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Abstract
A common statistical modelling paradigm used in actuarial pricing is (a) assuming that the possible loss
model can be chosen from a dictionary of standard models; (b) selecting the model that provides the best
trade-off between goodness of fit and complexity. Machine learning provides a rigorous framework for this
selection/validation process. An alternative modelling paradigm, common in the sciences, is to prove the
adequacy of a statistical model from first principles: for example, Planck’s distribution, which describes the
spectral distribution of blackbody radiation empirically, was explained by Einstein by assuming that radiation
is made of quantised harmonic oscillators (photons). In this working party we have been exploring the extent
to which loss models, too, can be derived from first principles. Traditionally, the Poisson, negative binomial,
and binomial distributions are used as loss count models because they are familiar and easy to work with. We
show how reasoning from first principles naturally leads to non-stationary Poisson processes, Lévy processes,
andmultivariate Bernoulli processes depending on the context. For modelling severities, we build on previous
research that shows how graph theory can be used to model property-like losses. We show how the
methodology can be extended to deal with business interruption/supply chain risks by considering networks
with higher-order dependencies. For liability business, we show the theoretical and practical limitations of
traditional models such as the lognormal distribution. We explore the question of where the ubiquitous
power-law behaviour comes from, finding a natural explanation in random growth models. We also address
the derivation of severity curves in territories where compensation tables are used. This research is
foundational in nature, but its results may prove useful to practitioners by guiding model selection and
elucidating the relationship between the features of a risk and the model’s parameters.

Keywords: Random growth models; graph theory; Lévy process; Baremo tables; contingent business interruption; cyber
business interruption.

1. Introduction
There is a story about Enrico Fermi that Freeman Dyson, a mathematical physicist who played a
crucial role in the development of quantum electrodynamics, recounts during an interview1 and
that we think is the ideal introduction to what the Loss modelling from first principles working
party is attempting to do.

Dyson and his team at Cornell had produced the first draft of a theory that aimed at explaining
Fermi’s experimental results on the behaviour of pions, and Dyson went on an expedition to
Chicago to share these results with Fermi and seek encouragement to continue the team’s work.
After listening to Dyson and having a quick glance at the graph that displayed an amazing fit
between the theory and Fermi’s results, Fermi told Dyson “I’m not very impressed with what
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1https://www.youtube.com/watch?edufilter=NULL&v= hV41QEKiMlM.
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you’ve been doing.”He continued: “When one does a theoretical calculation, there are two ways of
doing it: either you should have a clear physical model in mind, or you should have a rigorous
mathematical basis. You have neither.” When Dyson pressed him about the excellent agreement
between the model and the data, Fermi asked: “How many free parameters are there in your
method?” It turned out to be four. Fermi commented: “My friend von Neumann always used to
say: ‘with four parameters I can fit an elephant, and with five I can make him wiggle his trunk’. So,
I don’t find the numerical agreement very impressive either.”2

This story illustrates the important point that there are essentially two ways of producing
a model.

1. Start from an intuition about how the world works and/or using a rigorous mathematical
process to derive the model from first principles, and then test the explanatory power of the
model against reality (i.e., experimental data).

2. Start with any model – ignoring how it was derived – and check the significance of the fit
using statistical tests, which basically puts von Neumann’s comment about elephant fitting
on a quantitative footing.

Both approaches, if done with a proper methodological framework, are viable. Actuarial
practitioners have historically – and for the most part – followed the second approach, and not
always in the most rigorous way. At one end of the spectrum of rigour, actuaries may just pick a
simple distribution such as the lognormal distribution for loss amounts or use the distribution
from a distribution-fitting tool that best fits the observed data, without regard to the number of
parameters. At the other end of the spectrum, actuaries might use rigorous machine learning
methodologies such as using training, selection and validation sets and be mindful of the bias-
variance trade-off when doing rating factor selection and calibration (see Parodi (2023) for a
discussion of these different approaches). The increased interest in machine learning in recent
years has helped actuaries to use the proper model selection techniques.

This working party aims to investigate the extent to which it is possible to produce loss models
according to the first approach, starting from our intuition and knowledge around the loss
generation process and then developing a mathematically consistent model. The idea is that a
model that fairly reflects the loss generation process will have a natural advantage and is likely to
have fewer parameters. For example, an oscillating function might be helpfully modelled in a
certain time interval with a polynomial or a set of splines, but if we have theoretical reasons to
believe that an actual sinusoid of the form x t� � � A sin�ωt � φ� should be used, this will lead to a
superior and more economic model.

The idea that a model should draw inspiration from how the world works is not, of course, a new
concept in actuarial practice. Risk theory (Beard et al., 1984), the theory that gave us the individual
risk model (IRM) and the collective risk model, successfully framed the loss-generating process in
terms of count (frequency) models and severity models and natural catastrophe modelling. It relied
in part on historical loss experience and is heavily informed by a scientific understanding of the
modelled perils. The technical actuarial standards for modelling (TAS-M) produced by the UK
Institute and Faculty of Actuaries have this to say about models representing the real world:

[A]ctuarial information should be based on models that sufficiently represent those aspects
of the real world that are relevant to the decisions for which the actuarial information will be
used. This is, deliberately, a fairly general statement.

2Dyson wasn’t bitter about this conversation, which marked the end of the project. Rather, he was grateful because it
prevented his team from wasting further time working on this theory – which, as Fermi had predicted, turned out to be
incorrect. The experimental results were later explained by Murray Gell–Mann’s theory, according to which the physics of
pions could be explained by assuming that pions are made of a quark and an anti-quark.
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Despite this, in most cases “representing the relevant aspects of the world” is taken to mean
“capturing the correct factors that affect a risk,” but there is a dearth of results in actuarial science
that dictate the use of specific statistical models3.

1.1 The Structure of the Paper

The structure of this paper is summarised in Figure 1. Note that while we could have looked at any
number of other models related to losses (e.g., payment pattern models), we have focused our
attention on frequency and severity models, while noting that this separation is not always
possible (Section 2.3.2.3). Section 2 is devoted to loss count (frequency) models, while Sections 3
to 8 are devoted to severity models for various types of business (property, liability, financial loss).
These core sections are then followed by general conclusions (Section 8), acknowledgements
(Section 9) and the bibliography (Section 10).

2. Modelling Loss Counts
2.1 The Traditional Approach

The traditional actuarial approach to modelling loss counts is to use one of the binomial, Poisson,
and negative binomial distributions depending on how large the variance of the loss counts is
believed to be relative to the mean. This choice is not typically made for fundamental reasons but
because these distributions are familiar and easy to work with. It’s also difficult to argue for more
complex distributions when there is such a low number of data points (typically the loss counts for
5–15 years) for calibration.

