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Abstract. We give examples of maps of the interval with zero entropy for which the
continuous invariant measure has no dimension, and we prove a dimension property
for maps lying in the stable manifold of Feigenbaum's fixed points.

0. Introduction
Chaotic behaviour of dynamical systems is sometimes reflected by the geometrical
intricacy of invariant sets. It has been noticed recently that this complexity could
be well described by dimensional quantities and particularly by the dimension of
the invariant ergodic measures. We are interested here in one-dimensional systems,
obtained by iteration of a smooth map of an interval. If/ is of class C2, and if the
exponent is negative, the measure is carried by a periodic sink. If the exponent is
positive and if / and f are piecewise monotonic, then the dimension is given by
the following formula

{ log 1/1

(see the appendix).
We want to discuss here one case when the exponent is zero, namely the case of

unimodal maps with the same topological type as Feigenbaum's map (see [4] for
the general background and [10] where the dynamic is described).

These maps possess a unique non-atomic invariant ergodic probability measure,
which will be the one we shall consider.

Our first result is that for any r<+oo we can construct such a map of class Cr

for which the limit in (*) does not exist. However, our construction does not give
a C°° map with that property.

The second result is that such a limit exists as soon as the map lies on the stable
manifold of some fixed point of the Feigenbaum's renormalization operator. This
dimension is also a 'universal' constant, i.e. depends only on the fixed point itself,
as predicted by some numerical evidence [6]; for the analytic Feigenbaum fixed
point, Y. Levy communicated to us the following approximate value given by our
formula in theorem 3: 0.517
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1. Statement of results 
The precise result we shall prove is the following: 

T H E O R E M 1. Let A ~ 1 / R _ 1 < B < C < A/A+1, for some integer r> 1, orletr=\,A>\ 
and 0 < B < C < A / A + 1 . Then there exists a C'-map / : [ 0 , l ] ->[0 ,1 ] and an f-
invariant ergodic probability measure such that the metric entropy of ( [0 ,1] , / /*) 
is 0 and for fi-a.e. x in [0, 1]: 

l i m i n f ] o g A t ( [ x - 7 j , X + T J ] ) log 2 

n-o log 77 i 0 g (J~A~/B) 

and 

log fj,([x--n,x+ T?]) log 2 
lim sup = p = — . 

i - o log TJ log ( V A / C ) 

We say that the measure /x on [0 ,1] has dimension d when the limit 

Hm l o J M f l > - * 7 , X+VJ) = D 

V->0 log 7) 

for fi almost all x. 

C O R O L L A R Y 1. For every integer r > 1, there exists a Cr-map f :[0, l ] -» [0 ,1 ] and an 
f invariant ergodic probability measure with no dimension. 

C O R O L L A R Y 2. For every integer r > 1, there exists a positive number dr, such that for 
all 0<d <dr, there exists a Cr-map f:[0, l ] - * [0 ,1 ] and an f-invariant probability 
measure fi with entropy 0 and dimension d. We have 

log 4 
a, = 1, d2 = 7=^, • • • dr->0 as r-> + o o 

log (2 + V5) 

and dr is of order log 4 / log r as r-» + o o . 

We also remark that by considering exactly the example from [11], we have 

T H E O R E M 2. There exist a C°°-map f:[0, l ] - * [0 ,1 ] and an f-invariant non-atomic 
ergodic probability measure with dimension, entropy and exponent all 0. 

All the maps constructed here are unimodal but far from being symmetric. On 
symmetric maps , we can define a doubling transformation. With the notation of [4], 
let P denote the space of maps f:[-l, + l ] s u c h that ( a ) / i s even , / (0 ) = 1; 
(b) / i s C\ xf(x)<0 if x 5 ^ 0 . Define for / i n P , 

a{f) = -f(\), b(f)=f(a(f>). 
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We define the doubling transformation T on the subset of P where 0< a(f) < b(f)
and/(&(/))<a(/) by

We shall consider the set 9 of g € P such that Tg = g and 1/Vjgi is convex on
[-1,0) and (0,1]. If ge ^, then we use Ws(g) to denote the set of maps / in P
such that the operator T"f= T(T"~lf) is inductively defined for all n >0 and

lim max (sup |( THf)(x) - g{x)\, sup |( Tnf)\x) - g'(x)\) = 0.
n-oo x x

We define W*=Uf e* Ws(g).
It is known that in the subset of P made of maps which are analytic in |x|1+e, (e

small or e = 1), Ws is a submanifold of codimension 1 ([3], [5], [8]). If / e Ws, then
the kneading invariant of/is the same as of g and therefore there exists an/-invariant
ergodic non-atomic probability measure ixf with entropy 0 (see [4], [10]).

