turbulent curve.
For comparison, we include results obtained by Iwamoto et al. (2007) and the more recent
ones presented by Kobayashi et al. (2021). Two points reported by Frohnapfel et al. (2012)
and corresponding to opposition control (Choi, Moin & Kim 1994) are highlighted as well.

Cases with the smallest period nearly overlap at various ξ ; although their flow rate
is increased slightly compared with Reτ = 180, they all lie above the turbulent line and
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provide no savings. Cases at T+ = 10 800 are more scattered, but consistently produce
negative performance. However, all the cases with the longest periods, i.e. T+ = 14 400
(with the exception of the smallest duty cycle ξ = 0.005) and T+ = 18 000 lay clearly
below the turbulent curve, and attest to the success of the control technique. Although
details are not shown here, this outcome is robust with respect to the number of
periods considered for the averaging. We have measured that the value of the saving Se
computed for the best-performing case by averaging over 35 cycles has reached statistical
convergence, since its running average has a relative fluctuation of less than 3 % over the
last periods of forcing.

The best performing case (T+ = 18 000 and ξ = 0.1) yields Se = 0.27 and Sc = 0.17,
i.e. a 27 % energy savings or, if preferred, a 17 % improvement in convenience. These
figures can be compared with those by one of the most successful flow control approaches,
namely the opposition control (Choi et al. 1994), designed to cancel turbulence in
numerical experiments where the flow state is known, at all times and positions, in a
sensing wall-parallel plane and a counteracting time-dependent distributed non-uniform
blowing/suction is applied at the wall. From the work by Frohnapfel et al. (2012), the
opposition control at a comparable Reynolds number (i.e. Reb ≈ 5000) yields Se ≈ 0.23
and Sc ≈ 0.13. Note, however, that the opposition control is an idealised active control
technique, requiring distributed real-time sensing within the flow, and real-time distributed
actuation: its practical implementation is extremely difficult, while the present system is,
in principle, simple, and requires neither sensors nor actuators.

There is no reason to assume that the drag reduction made possible by unsteady pumping
as measured in this study could not be outperformed. In fact, the parameter space and the
temporal wave form have been only preliminarily explored in present study, whose results
should only be considered as a lower limit for the drag reduction potential. Furthermore,
the streamwise length of the computational domain is not sufficient to provide a drag
reduction figure that is truly domain independent. Only for the best case at T+ = 18 000
and ξ = 0.1, have we carried out two additional simulations in larger computational
domains: their wall-parallel size is 9π × 4.5π and 16π × 3π, discretised with grids of
spacing �x+ = 6.6, �z+ = 3.3, �y+ = 0.5–3.2 and �x+ = 13.2, �z+ = 6.6, �y+ =
0.6–4.1, respectively. In both cases Se ≈ 0.4 has been reached, suggesting that a domain
of wall-parallel size 9π × 3π might be needed to yield nearly domain-independent results.

3.2. Intra-cycle dynamics
The flow undergoes a significant evolution during each forcing cycle. The time evolution
of the bulk velocity Ub(t) is described by

∂Ub(t)
∂t

= Π(t)
ρ

+ 〈τw〉(t)
ρh

, (3.1)

where t is the time, and 〈τw〉 is the space-averaged wall shear stress. The balance above
describes the interplay among flow inertia (whose time average is zero), the driving
pressure gradient and the wall friction at every instant of the forcing cycle. In particular,
during the acceleration phase the unsteady term balances the large pressure gradient
while the wall shear stress builds up: a steady state would be eventually attained when
∂Ub/∂t = 0. During the deceleration, conversely, Π is identically zero and the mean flow
decays at a rate imposed by the wall shear stress.