It is useful to distinguish between frequency models used in the IRM and those used in the
collective risk model (Klugman et al., 2012) – two attempts to produce risk models that reflect the
reality of the loss generating process under different circumstances.

Figure 1. A conceptual view of the structure of this paper.

3One notable exception is the use of the generalised Pareto distribution (GPD) for modelling the tail distribution of
severities, which is demanded (asymptotically) by extreme value theory.
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2.2 Loss Count Models for the Individual Risk Model

In the IRM, losses are assumed to come from a finite number of risks, each of which can have at
most one loss. Although we are dealing here with non-life insurance, this is perhaps best
understood in terms of insuring lives. In equine insurance, a payout is given if a horse in the
establishment dies or needs to be put down – which can only happen once to the same horse. The
modelling of defaults in credit risk follows a similar pattern, where one replaces “death” with
“bankruptcy.”

If all probabilities of death/default are the same, and the losses are independent of one another,
the number of losses can be modelled with a binomial distribution – the sum of independent
Bernoulli variables. According to this distribution, the probability of having k losses from n risks
in a given period is:

Pr N � k� � � n
k

� �
pk 1 � p
� �

n�k (1)

The mean is np, the variance is np�1 � p�, and the variance to mean ratio is 1 � p.
When the probabilities are different, this generalises to the Multivariate Bernoulli Distribution

(a.k.a. the Poisson binomial distribution), which is (Parodi, 2023) an n-dimensional distribution
with random variable Y

!� Y1;Y2:::Yn� �, where each component Yj can take the values 0 (no
loss) or 1 (loss). The probability of having k claims from n risks is given by:

Pr N � k� � �
X

y1;:::yn such that y1�����yn�k

Yn
j�1

p
yj
j 1 � pj
� �

yj (2)

2.2.1 Modelling the dependency between losses
Equations (1) and (2) are valid when the losses are independent of one another. When that is not
the case, the variance/mean ratio will increase and can even exceed 1. Rather than adopting a
different distribution in that case, it is generally more productive to model the dependency.

Unless the mechanism by which correlations occur is clear, the easiest way to model
dependencies is by assuming the presence of a systemic shock – an increase in the probability of
loss that applies simultaneously to all risks. This increase will normally be temporary: an epidemic
among horses or an economic recession for defaults, for example.

Using this framework, the underlying model can still be seen as a binomial or a multivariate
Bernoulli, but with the probabilities of loss themselves being random variates.

2.3 Loss Count Models for the Collective Risk Model

In the case of the collective risk model, the underlying portfolio of risks is also finite, but more
than one loss is possible for each risk, and the effect of risks being removed from the portfolio by a
total loss (think property insurance) is small if the portfolio is large enough. Consequently, the
occurrence of one loss does not significantly affect the likelihood of another loss, and the variance
of the loss count is at least that of a Poisson distribution. The Poisson distribution is also justified
as the limit of a binomial distribution when the probability p of a risk being affected by the loss is
very small, the number of risks n is very large, and the product np converges to a finite (and non-
zero) number.

Before proceeding further, let us introduce some key concepts. A count process N t� � with
t ≥ 0 is a stochastic process where N t� � represents the cumulative number of events happening
between 0 and t (more specifically, in the interval �0; t	). The number of events in the interval �t; t0	
is given by N t0� � � N t� � and is called an increment. A process is said to have independent
increments if the numbers of events occurring in two non-overlapping intervals are independent.

4 P. Parodi et al.
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A process is said to be stationary if the probability of a given number of events in a given interval
�t0; t0 � τ	 does not depend on t0 but only on τ: assuming N 0� � � 0, we have equality in
distribution N t0 � τ� � � N t0� � � N τ� �:

2.3.1 The stationary Poisson process as the foundational count process for the collective risk model
The simplest count process used in the context of the collective risk model is arguably the
stationary Poisson process (Ross, 2003). This is a count process with the following properties:

(a) N 0� � � 0
(b) The increments are both independent and stationary
(c) Pr N ɛ� � � 1� � � λɛ� o ɛ� �
(d) Pr N ɛ� � � 2� � � o ɛ� �

Below are some consequences of these assumptions:

• The number of events in an interval of length τ, N τ� �, follows a Poisson distribution:
Pr�N τ� � � k� � exp �λτ� � λτ� �k=k!, where λ is the event rate per unit of time.

• The expected number of events and the variance of the number of events for an interval of
length τ are the same and are given by:

E N τ� �� � � V�N τ� � � λτ

• The possibility of simultaneous events is excluded.

In practice, we notice that the assumptions that allow for the Poisson distribution to be used in
the collective risk model often break down. This happens for example (note that the points below
overlap to some extent):

1. Where events do not occur independently, whether via direct dependence or common shock
• Fire – insurer covers a geographically close-knit community and, for example, an
explosion in one flat may cause damage in all surrounding flats

• Professional lines – higher PI and D&O activity following a recession
• Healthcare – a disease is brought to a community, and increases the risk of everyone else
getting the disease

• In riot/terrorism losses following a larger political/social event
• In cyber losses following a weakness emerging from an operating system.

2. Where the future average rate may be altered by future events/decisions:
• Casualty – a new court award setting a precedent for future similar claims.

3. Where multiple events occur in clusters:
• Catastrophic events (natural catastrophes and man-made catastrophes such as terrorism)
often result in several risks being hit at the same time, for example, hail events leading to
many property/agriculture losses

• External factors driving catastrophic event frequency can also result in several events of
the same peril happening at the same time because “conditions” are right (e.g., warm seas
causing a high-frequency hurricane season, tectonic activity leading to increased
earthquake frequency).
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The following section will focus on the most important reasons for the departure from the
simple Poisson frequency model.

2.3.2 Departures from the stationary Poisson process for the collective risk model
This section looks at the main reasons for the practical inadequacy of the stationary Poisson model
(constant λ) in the context of the collective risk model, and for the widespread use of
overdispersed models. We will see that overdispersion typically arises from the fact that the
underlying process is a non-stationary Poisson process (Section 2.3.2.1) or a pure-jump
(stationary or not) Lévy process that allows loss clustering (Section 2.3.2.2).

2.3.2.1 Non-stationary (non-homogeneous) Poisson processes. It is well known in actuarial practice
that modelling the number of losses in a future policy period using a Poisson distribution will
often underestimate the variance of possible outcomes. For this reason, models that exhibit
overdispersion, that is, models where the variance exceeds the mean such as in the negative
binomial model, are used routinely.

Surprisingly, using an overdispersed frequency model might be necessary even if the
underlying process for generating losses in a given policy year is a Poisson process (stationary
or not).