THEOREM 3. Letfe Ws(g), where geSF. Then fj.f has dimension

log 2

where y(g) = J[Mg)>1] log \g'\ dfig.

A similar result has been obtained independently by K. M. Khanin, J. G. Sinai and
H. B. Vul [7]. Although they use thermodynamical formalism, their ideas seem to
be close to ours.

COROLLARY 3. Letfe W\ then d im^ / >0 and \\og\f\ dfif = O.

Finally let us recall that the dimension we are considering here is the minimal value
of the Hausdorff dimension of sets of ̂ /-measure 1, but that the Hausdorff dimension
or the capacity of the support of nf might be bigger. This occurs, for instance, in
the example from [11] (compare the result of [11] and theorem 2).

2. Construction of the map f in theorem 1
The construction follows closely the one from [11]. Fix a positive integer r and
positive numbers A, B, C such that either r>2 and A~1/( r~l><£< C< A/(A+l),
or r = l, A>1 and 0 < B < C< A/(A+1). In the first case, we have KA+K
A1+0/( r- l ) ) , and thus A> 1 also in this case.

Choose a sequence 6n (n = 1,2,...) with 0, = 1, B < Bn+J6n < C. Notice that since
C < 1, dn decreases towards 0. We start by defining two sequences of points of the
interval [0,1]:

0 = a2< b2< aA< b4< a6< b6< • • <b7<a7<b5<a5<b3<a3<l

by setting

A '
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\Mn\ = \an+2-bn\ = e„-dn+1 — 
A ' 

(L„ and M„ are the intervals with end points a„, b„ and b„, an+2 respectively). We 
have 

^ 1 _ c i ^ ± l ) > 0 . 

Since 

I { | l „ | + | m „ | } = i (en-en+l) = el = i, 

we get that all points with even indices lie to the left of all points with odd indices 
and there exists a common limit c = lim a„ = lim b„. 

Set fi„ = A"~l. We now define f: 

Ή  = 1, 

f(an) = 1 - y„, where y„ = 6JAn~\ 

f(b„) = 1 - 5m where S„ = (0„ - 6„+1)/A"-\ 

We have 1 = -y,> ^ > y2> S2> *0(Sn>yn+u because [(0„ -6n+l)/An~1]-
(0„+l/A") = \M„\/A"-1) and we define / as a linear map on each interval L„. The 
slope of / on L„ is denoted by A„. We have 

f(bn)-f{an) 
b„-a„ 

Since [0, l ] = { c } u l j „ 2 | L , , u U „ > , M„, it remains to d e f i n e / on the gaps M„. 

Write 

slope A b„ + î\M„\ 

F I G U R E 1 

slope A„+ 2 

f(an+2)-f(b„) 
ft>„= : . a„=2o)n-2(\„ + \„+2) a„+2-bn 

(Figure 1 is in the case n even). 

For n even we put 

f(bn + i | M „ | ) =f(bn) +ï\M„\(Xn + an), 

f{bn+\\Mn\) = am fk\bn+\\M„\) = Q f o r f c > l , 
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and we use the same function g as in [11] to define / separately on [bm bn+\\Mn\\
and [fen+5|MB|, an+2] as a C°° function. For n odd, we define / analogously. This
defines a map / : [0 , l]-»[0,1]. The condition for / to be of class C1 is
limn_oniax (|An|, |an|) = 0. It is satisfied since |An| = A2~" ->0 as n->oo,

yn _ A2"1

<

Thus |wn|-»0 as n-*oo, and hence

as n -> +oo. If r > 1, the condition for / to be of class C is

lim (IIMJ)1-' max (\an - An|, \an - An+2|) = 0
n-*oo

(see [11, relation (6), page 408]). We have

max (\an - An|, \an - An+2|) < |an| + |An| + |An+2| < DAn

for some constant D independent of n. Hence,

for some constant E independent of n. Since By41/<r~"> 1, we have

A-n0]rr<(BAmr-1})n(1-r)^0 as n^oo

(remember that 1 - r < 0).
Thus we have defined a Cr-map/:[0, l]-»[0,1] which has the following properties,

as in [11]. For n > 1, we set hn =f'\ gn =/2"~1"1|[/(an),i].