Figure 3 illustrates the flow dynamics within one representative cycle, in terms of
the time evolution of the global quantities featured in the balance (3.1). As expected,
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Figure 3. Time evolution of the forcing term Π (a), the corresponding flow rate (b), the friction-based
Reynolds number Reτ (c) and the cross-plane turbulent kinetic energy K⊥ (d), during one representative cycle,
for T+ = 14 400 and ξ = 0.1. (e) Shows the flow rate over the first 20 cycles, with the inset zooming in on the
last peak.

when the driving pressure gradient Π(t) is active in the first portion of the cycle
(a), the flow is accelerated and the flow rate (i.e. the bulk velocity Ub) undergoes a
significant growth (b). Although the flow rate would eventually settle to the new level
consistent with the constant value Π̄/ξ , on the time scale ξT the increase of Ub is nearly
linear, implying a strong non-equilibrium in which the pressure gradient overwhelms
friction. During the acceleration phase, the streamwise velocity profile changes too, and
its wall slope increases, as seen by the instantaneous value of Reτ computed from the
space-averaged and instantaneous wall stress (Reτ = (h/ν)

√〈τw〉/ρ) for 0 ≤ t ≤ ξT (c).
It is known (Greenblatt & Moss 1999) that, during intense accelerations, turbulence can
be destroyed, and the flow can approach re-laminarisation. Panel (d) plots the evolution of
the volume-integrated cross-stream turbulent kinetic energy

K⊥ = 1
4hLxLz

∫ 2h

0

∫ Lx

0

∫ Lz

0
(v2 + w2) dx dy dz, (3.2)

which provides a direct indication of the turbulent state of the flow, while neglecting
longitudinal velocity fluctuations around the time-varying streamwise velocity profile.
This quantity is extremely small at the beginning of the acceleration, and remains so for
a rather long time after t/T = ξ . Once the pumping is turned off at t/T = ξ , the flow
slows down because of viscous losses: Ub and Reτ decrease, while K⊥ remains nearly
zero. However, after some finite time delay (at approximately t/T ≈ 0.45 for the period
considered), the decay rate of Ub suddenly increases and a noticeable kink is observed
in the Ub(t) curve of (b). At the same time instant, Reτ peaks again, reaching the largest
value during the cycle, and K⊥ quickly rises to a large local maximum: in a very short

966 A12-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.451


On–off pumping for drag reduction in a turbulent channel flow

time, the flow becomes turbulent. Note that, the later the kink appears in the curve of
the flow rate, the larger is the cycle-averaged flow rate, and thus the drag reduction, as
in this part of the cycle pumping is off, and a larger flow rate comes at no extra energy
costs. After this sudden transition to turbulence, in the absence of pumping the flow decays
normally until, at the end of the cycle, Ub is very low, Reτ reaches a small value, and K⊥
becomes nearly zero again. The remnants of turbulence are further annihilated during the
following acceleration; however, traces of the turbulent structures remain which eventually
determine the next transition during the following pumping cycle. Panel (e) of figure 3
shows a fraction (twenty periods) of the whole time history for the flow rate, including
the first cycle that is directly affected by the initial condition and is thus discarded when
computing statistics. The qualitative behaviour described above in (b) is observed at every
cycle, but with significant quantitative inter-cycle variations. The kink in the curve of
the flow rate which marks the onset of turbulence is always present, but the time of its
occurrence changes, ranging from very shortly after the pump being switched off (as
in the last period reported in the red inset) to the middle of the forcing cycle (as in the
second period). The time delay between the end of the acceleration and the kink should
therefore be regarded as a random variable, whose mean value affects drag reduction.
The time history also shows an apparently random appearance of subharmonic dynamics.
An example is the two-period pattern, visible from t/T = 12 onwards in figure 3(e), in
which the kink appears alternately very shortly after the end of acceleration, and rather far
from it. Visual analysis of the whole set of time histories reveals that such events involve a
variable number of periods and appear randomly in time, possibly due to a lock-in between
the forcing and a characteristic frequency of the system. While this analysis is beyond the
aim of this preliminary study, we cannot rule out the possibility that such a dynamics has
a role in determining the overall drag reduction.