Let us assume that the process by which claims are generated is a Poisson process. When the
Poisson rate is not stationary, the total number of losses in a given period (say, one year) will
follow a Poisson distribution with Poisson rate:

Λ �
Z

1

0
θ t� �dt

where θ t� �represents the Poisson rate density (the number of expected losses per unit time) (Ross,
2003), and time t is expressed in years. The Poisson rate density θ t� � will in general be a stochastic
variable itself, whose underlying distribution may or may not be known (analysis of historical loss
experience may help in part). As a result, Λ will also be a stochastic variable. Such process is
normally referred to as a Cox process.

Therefore, while the underlying process is fully Poisson and the distribution of the number of
losses conditional onΛ follows a Poisson distribution (and its variance will be equal to the mean),
sinceΛ is unknown at the time of pricing, the unconditional distribution used to model the future
number of losses has a higher variance4. The overdispersion comes from ignorance about Λ and
not from the loss-generating process itself.

Examples of stochastic processes affecting the frequency of losses to various lines of
business are:

• Various physical quantities such as temperature, pressure, wind strength, rainfall, etc. are
stochastic processes with deterministic seasonal trends that affect the number of losses in
various lines of business such as motor and household/commercial insurance

• Economic indicators such as GDP growth in a given country may affect the number of
professional indemnity claims or trade credit claims.

In an approach from first principles, when we determine that a non-stationary Poisson process
is responsible for the number of claims, we should then investigate the cause of the volatility
around the Poisson rate and model the rate intensity function θ t� � accordingly as a stochastic or

4The unconditional variance of the number of losses for a doubly stochastic Poisson process, Var N� �, can be written as
Var N� � � E�Var�NjΛ�� � Var�E�NjΛ	�. Since the conditional process is Poisson, Var NjΛ� � � E�NjΛ�. WhenΛ is constant
(λ�, Var NjΛ� � � λ and Var E NjΛ� 	� � � 0: In general, Var N� � � E E NjΛ� �� � � Var E NjΛ� 	� � � E N� � � Var E NjΛ� 	� � ≥ E N� �.
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deterministic variable. From that, we can derive the distribution of values of Λ. The loss count
model corresponding to this case will therefore be a so-called compound Poisson process.
There exist some special cases:

• While in general θ t� � is a stochastic variable and therefore Λ is also random, there are some
special cases where θ t� � is fully deterministic. For example, if the underlying rate of car
accidents only depended on the number of hours of daylight, θ t� � would be seasonal but fully
predictable. In this case Λ would not be random and a Poisson model could be used

• In some formalisations the Poisson rate is not only non-stationary but the underlying process
θ t� � depends on previous states through a Markov process. Specifically, in Avanzi et al. (2021)
the process is formalised as a Markov-modulated non-homogeneous Poisson process. It is
assumed that the system can be in one of the states 1; 2:::r and that the probability of transition
between state i and j is qi;j. The duration of each state follows an exponential distribution (as in
any Poisson process) with probability Pr�duration in state i > t� � exp��Pi≠ jqi;jt�. In a
given state, events arrive at rate:

λM t� � � λM t� � × γ t� �

where λM t� � is the intensity corresponding to the state the system is in and is therefore constant for
a given state; γ t� � is a correction factor that takes exposure changes and seasonal effects into
account, as in the previous point. The probability of a given number of events occurring in a given
time interval (say, one year) is then given by a Poisson distribution with rate

R
1
0λM t� �γ t� �dt

• A special case of the compound Poisson process is when θ t� � is stochastic and the behaviour of
Λ – which being the integral of a stochastic variable is also in general a stochastic variable – can
be approximately described as a gamma distribution. In this case, a well-known result says that
the resulting distribution is a negative binomial. This has become the model of choice when
there is need for additional volatility. However, the case where Λ comes from a gamma
distribution is very special indeed and its use is mainly justified for practical reasons

• Actuaries are also quite familiar with a simplified but very useful special case of a compound
Poisson model that is used in common shock modelling techniques (Meyers, 2007).
Common shocks are a way in which the assumption of independence between events breaks,
because the shock creates a correlation between the events. The basic idea is to consider that
in most scenarios the Poisson distribution will have a “normal” Poisson rate λnormal.
Occasionally, however, there will be a shock to the system and the Poisson rate will be much
higher, λhigh (obviously more than two scenarios are in general possible). One therefore needs
to model the probability of a shock and its size (that is, λhigh) of the shock to the Poisson rate
according to past empirical evidence or from first principles. Classical examples of shocks are
a zoonosis (increasing number of livestock or bloodstock losses) or an economic recession
(impacting the number of financial loss claims)

• An interesting example of a non-stationary Poisson process is the so-called Weibull count
process – this is a non-stationary Poisson process where the waiting time between
consecutive events is not exponential as in the stationary Poisson process, but follows a
Weibull distribution, that is, a distribution whose survival probability is given by:

F
�
t� � � exp � t

τ

� �
β

� �

• The best-known use of the Weibull distribution is in reliability engineering, to model the
failure rate of a manufactured product, and this can be used in insurance, for example in an
extended warranty loss model. When β < 1, the failure rate decreases over time; when β > 1,
it increases; when β � 1, it stays constant, and the Weibull reduces to an exponential
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distribution. In the typical life cycle of a manufactured product, you have β < 1 at the
beginning (when most production faults show up), β � 1 for most of the lifetime of the
product, and β > 1 towards the end (when the product shows signs of wear). All this gives
rise to the bathtub shape of the failure rate of products5

• When the waiting time can be modelled as a Weibull distribution, the resulting process will
be a non-stationary Poisson process with Poisson rate λ t� � � β

τ
t
τ

� �
β�1, which depends on

time unless β � 1
• Another interesting case of a non-stationary Poisson processes is given by the Hawkes
process (see Laub et al., 2021, for a review) – a type of self-exciting process with applications
in seismology, finance, epidemiology and neuroscience among others. The main idea behind
the Hawkes process is that “the occurrence of any event increase[s] the probability of further
events occurring” (Hawkes, 2018), as in the case of earthquakes, where an earthquake can
trigger more earthquakes near the original location, causing the creation of clusters

2.3.2.2 Loss clustering and Lévy processes. Another way in which the independence between
events breaks down causing an increase in volatility is when events are clustered. The Poisson
distribution is often described informally as a distribution of rare events.What does this mean? It
is true that the Poisson can be derived as the limit of a binomial distribution (see Equation (2))
when p ! 0; n ! ∞ and np tends to a finite non-zero number. However, in a temporal sense,
whether events are rare or not depends on the scale at which you look at them. The only sensible,
scale-independent definition of rare events is therefore that there should never be more than one
event at a given time. Clustering is where this breaks down. Clustering may also involve claims
that are not brought together by simultaneity or rather near-simultaneity, but for contractual
reasons. This is the case for an integrated occurrence under the Bermuda form (a contract type for
certain types of liability), claims may come in clusters of tens, hundreds or even thousands.