LEMMA 1. For every « > 1 , we have: hn(an) = an+u ha(bn) = an+2, hn(an+l) = bm

hn(c) = am gn is linear and has slope / im gn preserves orientation if and only if n is
odd, f is linear on/([/(an), 1]), for i = 0, 1, 2 , . . . , 2""1 - 2 .

LEMMA 2. Put Kn=[am an+1] or [an+1, an].

(a) The sequence (Kn)™=l is decreasing;
(b)hn(Kn+l) = Ln;
(c)hn(Kn) = Kn;
(d) the setsf'Kn, i = 1, 2, 3 , . . . , 2""1 are disjoint;
(e) / | / K n « /inear/or i = 1, 2, 3 , . . . , 2""1 - 1 ;
(f) f"+i(Kn+1) nf(Kn+l) = 0 for i = 1, 2, 3 , . . . , 2"-\

The proof of lemma 1 given in [11] is based on the equalities \an+1-an+2\ =
Mnlrn-Snl, | a n + 2 - b n \ = ^ n | 5 n - y H + 1 \ , \an+l-an\ = finyn and \nfi

2
n = fin+i. These

equalities are also true with our values of am bm 8n, ym /j.n and An. The proof of
lemma 2(a)-(f) is the same as in [11]. Property (g) is not true here. Instead of lemma
2(g) and lemma 3 of [11], we have:

LEMMA 3. For each i" = 1, 2 2"~l write i = 1 +I1"kl\ ek(i)2
k~i with ek(i) = 0 or 1.

Put

7
tfi.
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Then for all n 1, i = 1, 2 , . . . , 2""1, 

L W „ ) I = " n & ( e * ( 0 ) . 

/Voo/ We use induction on «. The conclusion of lemma 3 holds for n = 1. Suppose 
now that it holds for n = m; we shall prove it for n = m +1. 

Observe that for i = 1 , . . . , 2m~l, fl(Km) is a disjoint (modulo end points) union 
of f'(Km+i),f(Lm) (equal to f""'+i{Km+l)) and a remaining gap G ^ . 

Observe also that f1'1 is linear on f(Km) so that the lengths of these intervals are 
in the same proport ions as: 

l / ( - K m + l ) | ?m + l 1 0m + l , \f(Lm)\ Jm ~ Sm 6m+l 

— — and — \f(Km)\ ym a em \f(Km)\ 7 m em • 

The induction follows clearly from these two observations. • 

Lemma 3 gives us information on the lengths of the intervals building the attractor. 
We also have information on the length of the gaps. Set 

Clearly, /3 > 0. 

L E M M A 4 . For all m>2 and / = 1 , 2 , . . . , 2 m _ 1 

\f{Km+l)\<\f{Lm)\^fi\Ga-

Proof. Observe again that by linearity of f~\(Km) the above inequalities are 
equivalent to 

| / ( * m + , ) | J / ( L m ) l t f 1 / ( K M + 1 ) | | / ( L m ) | ] 
L | / ( K M ) | \f(Km)\\ \f(Km)\ \f(K, 

i.e. 

1 #m + l 
a em e„ 

The first inequality holds and to prove the second inequality, we have to show that 

J ^ A + l 
P 0 m + , A ' 

This is equivalent to 1 / C < 6m/6m+u which is clearly true. • 

We write S = P C i UTSi f(Kn). By lemma 3 and since ((A + \)/A)C < 1 , S is a 
Cantor set of zero Lebesgue measure. We define a probability measure /A on S by 
assigning to every f(Km) i = 1 , 2 , . . . , 2 m _ 1 the measure fi(f'(Km)) = 2 1 _ m . The 
measure ft is clearly non-atomic and invariant. 