3.3. Effect of the control parameters
To assess the effect of the control parameters (T and ξ ), it is instructive to compare across
all cases two key quantities extracted from each pumping cycle and then averaged together,
namely the maximum value of the bulk velocity and the time interval that separates this
maximum and the transition to turbulence. The former quantity, obtained by averaging the
values of the bulk velocity at the end of the pumping phase, is

Ub,m = 1
N

N∑
i=1

(
max

iT≤t<(i+1)T
(Ub(t))

)
, (3.3)

where N is the total number of periods after discarding the first. The latter quantity,
marking the average extent of the quasi-laminar flow phase extending between the end
of the pumping and the transition to turbulence, is defined as the time delay τ between the
end of acceleration, occurring for cycle i at the time (i + ξ)T , and the time t(i)K where the
peak of the cross-stream turbulent kinetic energy K⊥ occurs

τ = 1
N

N∑
i=1

(
t(i)K − (i + ξ)T

)
. (3.4)

In particular, Ub,m is related to the energy spent to accelerate the fluid, while τ determines
the energy savings. When plotted against T+ (in figure 4a,c), both quantities collapse
well (albeit not perfectly) for various values of the duty cycle. The collapse of Ub,m (a)
would be perfect if the growth of Ub was linear and proportional to the maximum pressure
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Figure 4. Values of U+
b,m (a,b) and τ+ (c,d) against T+ (a,c) and ξ (b,d). Symbols and colours as in figure 2.

gradient Π̄/ξ . It is thus not surprising that cases where the acceleration lasts longer (at
ξ = 0.1 and large periods) are those showing less overlap, as there is enough time to see
at least the beginning of saturation in the growth of Ub. For the same reason, cases with
large periods do not produce a perfectly horizontal line in (b) when plotted against ξ . The
outcome in terms of τ observed in (c) is less predictable and perhaps more interesting: its
value is minimal for small T , but seems to increase nonlinearly at higher T .

In terms of control performance, a large delay τ is always beneficial: the flow remains
in a quasi-laminar state with a large Ub for a longer fraction of the cycle, while no pressure
gradient and thus no energy expenditure is required to produce the flow rate. Regardless of
ξ , increasing T always yields a larger τ (c) and net savings (i.e. overcoming the increased
energy cost due to the larger Ub,m, (a)). When instead T is fixed, Ub,m decreases with ξ

(b) while τ+ exhibits a plateau for the lowest values of ξ (d). It is therefore to be expected
that, with the present forcing, the largest savings are found on the plateau (where τ+ is
almost constant) for the lowest Ub,m.

4. Conclusions

We have observed by DNSs of turbulent channel flows that a flow control strategy which
periodically modulates in time the pumping power can improve the energy efficiency of
the pumping process above that of a steady pumping. The modulation considered in the
present work is a simple sequence of on/off pulses, described by the duration of the cycle
and the duration of the on phase, with its amplitude varying as the inverse of the duty cycle.
Alternative waveforms are easily conceivable, and may lead to even better performance.
The control approach enjoys some practical appeal, as there is no need for sensors and/or
actuators.

A rational criterion is needed to ascertain the success of the flow control strategy. Our
approach avoids the misleading comparison with a predetermined (arbitrary) reference
flow, and only verifies whether the energy spent has been actually spent better than
for a steady pumping. The achieved benefits are already higher than many active and
passive flow control techniques documented in the literature, and result from a simple
approach. Moreover, in the present study only a few numerical experiments are carried
out, computational limitations may underestimate the benefits, and only one temporal
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waveform is considered: a huge parameter space remains to be explored. However, it can be
already claimed that on–off pumping can be successful, and that a steady power injection
is not necessarily optimal from an energetic viewpoint.

Energy savings are obtained when the cycle period is large, leading to large flow rates
at the end of the acceleration phase. We have observed that savings are obtained when the
flow spends a significant fraction of the cycle in a transient quasi-laminar state, in which
pumping has been just turned off but the flow rate decays slowly thanks to the absence
of turbulent activity. The quantitative features of this peculiar flow state (in particular its
duration) have been verified to be robust with respect to the discretisation schemes and
spatial resolution. The cycle-averaged duration of the quasi-laminar state grows with the
forcing period, which is the main reason why long pulsations are necessary to obtain drag
reduction.

In terms of practical applications, further steps are needed to verify the feasibility of
this strategy: e.g. thermal currents or background noise might alter the cyclic transition
between the laminar and the turbulent states. The role played by the finite domain and by
the periodic boundary conditions should be carefully evaluated. Furthermore, the alternate
power surges needed to drive the system might constitute a significant practical drawback.
Nevertheless, the most interesting followup, that we leave for a forthcoming paper, is of a
more fundamental nature, and concerns the detailed study of the peculiar laminarisation
and transition processes that take place during the pumping cycle.
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