Let us consider a compound distribution where we model the number of clusters, and then the
number of events in each cluster. If the process by which clusters are generated is a stationary
process, then the whole process can be seen as a special case of a Lévy process (Appelbaum, 2009;
Barndorff-Nielsen & Shephard, 2012; Kozubowski & Podgorski, 2009), and specifically a pure-
jump Lévy process.

A Lévy process is a process with stationary and independent increments6. Brownian motion
and Poisson processes are examples of Lévy process. Brownian motion describes the movement of
particles under the assumption that their trajectory is not deterministic but is affected by Gaussian
noise. The stochastic equation for generic Brownian motion (in integral form) is given by:

Xt � µt � σBt

where Bt is a Gaussian process with mean 0 and standard deviation 1, and µ is the drift. A typical
application of this is to model stock prices: for that purpose, however, Xt is taken to be the
logarithm of the stock price (which is never below zero): Xt � lnYt and therefore the equation can
be rewritten as lnYt � µt � σBt (dYt � µYtdt � σYtdBt in differential form). Yt is referred to as
geometric Brownian motion.

5It is also relevant, even more intuitively, to human mortality, which tends to be higher among infants and among the
elderly, while being roughly stationary in the middle: for this reason the regime β < 1 is also called the “infantile phase,” and
the regime β > 1 is referred as the “aging phase.”

6Formally, a process X � Xt : t ≥ 0f g defined on a probability space Ω; F; P� � is said to be a Lévy process if it
possesses the following properties: (a) The probability that X0 � 0 is 1 (b) For 0 ≤ s ≤ t, Xt � Xs is equal in distribution to
Xt�s (stationary increments) (c) For 0 ≤ s ≤ t ≤ u ≤ v, Xt � Xs is independent of Xv � Xu (independent increments) (d)
lim
h!0

Pr� Xt�h � Xt

�� �� > ε� � 0 for all values of t: that is, the probability of a finite jump at an arbitrarily chosen time is zero

(probability continuity). Notably, (d) implicitly allows for jumps of random sizes at random times, as we will see later when we
introduce the Lévy-Khintchine decomposition.
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One problem with Brownian motion as a model of insurance losses is that the sample paths are
continuous and sudden jumps are not possible: when Δt goes to zero, ΔXt � Xt�Δt � Xt also
always goes to zero. In reality, whether we speak about particles or stock prices, we see examples of
the system undergoing sudden jumps, and any model that doesn’t take that into account
underestimates the volatility of the underlying phenomenon. A Lévy process explicitly allows the
possibility of having a number of finite jumps over a given time interval. A Lévy process can be
described (informally) by the following Lévy-Khintchine decomposition7 (Kozubowski &
Podgorski, 2009):

Xt � µt � σBt �
X
j

hjI Γj;∞� � t� �

where the last term describes a finite sequence of jumps at random times Γj of size
hj � XΓj

� XΓj
� . Note that the process can always be put in a form that is right-continuous and

has limits from the left. The symbol I Γj;∞� � t� � stands for the random step function I a;∞� � t� � � 1
for t ≥ a, 0 for t < a, where a � Γj ω� � depends on the random sample.

A Lévy process has three components: a deterministic drift, Gaussian noise, and a collection of
jumps. In the context of modelling loss counts we do not need the whole mathematical machinery
of Lévy processes, and we can focus on the case where µ � σ � 0 and only the jump components
remain (a “pure jump” Lévy process). The Poisson process can be described as the case where
hj � 1 for all j.

An obvious generalisation of the Poisson process to describe losses can be obtained when hj is
itself a random variable with integer values larger than or equal to 1, or in other terms, the case
where losses are not isolated rare events but can occur in clusters. This is of course an
approximation – in the real world, the losses do not actually need to happen at exactly the same
time, but around the same time.

An interesting special case occurs when the number of clusters Nc is Poisson-distributed with
rate λ � k ln 1� p

� �
, and the number of events Ne occurring within a cluster can be modelled

with the logarithmic distribution whose probability f ne� � for ne ≥ 1 is given by:

f ne� � � 1
ne ln�1� p�

p
1� p

� �
ne

This case will produce a negative binomial distribution with parameters p and k
(Anscombe, 1950).

However, in general, the numbers of events (losses) within each cluster need not be
logarithmic: see Anscombe (1950) for alternatives8 such as the Newman Type A distribution
(Poisson distribution of events in each cluster) and the Pólya-Aeppli distribution (geometric
distribution of events). The number of clusters need also not be Poisson. For example, if the
underlying process for the number of clusters is a non-stationary Poisson, then the overall process
will not be a Lévy process, but a so-called non-stationary Lévy process.

Modelling from first principles, we should use a non-stationary Poisson when there is local
independence and we have some sensible model of the intensity function. However, where
clustering of losses occurs, we should use other models such as pure-jump Lévy processes or their
generalisation to non-stationary increments (non-stationary pure-jump Lévy processes).

7More formally, the Lévy-Khintchine decomposition states (Appelbaum, 2009) that a stochastic process Xt can be written as
Xt � µt � σBt � Jt , where µt is the drift, Bt is a Brownian motion, and Jt is a pure-jump process, which can be further
decomposed into a compound Poisson process Lt with a finite number of jumps larger or equal to 1, and a compensated
generalised Poisson process St , a process with countably many jumps smaller than 1, but such that the integral of these jumps
converges in distribution. In the case most relevant to us in this paper, that of count processes, the only relevant component is
Jt , and specifically Lt , as all jumps have positive integer size.

8Some of these alternatives display a multimodal behaviour that might be appropriate in certain circumstances.
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2.3.2.3 Does introducing Lévy processes bring any advantage?. It may appear that formalising loss
count processes as Lévy processes is overkill, as the Brownian component and the drift component
are not used. A compound Poisson model would be a sufficient description. However, using the
framework of Lévy processes gives us access to general mathematical results that are available off
the shelf in this well-studied area of research. One such result is related to infinite divisibility.

A distribution for variable X is said to be infinitely divisible if for any positive integer n, there
exist independent and identically distributed random variables X1;X2; :::;Xn such that the
distribution of X is the same as the distribution of the sum X1 � X2 � :::� Xn. The distribution
of each Xk depends on the original distribution9.

It can be shown that if X t� � is a Lévy process then X 1� � is infinitely divisible, and conversely if X
is infinitely divisible then there is a Lévy process such that X 1� � � X (Mildenhall, 2017;
Gardiner, 2009).