For each x e S, we define a 0 - 1 sequence e(x) = ( e „ ( x ) ) ^ = , following the construc­
tion in lemma 3: if xef'(Kn+l), 1 < « < 2 " , then e„(x) = 0 if i '<2"" 1 , e„(x) = l if 
i > 2 " - 1 . With the measure /x, the sequence ( E „ ( J C ) ) " = 1 is an independent sequence 
of variables in { 0 , 1 } with the same distribution ( 5 , 5 ) . 
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It is also clear that (S, fi, f) is isomorphic by the map x-»e(x) to the system
called adding-machine and thus is ergodic and has entropy 0 (see [10], [4]).

3. Dimension of the invariant measure
We shall now prove theorems 1 and 2 and discuss corollaries 1 and 2. From the
properties of / in § 2, we get the following:

LEMMA 5. For all xeS,

log m([x-ri, x+17]) ~nlog2
hm sup = hm sup =TTJ—

„•*(> l o g 77 n̂ oo I,=1log£,(

r • j - logroCO^s+T?]) . - " l o g 2
hm inf = hm mf ^———

,-0 log v I l ^ ( (
"-00

Proof We set for x ef(Kn+1), i = 1, 2 , . . . , 2", Vn(x) = \f(Kn+l)\ = f lL , &(«*(*))
(see lemma 3) and we fix w0 such that /3< C'"°. Clearly, the interval [x-r}n(x),
x+Vn(x)] contains f(Kn+1). For each k<n, there is i(fc) such that l<i(fc)<2k

and x efi(k)(Kk+i). By lemma 3, we have |/i<fc)(^+i)l ^ O~("~fc)jyi(iC«-H1)l and hence
if fc < n - n0, then |/"'<fc)(Xk+,)| s Pr)n(x). By lemma 4, we see that if k < n - n0, then
|Gj(fc)t|>7jn(x). Consequently, the set [x-7jn(x), x+r)n(x)]nS is contained in
yI<n-'1o>(xn_no+1) (remember that the sets Gi(k)tk are 'gaps' and hence are disjoint
from S). Therefore,

2"" < /*([* - 7?n(x), x+ i ( )

Lemma 5 follows immediately from this relation, taking into account that for all M a 1,

0 < B A " 1 < ^ ± ^ < C < l . •
Vn(x)

We now can prove theorem 1: we have to consider the behaviour of the sequence
(1/n) £"»» log £j(ej(x)) when n -* +00, knowing that ey(x) is an independent station-
ary sequence, log £(0) = log (6»;+1/6i,)-log A, log (,(l) = log (OJ+1/dj). For /i,-a.e.
x € S, we have

1 " 1
lim sup — X log £,(e,(fc)) = Hm sup - log Bn - 5 log A,

1 " 1
lim inf— X log ̂ ,(e,(x)) = liminf—log 0n-2log A.

n n j=\ * n

If we choose the sequence 6n such that
a I 1

B < - ^ < C and log B = lim inf- log 0n == lim sup - log 6n = log C,
p n n n n n

we can apply the preceding construction and lemma 5 gives the conclusions of
theorem 1.

We get corollary 1 as soon as we can find A, B, C satisfying A~i/U'l)< B<C <
A/( A +1) if r > 2 and 0 < B < C < A / ( A + l ) , A > l i f r = l . This is possible for any
r > 1 by choosing A large eAough.
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To prove corollary 2 for r = l , we have to estimate the possible values of
log2/log(VA/X) where A>1 and 0<x<A/(A + l). For A fixed, X/VA takes all
values in (0, >/A/(A + l)) and hence log 2/log (VA/X) takes all values in
(0, log2/log((A+l)/VA). We can choose A arbitrarily close to 1 so that dx =
limA^, log 2/log ((A + l)/>/A) = l. When r > l , we have to estimate the possible
values of x/VA for A~I/(r~1)<x< A/(A+1). One can easily see for all r> 1 that
there exists a unique A(r)> 1 such that

and that A 1/(r ° < A/(A+1) for A> 1 if and only if A> A(r). Thus the possible
values for x/vA are

Solving (**) for r = 2 gives A(2) = (l+V5)/2. Therefore

log 2 log 4
2~ A(2) + l

log-
VA(2)

The equation (**) is equivalent to

A(r) log A(r) = A(r) log
r - 1

Fix a number a, 0 < a < 1. We have

lim ra log
r-»°o

and
1 f+oo

l™—iraiogr" = { o if«<r
Hence, if a < 1 and r is sufficiently large, then r" < A(r) < r. We get for such an r:

Iog2 Iog2

l 0 g 7T
Hence . . drlogVr ,. drlogvr 1

1 < hm inf ——e— < hm sup . ° s —.
r-.+oo log 2 r^+oo log 2 a

This holds for all a e (0,1) and hence lim^o, dr log Vr/log 2=1. D

Let us indicate also how we can estimate dimension and exponent in theorem 2.
The example is exactly the map / described in [11] and the dimension is computed
as in theorem 1. Our lemma 3 is still valid, but with new functions £'k:

^ ( 0 ) W 1 )

(Notice that in the last line of the proof of lemma 2 of [11], where the similar
computations are made, there is a misprint: 1 - aB+1 and 1 - an should be replaced
by l - / (an + 1 ) and l - / ( a j , respectively.)
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For all x in S, let us define

603

k=l

We again h a v e [ x - i7n(fc), x+ rjn(x)] 3 / ' (K n + 1 ) and thus (JL([X - Vn(x),x + r)n(
2~". But now for /n-a.e. x, we have

lim - i logC'k(ek(x))= lim - £ (1-£*(*)) log = - o o ,

and thus for all f > 1, r;n(x)< f~" when « is sufficiently large. Hence we have, for
/i-a.e. x and for all t > 1,

0 log
r L l i m s u p_11 OgM([,-r-
log < „-.+« n

- -lim sup — log/*([*-Tjn(
log < n->+<» n

The dimension estimate follows by letting t -» +00.
Finally, since for all n > 1, | / | = An = (n + \)/n! on Ln and /i(Ln) = 1/2", an easy

calculation gives {log |/'| d/u. = 0.

4. Proof of theorem 3
Let/e W1. We follow the description of the Cantor set / and the invariant measure
fi in [4, page 222], introducing minor modifications.

We recall that/(0) = l,/(l) = -a{f),f(-a{f)) =/(a(/)) = b(f) and 0 </(*>(/)) <
a(f) < b(f). We define also c(f) and d(f) by c(f) > 0,/(c(/)) = a(f) and d(f) > 0,
f(d(f)) = d{f). Then we set K(f) = [b(f), 1], L(/) = [c(/), 1]. We have

/(*(/)) = [-«(/),/(*(/))], /(^(/)) = i-aif), a{f)]
(see figure 2).

, 1

FIGURE 2
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Since b(f)>a(f), we have 0<a(f)<d(f)<b(f). Hence, c(f)>d(f), a n d s i n c e 
the fixed point d(f) is repelling (see [4] , [10]), a(f) < c{f) < b(f). Hence, L(f) => 
K(f) and L(f) is disjoint from f(L{f)). 

Set / , ( / ) = K{f)uf(K{f)) 
f(L{f))u[d(f), ! ] = > / , ( / ) by 

and I1(f) = L(f)vf(L(f)). We define 2 / on 

if xef(L(f)), 
a(f) 

fx 
a{f) 

ifxe[d(f),l]. 

Notice that 1f maps both f(L(f)) and L(f) diffeomorphically onto [ - 1 , 1 ] , (see 
figure 3). 

FIGURE 3 

According to [4], the formula / „ ( / ) = 1Ji(J„^l(Tf)) defines a descending sequence 
of invariant closed sets. We denote J(f) = OnSli Jn(f)- Analogously, the formula 
I„(f) = 1fl(I„-l(Tf)) defines also a descending sequence of invariant closed sets. 
Since the set 

*AHf)\Uf)) = [ - 1 , -^jf) = [ - ! . -"(Tf)) 
is disjoint from I(Tf), we have f]n3,l I„(f) = J(f) and therefore instead of consider­
ing the sets /„ we may consider the sets I„ (when applying lemma 6). 
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Let xeJ(f) and denote inductively o-°x = x, <r"x = 1.T»-if(o-}~lx). Denote by
Ef(x) = (en(x))"=0 the sequence such that

fl if o-n
fxeL(T"f),

£"(X) JO i{o-}xe(T"f)(L(T"f)).
By definition, /„(/) is made of 2" intervals, each of them consisting of points with
the same sequence e0 , . . . , en_i. The invariant measure (j.f assigns to any such interval
the measure 2'".