The interest in this for loss modelling is that “[i]n an idealized world, insurance losses should
follow an infinitely divisible distribution because annual losses are the sum of monthly, weekly,
daily, or hourly losses. [ : : : ] The Poisson, normal, lognormal, gamma, Pareto, and Student-t
distributions are infinitely divisible; the uniform is not infinitely divisible, nor is any distribution
with finite support [ : : : ].” (Mildenhall, 2017). The extension to non-stationary Lévy processes,
which better reflect the reality of a changing risk landscape, is then straightforward.

Just a few examples of infinitely divisible distributions that are useful for loss modelling
purposes are:

• The Poisson distribution
• The negative binomial distribution
• The normal distribution
• The Pareto distribution
• The lognormal distribution
• All compound Poisson distributions.

In relation to the last item, it is also important to note that all infinitely divisible distributions
can be constructed as limits of compound Poisson distributions.

Finally, Lévy processes can do much more than modelling loss counts. As shown in Mildenhall
(2017), Lévy processes can be used to model aggregate losses. For that purpose, the jumps do not
just represent the occurrence of an event but also its size. An interesting consequence is that this
gives us a first-principles reason for the separation between frequency and severity. It turns out
that in general it is not possible to split the aggregate loss process into a count process and a
severity process: it is only possible when the number of jumps is finite! In other cases, there may be
an infinite number of small jumps and this split is not possible. In that case, however, it is still
possible to model the process as a Lévy process, using a loss frequency curve (basically the OEP
used in catastrophe modelling), as in Patrik et al. (1999).

2.3.2.4 Generalising the Poisson process: illustrations. Figure 2 shows examples of the main ways of
generalising the Poisson process: through non-stationarity (a non-stationary Poisson process),
clustering (general pure-jump Lévy process), or both (a non-stationary Lévy process). All
processes are represented in terms of the cumulative number of unitary jumps as a function
of time.

9Infinitely divisible distributions of the variable X can also be defined in terms of their characteristic function
Φ t� � � E eitX

� �
. If X � P

n
k�1 Xk where the Xks are iid variables, the characteristic function can be written for any n as

Φ t� � � Φn t� �� �n, where Φn t� � is the characteristic function of each of the Xks.

10 P. Parodi et al.
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3. Modelling the Severity of Liability Losses
Liability losses arise from bodily injury or property damage to a third party. The amount of a
liability loss can be determined by the courts in a variety of ways that also depend on the
jurisdiction. As a result, a detailed derivation of a ground-up liability loss model from first
principles for all cases is probably hopeless. However, it is possible to find constraints on the
scaling behaviour of severity distributions and justify them based on reasoning from first
principles. Before doing that, it is useful to look at a traditional severity models and improvements
that actuaries have made on them over the years using statistical theory.

3.1 Our Misplaced Fascination with the Lognormal Model and the Evidence of a Power-Law
Tail

Since the beginnings of risk theory, the lognormal distribution has been viewed as a sensible
attempt at modelling the severity of losses: it produces losses that are always positive and may
span over several orders of magnitude. Although it does not have a power-law behaviour, you
cannot say that it is thin-tailed either: its behaviour is genuinely intermediate (Taleb, 2020).
A well-known paper by Benckert (1962) provides some empirical evidence that the lognormal
works well. Unfortunately, upon closer investigation with richer data sets, it becomes clear
that the lognormal model is rarely a good model for either the body of the distribution or
the tail.

Figure 2. Top left: An example of a Poisson process. The x-axis shows the timing of the jumps (losses) while the y-axis shows
the cumulative number of jumps, X t� �. Note how each jump has unitary size (X tj

� � � X t�j
� �

� 1 if there is a jump at tj), as in
a Poisson process there is no clustering of events (events are “rare”). The condition that the jumps have unitary size can be
relaxed – as long as all the jumps have exactly the same size the process is still called Poisson. Top right: an example of a
non-stationary Poisson process. Notice how the frequency of losses is higher for 400 < t < 600 and 750 < t < 1000. Bottom
left: an example of a pure-jump Lévy process, where the jump values are integers (the negative binomial process falls under
this category). Bottom right: An example of non-stationary pure-jump Lévy process (again with integer jump values). Note
that the process at the bottom right shares with the one at the top right the timings of the jumps (hence the similarity), but
the jumps do not necessarily have unitary size in the bottom right figure.
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3.1.1 The empirical inadequacy of the lognormal model
We have looked at several data sets of casualty losses and the fit to a lognormal has always proved
to be severely unsatisfactory10. Two examples are given in Figure 3, which shows that the
lognormal model is inadequate, and this can be proven even more sharply using a metric to assess
the distance between distributions, such as the KS statistic.

While the empirical inadequacy of the lognormal distribution is clear, we have also found that
the tail of a portfolio of liability losses is almost always modelled well by a generalised Pareto
distribution (GPD) with a power-law tail (ξ > 0), as predicted by extreme value theory (EVT).

3.1.2 Is the lognormal model theoretically adequate to model large losses?
According to EVT, the tail of the distribution can be asymptotically described – apart from
unusual cases – by a GPD, that is, a (survival) distribution of the form:

Figure 3. Top: A Lognormal fit to a large number (around 10,000) of employers’ liability claims in the UK market. (
 0:1%�:
Bottom: A lognormal fit to a large number of motor bodily injury claims in the Indian market. In both cases, based on the
value of the KS statistic, the probability that the data set comes from a lognormal distribution is negligible (
 0:1%�: The
original losses have been masked by a scalar factor.

10Note that it is difficult to evaluate goodness of fit visually if one uses a linear representation of the empirical CDF against
the corresponding model: all fits look similar and they tend to look better than they are; also, the tail behaviour – which is the
one that we are keenest to represent faithfully – is shrunk in the top right corner of the chart and it is very difficult to
distinguish one tail behaviour from the other. For this reason, a representation which is now more commonly used adopts a
log-log scale, which has the useful property that a Pareto distribution appears as a straight line in the chart.

12 P. Parodi et al.
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F x� � � 1� ξ
x � µ

ν

� ��1
ξ

In turn, this distribution exhibits three possible types of behaviour depending on the value of ξ:
a finite-support distribution (Beta distribution) for ξ < 0, an exponential distribution for ξ � 0
(a limiting case), and a power-law distribution for ξ > 0. The case ξ > 0 is observed in most
practical cases. Note that a GPD with ξ > 0 is asymptotically equivalent to a single-parameter
Pareto (F x� � � θ=x

� �
α) with α � 1=ξ.