Our idea is to replace the dynamics of f which has Lyapunov exponent zero, by
the dynamics of o-f, which has positive Lyapunov exponent. If fe &, then / ( / ) is
2rinvariant, /xf is 2rinvariant, 2/U/) is the full 2-shift, |2}|a l / a ( / )> 1, and
therefore by (*) and by the definition of 2/ we obtain the statement of theorem 3.
However, if ft 9, then the dynamics is time-dependent and we cannot use (*).

Le t /e Ws(g), gz&. For xeJ(f), denote by TT-(X) the point in J(g) with the
same sequence associated: e/-(x) = eg(ir(x)). We shall use the closeness of g and
T"f to compare x and ir(x).

LEMMA 6. For n = I, 2 , . . . , let Mm Nn be closed subintervals of [—1,1] such that
Mn c Nn; let <pn be a diffeomorphism of Mn onto [—1,1] and ifin a diffeomorphism of
Nnontotn(Nn)^[-l, 1]; let

inf inf |</> (̂x)| = c > 1, (0)
n>l xe Nn

and let sup n a l supxeMn |<Pn(x)-<An(x)| be finite. Then for each x such that all
(pn°- • •" <Pi are defined at x, the limit

p(x) = lim (i/>j"' o. . . o tfi~1)(((pn o. • • o ^^(x)) (1)

exists, and for each k > 0

\(<Pk°- • •°<Pi)(x)-(</'ii°- • •°i / ' i )( /»(x)) |<^— sup sup |<pn(x)-^n(x)|. (2)

Proof. F o r m>n, wr i te <&™ = <pm ° • • • ° (pn+l, * ™ = </>m ° • • • ° ij>n+1. Set

afc = s u p s u p \<pn(x) - iffn(x)\,
n>k xeMn

If n>k and y,ze[-l,l] then

C \
sup

xeM,

Since %k is increasing, we obtain by induction on n, for m > /i > fc,

K*™)"1 )̂ - (^^"Hz)! s f?-(b - z|).

In particular, for y = z = <&™(x) and n = k,we obtain
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Hence, if m > k then we have

\w5rW()){?rw())\j^ie

c (c-1)

Therefore, since aksa0 and c> 1, if all <t>o(x) are defined then the sequence"1(*S(^)))*=o satisfies the Cauchy's condition, and consequently the limit (1)
exists.

By (3) we have for m > k

\<t>k
0(x) -

and by (1) we obtain (2). •

LEMMA 7. Iffe Ws(g), then

lim sup \o-"y-o-gir(y)\=0. (4)
n-»°o yeJ(f)

Proof. Assume first that/ is sufficiently close to g, and so are all T"f. Then all d(T"f)
are close to d(g) and we may assume that d(T"f) < c(g) for all n. Fix y e / ( / ) . We
use lemma 6 with

M jL(g) ifeB_I(y) = l,

" \g(L(g)) if Cw_1(^) = 0;

N=(L(g)uL(f) if £„_,(>,) = 1,

" lg(L(g))u/(L(/)) if en-i(y) = 0;

<Pn=2g|Mn, ^B=2T»-' / |A, ( i .

Clearly, we have

lim sup \<pH(x)-tH(x)\ = 0. (5)
n-*oo xeM n

It remains to check that (0) holds. If T"f is close to g then a(T"f) is close to a(g)
and a(g) < 1. Therefore, taking into account that 1/V|(T"/)'| is convex for all n, it
is enough to check that infnaImin (|(T"/)'(1)|, |(T7)'(d(Tn/))l)>a(g)- The
point d(T"/) is repelling and hence \(Tnf)'(d(Tnf))\> 1. Since Tg = g, we get by
differentiating this equation

and using convexity of l/v|g'| and the (in-)equalities

= =+oo and

we obtain |g '( l) |^l- Therefore, if all T"f are sufficiently close to g, then
infn£1 \(T"f)'(l)\ > a(g). Hence, the assumptions of lemma 6 are satisfied.

Since for x = ir{y) all maps <pn ° • • • ° <p, are defined at x, the limit (1) of lemma
6 exists. But all maps i//n ° • • • ° ipt are defined at p(x) and such point is unique by
(0). Therefore p(x) = y. By (2) and (5), and in view of the fact that {<pk »• • • ° <Pi)(x) =
o-g(x) and (i/fk o • • • o <l/x)(y) = o-f(y), we obtain (4).
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Now, if/ and g (or some T"f and g) are not necessarily close, we replace / by
Tkf and x by cr)x for k sufficiently large. Since o~"y = 0-^(0-'}y) and o-\tr(y) =
ag 't(o'g7r(j')). w e obtain (4) in this case too. •

LEMMA 8. Letfe Ws(g) and let ijn(x) be the length of the interval ofjn(f) containing
x (for x e / ( / ) ) . Then for fif-a.e. x

lim — log 7jn(x) = log ——-+ y(g).
n^oo n a(g)

Proof. Let us use Cf(e0, eu..., en_,) to denote the interval in / „ ( / ) corresponding
to the sequence (eo> e t , . . . , en_,). By the definition of ef, we have

"

n-2 |CTv(e,(

i = o \CT'f((i,Et+i\x),..., en-i\x))\

By the mean value theorem, there exists yt e CT>f(\, e , + 1 (x) , . . . , en_,(x)), such that

\CT'f(l, e i + 1 (x) , . . . , en_!(x))| Uris\,,.. M-1

Thus,
n—2

log T/n(x) = log |C7-»-y(£n_I(x))|+ Z log i
i=0 i=0

As 7"/-» g and (7"/)'-» g', the sequence ((-1/n) log T7n(x))^=, has the same limit as
the sequence

/ ! n-l

I -log a(g) + — Z Ei(̂

If i is large enough then there is a constant c> 1 such that for all n > i,

(cf. (0)). Hence, if (>0, then by lemma 7 and the above inequality, there exists k
such that if i a Ic, n - i > fc and e,(x) = 1, then \yt - o-}x\ < t and |<r}x - O-J,TT(X)| < f.
Since b(T"f) -* b{g) and \g'\ is bounded and bounded away from 0 on [d(g), 1], we
see that the sequence ((-1/n) log i7n(x))^=1 has the same limit as the sequence

Since Tg = g, we have a'g = 1'g. The system (J(g), 2 g | J ( g ) , fig) is isomorphic to
the 1-sided Bernoulli shift (1/2, 1/2) (denote it (ft, u, »>)) and this isomorphism is
given by Sg. If ir(x) = y, then e,(x) is the ith coordinate of eg(>'), and hence

where for <o = (w7)JLoefl, G(w) = w0log |g'(eg!(*>))l- By the ergodic theorem, we
have for ^-almost every w € ft,

I"-1

l im- X (G
»-"*> n ,=0

f
u » = Gd*,

Jn
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lim - I e,-(ir \y)) log | g V g j ) l = log |g' | dί g = y(g). i 
JK(g 

• 

and consequently for fig-almost every y 

Since the image under ir of /xr is fig, we obtain the statement of the lemma 

We now prove theorem 3. Assume that / e Ws(g). Set p(g) = log ( l / a ( g ) ) + y(g) 
By lemma 8, for ^i/-a.e. x, all e > 0 and m large enough we have 

Vf([x-exp(-m(p(g)-e)), x + exp ( - m ( j 3 ( g ) - e ) ) ] ) > 2 - ' " . 
Thus, 

l o g / x ^ x - T / . x + T?]) ^ log 2 
log 77 

lim sup -
7 , ^ 0 ί(g)-e 

for /Xf-a.c. x. (6) 

Fix e > 0 . Set 5„ = exp ( -« ( j 8 (g ) + e)) . Denote by Z„ the union of components of 
Jn(f) whose lengths are not larger than Sn and set Mn = (Jkzn Zk. By lemma 8, 
l i m b e c m / ( M „ ) = 0. 

Fix «o such that ) L t / ( M n o ) < e . Since pf-a.e. point of SXM^ is a point of density 
of S\M„0, and l i m „ _ o o 5« = 0 , we have for /u^-a.e. point x in S\M^, 

lim 
M ( 5 \ M J n [ x - g r o x + y 

= 1. 
M ( l > - S n , x + S„]) 

By definition if n > n 0 there are at most 3 components of Jn{f) intersecting (S\M^) n 
[x- 8„,x + S„] and thus fj,((S\M^) n [ x - S„, x + 5 n ] ) < 3 . 2 _ " if « > n0- Therefore on 
a set of measure > 1 - e we have 

. log/*/ ( [*-77, s + 7 7 ] ) ^ log 2 
log Tj _ j 8 ( g ) + e ' 