This does not immediately rule out lognormal behaviour. The lognormal distribution shows an
intermediate behaviour between the exponential and the power law, but asymptotically it falls
under the exponential case – or in technical terms, the lognormal distribution falls within
Gumbel’s domain of attraction (Embrechts et al., 1997). This can be shown analytically using the
concept of local Pareto alpha (Riegel, 2008):

α x� � � �xF0 x� �
F x� � � xF0 x� �

1� F x� �
It is easy to prove that (assuming F is a lognormal distribution) limx!∞α x� � � ∞ ,
corresponding to ξ � 0.

Therefore, while the lognormal distribution could be theoretically consistent with EVT, in
practice it should be discarded because portfolio losses tend to stabilise around a strictly positive
value of ξ.

3.1.3 Is the lognormal model theoretically adequate to model attritional losses?
Having become cognizant of the fact that the GPD captures the behaviour of the tail better than
the lognormal, actuaries now tend to use a GPD (or a simpler Pareto) for tail modelling and
reserve the lognormal for modelling attritional (small) losses. This is the approach taken, for
example, in Knecht & Küttel (2003) and in Fackler (2013), where new classes of spliced lognormal/
Pareto and lognormal/GPD distributions are introduced to formalise this approach. This is a good
workaround to ensure that a suitable model is used where it matters most: in the tail.

However, experience shows that the lognormal distribution is not generally a good match for
attritional losses either. Indeed, Figure 3 shows two examples of a behaviour that we often found in
our work as practitioners: empirical distributions often appear as the conjunction of two parts that
are broadly linear in a log-log scale, with a concave elbow connecting the two. This behaviour is
not one that a lognormal distribution is able to capture and is one reason why the lognormal
performs poorly everywhere. This also suggests that the distinction between attritional losses and
large losses is probably more than a convenient trick to simplify the analysis. It also points to the
potential usefulness of using different types of distributions for the attritional losses, for example
by using a Type II Pareto/GPD splicing.

3.2 Modelling Large Losses from First Principles: The Emergence of the Power-Law Behaviour

The asymptotic behaviour of large losses is mainly dominated by their scaling behaviour: namely,

by how the DoublingRatio x� � � Pr X > 2x� �
Pr X > x� � � F 2x� �

F x� � behaves as a function of x. If the severity

distribution is an exponential distribution (ξ � 0), then Doubling Ratio x� � � exp��x�: it
decreases quickly and soon becomes indistinguishable from zero. If the severity distribution is a
single-parameter Pareto with parameter α, then Doubling Ratio x� � � 2�α: the ratio is the same at
all x, or, equivalently, the ratio is the same at all scales and has a so-called fractal nature. If the
severity is GDP with ξ > 0, the ratio will have a slight dependence on x that will asymptotically

disappear: Doubling Ratio x� � � 1�ξ 2x�µ� �
1�ξ x�µ� �

� ��1
ξ ! 2�

1
ξ .

British Actuarial Journal 13

https://doi.org/10.1017/S1357321724000163 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321724000163


Thanks to EVT and specifically to the Pickand–Balkema–de Haan (PBdH) theorem, we
know that the exponential and power-law behaviour contains all possibilities with positive
unbounded support, that is, in most practical cases. Observation also tells us that the most
common behaviour is a power law. While the PBdH theorem constrains the asymptotic
behaviour of the severity distribution, it does not say what drives a particular behaviour and
specifically why the power-law behaviour is so ubiquitous. Where does this power-law
behaviour come from?

3.2.1 Random growth processes in economics
A power law is often observed in statistical physics, especially in the context of phase transitions. It
occurs in the presence of system-wide coherence. In economics, power laws have been observed
for the distribution of incomes, wealth, the size of cities, the size of firms, and many other
examples (Figure 4). In all these cases, the power-law behaviour (and specifically the Pareto law)
have been explained as the steady-state distribution resulting from a random growth process
(Gabaix et al., 2016) where the growth rate is uniform across all sizes.

Let us expand on this. In all cases shown in Figure 4, the phenomenon can be described by a
stochastic differential equation whose solution is a Pareto distribution. According to Gabaix
(1999) and Gabaix et al. (2016), the basic insight is that these other power laws are the steady-state
distribution arising from the scale invariance of the physical process of growth. Growth is
homogeneous at all scales: therefore, the final distribution process should also be invariant, which
means that it has fractal nature and must follow a power law.

In the most modern (and simplest) incarnation, this means that the process can be described by
stochastic differential equations of this type (we follow Gabaix et al., 2016):

dXt � µ�Xt; t�dt � σ�Xt; t�dZt

where Xt is a stochastic variable (such as income, wealth, city size, firm size), µ�Xt; t� is the growth
at time t, σ�Xt ; t� is the spread at time t, and Zt is a Brownian motion. This equation can be
interpreted as follows: the variable Xt increases in time because of a deterministic drift µ�Xt; t�dt
and random effects that can be described as a Brownian motion. The case in which we are most

Figure 4. Examples of the emergence of the power law in economics.
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interested is the one where both the growth rate and the spread rate are constant at all sizes and are
time-independent, that is, µ Xt; t� � � µXt and σ Xt; t� � � σXt . This gives

11:

dXt � µXtdt � σXtdZt

The distribution of variable Xt at time t is12 f �x; t�. We want to describe the evolution of the
distribution given the distribution at time t � 0; f �x; 0�. The tool to do so is the forward
Kolmogorov equation, which for our case can be written as:

@f
@t

� � @ µxf x; t� �� �
@x

� 1
2

@2 σ2x2f �x; t�� �
@x2

We are specifically interested in the steady state of distribution f x; t� � – if it exists – because that
will tell us what we need to know, the distribution of income, wealth etc in equilibrium. We are
therefore interested to solve the FKE for the case @f

@t � 0: We are basically seeking the solution
f x� � � limt!∞ f x; t� � for what is now an ordinary differential equation:

� µ
d xf x� �� �

dx
� 1

2
σ2 d

2 x2f x� �� �
dx2

� 0

This can be rewritten as:

σ2

2
x2

d2f x� �
dx2

� 2σ2 � µ
� �

x
df x� �
dx

� σ2 � µ
� �

f x� � � 0 (3)

it becomes clear that one possible solution is a function of the form f x� � � kxβ, which turns
Equation (3) into a second-degree equation in β. This has two roots: β � �1 and β � 2 µ

σ2 � 1
� �

.
The first root is not “physical,” as it leads to a divergent equation. As for the other, it leads to a
Pareto distribution with α � � 1� β� � � 1 � 2 µ

σ2

Assuming that the solution must make economic sense, which translates into a smoothness
constraint, it can also be proved that this is the only solution (Gabaix et al., 2016).