Theorem 3 follows from (6) and the above inequality by letting e go to zero. 
Finally let us prove corollary 3. Since a(g) > 0 and |g' | is bounded, log ( l / a ( g ) ) + 

y(g) is finite and thus dim \xf > 0. If we had J log \f\ dfif > 0, as (f) = 0, we should 
have, by formula (*), dim fif = 0. Therefore J log \ f\ dfif = 0, and also J log |g' | <fyig = 
0. 

lim inf-

Appendix: proof of (*) 
Relation (*) in the uniformly hyperbolic case is an easy consequence of the Shannon-
McMil lan-Bre iman theorem (see [1]). In the non-uniformly hyperbolic case, partial 
results with a weaker notion of convergence were given in [9]. The arguments from 
[9] also give relation (*) for a certain class of maps , as we indicate briefly now. We 
shall consider a C1 - m a p / : [0 ,1] -* [0 ,1] and an invariant ergodic probability measure 
/j.. We denote by h^if) the metric entropy of the system ([0,1] , /x, f), and by A M ( / ) 
the Lyapunov exponent A M ( / ) = max (J log \ f\ dp, 0). 

P r o p o s i t i o n A l . Consider a Cl-map / : [ 0 , l ] - » [0 ,1 ] and fi an invariant ergodic 
probability measure, then for fi-a.e. x, 

M / ) - M / ) • h m i n f ; 
7 , ^ 0 log v 
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Proof. By Ruelle's formula [12], /iM(/) s AM(/) and we may thus suppose AM(/) > 0.
A result of Brin and Katok [2] says that for /x-a.e. x,

lim lim inf— log fi(B(x, n, 8)) = hJf),

where B(x, n, 8) is the set of y in [0,1] such that \fy -f'x\ < 8 for i = 0 , 1 , . . . , « - 1 .
Therefore, we have only to show that for any 5 > 0, there exists a sequence of
functions (j3n(x))"=1 such that [x-/3n(x), x + j8n(x)]c B(x, n, 8) and

lim sup — log/3n(x)< AM(/) + 5 /x-a.e.
n n

Fix 5 > 0 and choose r > 0 such that

log(max(|/'|,r))<AM(/) + 5/2.

Write I/I,. = max (|/|, r). Since log I/1!, is a uniformly continuous function, we choose
e >0 such that if |x — _y|< e, then

Set for M > 1 ,

exp (-wg/2) • min (5, e)
Pn(X) max (1,

Then for /i-a.e. x

lim — log0n(x)=-+lim-max(O, max I log j/'(/t)|r)
" n 2 « n \ l s , < n k = 0 /

J, J log |/'|rd

Besides, if |x->>|<)8n(x), it is easy to check inductively on «'<« that
min (5, e) for fc = 0, 1, . . . , i -1. The sequence (/3n(x))^=1 has the required proper-
ties. •

PROPOSITION A2. Consider a C'-ma/»/:[0, l]-»[0, 1] and suppose that there exists
a partition Q of [0, 1] into intervals such that the functions f and f are monotonic on
each element of Q. Consider an invariant ergodic probability measure fi such that
Hll(Q)<+<x>. Then for fj.-a.e. x

77-O lOg T)

Proof. We may suppose AM(/) > 0. Fix e > 0. Since the function log |/'| is integrable,
the partition P = {Pm,meZ} has finite entropy, where Pm = {x |exp - m e < | / | <
exp -(m-l)e).

Denote by p(n, x) the atom of the partition V"Iof~'(Pv (?) containing x. By the
Shannon-McMillan-Breiman theorem, we have for /x-a.e. x

lim — log n(p(n, x))<ftM(/).
n n

https://doi.org/10.1017/S0143385700003187 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003187


610 F. Ledrappier and M. Misiurewicz

Since p(n,x) is an interval where / " is monotonic and where |(/")'|>
l(/")'(*)|exp(-ne), we have |p(n,x)J<exp (ne)/\(fn)'(x)\. Since for /t-a.e. x
limn ( 1 / B ) log |(/")'(*)l = AM(/), the inequality follows.

COROLLARY. Consider a C'-map/:[0, l]-»[0,1] SMC/I that f and f are piecewise
monotonic and an invariant ergodic probability measure fi. Suppose that A / i ( / )>0.
Then for /i-a.e. x:

iitn
log 7}
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