We have however performed a sleight of hand: we have assumed that such an equilibrium
distribution is possible, which is not the case unless we make other extra assumptions. If these
extra assumptions are not included the solution to the forward Kolmogorov equation is a
lognormal distribution with indefinitely increasing mean and variance, which never reaches a
steady state (Gabaix et al., 2016). Researchers have resolved this issue in the past in two ways:

(a) By assuming that the random variable has a minimum value Xmin (any value will do!) that
acts as a reflective barrier (e.g., a minimum salary, or a minimum city size).

(b) By assuming that the system has some type of attrition so that new elements enter and exit
the system, for example, in the case of the income distribution, new people join the labour
market and others retire/die.

Both assumptions are reasonable in the real world. The theory then shows that in these cases a
steady-state solution is possible and therefore that solution is a Pareto law, at least asymptotically.
This is consistent with the results of EVT, as a GPD with positive shape parameter asymptotically
becomes a Single-Parameter Pareto law.

11Equivalently, we can write dXt
Xt

� d logXt � µdt � σdZt , which has perhaps a more familiar format.
12In the absence of other constraints, the solution of this equation is a standard lognormal distribution with indefinitely

increasing mean and variance. As we will see shortly, however, under certain conditions an altogether different behaviour
emerges.
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3.2.2 The random growth process and loss distributions
We have now seen several examples of circumstances –mostly related to economic quantities – in
which the Pareto law emerges because of an underlying random growth process. On the other
hand, we have significant empirical evidence for the Pareto law applying – at least approximately –
to the realm of large insurance losses. What can we say about whether such an empirical fact can
be reasonably explained by a random growth process?

3.2.2.1 Mechanisms for the emergence of power laws. There appear to be two possible ways in
which we can show that a Pareto law will eventually emerge for a (liability) loss distribution in
most cases: an indirect mechanism and a direct one. The indirect mechanism is quite
straightforward: liability losses comprise different components. Limiting ourselves to bodily injury
claims, these components are:

• loss of earnings (or dependant’s loss of earnings in the case of death)
• cost of care including medical costs,
• pain and suffering
• other (e.g., punitive damages).

If at least one of these components follows a power law, the overall resulting distribution will be
(asymptotically) a power law. The “loss of earnings” component of a loss is proportional to income
(in a non-trivial way, as it is also affected by other factors such as age) and if we accept
Champernowne’s analysis (1953) – which has indeed been tested successfully for many
territories – this follows a Pareto in the tail of the distribution. If more than one power law is in
play, the one with the thickest tail will eventually dominate the tail and will fully characterise the
asymptotic behaviour.

Another example is given by D&O losses. These are proportional to the size of firms, which also
follows a Pareto law according to Simon and Bonini’s analysis (1958).

The direct mechanism is derived by looking at the growth rate of losses themselves. While a
full-blown theory for this is not available yet, there are clear indications that one or more such
mechanisms exist. As an example, consider court inflation: compensations from previous cases are
used as benchmarks for current cases and increases tend to be a percentage of the benchmark,
leading to an exponential increase.

For the existence of a steady-state distribution and the emergence of a Pareto law, we also need
to find one limiting mechanism: either a minimum loss or a factor of attrition. While the existence
of an attrition factor for losses cannot be excluded (e.g., certain types of losses disappearing from
the list of potential losses), the existence of a minimum loss seems to be the most straightforward
way of demonstrating the existence of a steady-state solution: whether because of the existence of
deductibles or because below a certain monetary amount a claim simply doesn’t make sense, we
can safely assume that a minimum loss exists.

3.2.2.2 Attritional versus large losses. Champernowne’s article also points to an interesting
distinction between low incomes and high incomes, which appear to follow different laws. The
existence of these two different “regimes” is explained by the fact that lower incomes tend to grow
less rapidly than higher incomes. The same distinction appears to be valid for losses. Traditionally,
actuaries subdivide losses into attritional and large losses. The main reason behind this distinction
is often one of convenience: small losses are treated as an aggregate, allowing actuaries to pay more
attention to individual large losses. However, there may be more to the distinction than simply
size. Attritional losses tend to go through a more streamlined claims settlement process with little
or no court involvement, and therefore their increase in time is linked more to standard
inflationary factors such as CPI and wage inflation and less to court-driven social inflation. Also, if
this is the case, we should see a radically distinct behaviour in the log-log construct standardised
curve (CDF) graph between attritional and large losses. This is indeed what we observe in practice
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(see Figure 3): both attritional losses and large losses appear to be distributed on a straight line in
log-log scale, although this is only a very rough approximation for attritional losses. This points to
two different types of behaviour for the two different types of losses. These empirical observations
and results from other economic examples both point to an intrinsic rather than convenience-
driven difference between attritional and large losses.

An alternative explanation for the difference in regimes is that the growth for the low part of
the distribution is not invariant and that attritional losses have not (yet?) achieved a steady-state
distribution, in which case we could attempt to represent the lower part of the distribution as an
intermediate stage in the transition between a lognormal distribution and a Pareto distribution, as
it occurs in the simulation in Figure 5. That would be an interesting comeback for the lognormal
distribution!

3.2.2.3 Empirical demonstration of the emergence of a power law. We can demonstrate the
emergence of a power law, that is, the steady-state solution to the forward Kolmogorov equation, for a
system where the random variable has a minimum value empirically using a numerical simulation.
Consider two types of stochastic random walk for the random variable X t� �. The first is a standard
Geometric Brownianmotion (GBM), which can be written asX t � dt� � � X t� � � ɛX t� �. The second
is the reflected Geometric Brownian Motion (rGBM), which can be written as:

X t � dt� � � X t� � � ɛX t� �; X t� � ≥ xmin

X t� � �max 0; ɛ� �X t� �; X t� � < xmin

	

The stochastic simulation is based on random increments ɛ drawn from a normal distribution
with mean µ dt and variance σ2dt:

ɛ � µ dt � σ






dt

p
Z; Z � N 0; 1� �:

The parameters are µ � �0:01, σ � 0:1, and dt � 0:1 throughout.
In both walks, the starting point is X 0� � � 1:0 and we take xmin � 0:5. We generate a sample of

1; 000; 000 paths over a total time-period T , where each path is a set [X 0� �;X dt� �;X 2dt� �; :::;X T� �],
and study the distribution of the endpoints X T� � for different values of T .

The assertion is that for large values of T , the reflected geometric Brownian motion will result
in a power-law distribution for the endpoints, with a survival function:

Figure 5. Survival function for increasing time periods, showing the increasing move away from the lognormal distribution
towards the steady-state Pareto distribution.
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SX T� � x� � � axb; b � �1� 2µ
σ2 :

This distribution arises as the steady-state solution to the dispersion relation for the geometric
Brownian motion. In the continuum limit dt ! 0, the coefficient a appearing in SX T� � x� � could be
determined via:

E X T� �� 	 �
Z

xmin

dxSX T� � x� �:

However, for numerical simulation, it is not possible to arbitrarily decrease dt to zero, since for a
relatively long total time-period, the number of steps required to form the path becomes
prohibitively large. This means that the normalisation coefficient a cannot be determined from
simulation.

The empirical distribution of the endpoints is represented via the survival function (exceedance
probability) for various time periods T in Figure 5.

For T0 � 10, the geometric Brownian motion and reflected geometric Brownian motion result
in lognormally distributed endpoints (the simulated curves both coincide with the dashed
“lognorm” analytic curve), as expected. For T � 20, the reflected geometric Brownian motion
endpoint distribution starts to deviate and straighten out. This continues up to T � 500 (the
straight line), where the simulated curve lies on top of the power-law fit (the dashed straight line,
using the power �1� 2µ=σ2, and determining the coefficient a from the 95th percentile of the
simulated curve).

3.3 Is an Approach from First Principles to Attritional Losses Even Needed?

Attritional losses are messy and we do not expect to capture them with a neat distribution derived
from first principles, although when the empirical distribution displays a clear two-phase
behaviour and it appears smooth for both attritional and large losses, it might be worth trying a
Type II Pareto/GPD fit. On the positive side, that may not be necessary as we can avoid modelling
the attritional losses altogether: attritional losses are by definition usually small and plentiful and
therefore we can simply resample from the available data. One can also use interpolation, but this
doesn’t add much value in most circumstances.

The theoretical underpinning for the resampling approach to attritional losses is Glivenko–
Cantelli’s theorem, which states that the empirical distribution converges uniformly
(sup Fnj �x� � F�x�j ! 0 as n ! ∞ ) to the real distribution F x� �. The connection with the
Kolmogorov Smirnoff (KS) test is obvious and it is possible to put limits around the KS statistic
with a certain probability. For example, we know that sup Fnj �x� � F�x�j < 1:358





n

p
with

probability 95% for sufficiently large values of n.
This theoretical result says almost everything we need to know but there are still interesting

practical considerations and questions. For one thing, resampling has obvious limitations: for
example, if the loss data set is fx1; ::: xng, resampling can never produce losses above
max x1; ::: xnf g; also, losses tend to become more rare when they become large and therefore the
distortions arising from interpolation become more significant. We can expect that resampling
works better for attritional losses than for the general population of losses. Another practical
consideration is, how much do we lose in practice by using resampling? To be more specific, if we
know that the correct distribution is, say, a lognormal we want to compare (a) resampling from
the data available with (b) using a lognormal model calibrated based on the available data. We can
calculate the KS distance between the true underlying model and comparing the former versus the
latter. Repeating many times gives an estimate of the average KS distance for the two approaches.
Note that the KS distance must be evaluated for losses below some threshold, since simple
resampling is not interesting for large losses, except in special cases.
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We have tested data coming from a lognormal distribution with mean equal to 25 and
standard deviation equal to 5, for different sample sizes (10, 20, 30, 50, 100, 200, 300, 500,
1,000, 2,000, 3,000, 5,000, 10,000). The main message is that for small samples the model
tends to perform better than resampling, but the difference rapidly shrinks as the sample
increases in size, and eventually resampling performs in a way that is indistinguishable from
modelling (Figure 6).

We have shown that even in the case where we know the true distribution and we generate
losses from it, using resampling is almost as good as using a model calibrated based on existing
data, apart from the case of very small samples (say, 100 if the threshold for attritional is at the
90th percentile of the distribution, in the case of a lognormal). We have also argued, however,
that the lognormal model is usually not a good model. Indeed, given the messy character of
attritional losses, it is unlikely that any standard continuous distribution is a very good model.
Therefore, in practice, for data sets of sufficient size, resampling the empirical distribution will
outperform any attritional loss model. Using software such as R or Python makes resampling
as easy as working with a parametric model, essentially removing the only reason to use a
parametric model.

4. Modelling the Severity of Property Losses
4.1 The Traditional Approach to Property Modelling

The standard method for producing a severity model for liability losses – that is, fitting a curve to
historical loss data – is not straightforward to apply to property business because future losses
depend critically on the maximum possible loss (MPL) profile of the portfolio, which is not
necessarily the same as the MPL profile of past years. For this reason, it is more natural to model
losses as percentages of the MPL for each building and construct standardised curves (CDFs and
exposure curves), under the assumption that their shape does not depend on the MPL but only on
the type of construction.

In Europe and other territories, Bernegger’s curves (also called MBBEFD curves) are widely
used for this purpose.

4.1.1 Bernegger’s curves and their connection to statistical mechanics
Bernegger’s curves (Bernegger, 1997) are curves borrowed from statistical mechanics. However, as
Bernegger emphasised from the beginning, their use is purely practical and there is no suggestion
of any deeper connection with statistical mechanics.

Figure 6. KS distance for test set versus (data-calibrated) model, test set versus training set, test set versus true model for
different values of the sample size. Left: no threshold. Right: 90% threshold. Note that the KS distance (rather than the
normalised KS distance, which will remain relatively flat) is shown here.
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It is useful to state the formal connection between Bernegger curves and statistical mechanics,
because it was not done in the original paper, and because we will need to refer back to it later
when exploring the use of graph theory in the context of property pricing.

The probability densities for the different curves from statistical physics are given by:

f x� � �
1
Z e

� x
kT x ≥ 0; Maxwell � Boltzmann

a
ce

x
kT�1 x ≥ 0; Bose � Einstein
a

ce
x
kT�1

x ≥ 0; Fermi � Dirac

8><
>:

In the most general format, the survival probability corresponding to Bernegger’s curves is given by:

F̄ x� � �

1�b
g�1� �b1�x� 1�bg� � x < 1; b > 0; b≠ 1; bg ≠ 1; g > 1

bx x < 1; bg � 1; g > 1
1

1� g�1� �x x < 1; b � 1; g > 1

1 x < 1; g � 1 or b � 0

0 x � 1

8>>>>>>><
>>>>>>>:

�

1�b
g�1� �b
gb�1 e��ln b�x�1

x < 1; b > 0; b≠ 1; bg ≠ 1; g > 1

e�ln b�x x < 1; bg � 1; g > 1
1

1� g�1� �x x < 1; b � 1; g > 1

1 x < 1; g � 1 or b � 0

0 x ≥ 1

8>>>>>>>><
>>>>>>>>:

where the curly bracket on the left shows the standard way of writing Bernegger’s curves, while the
curly bracket on the right shows a rewriting that makes the connection with statistical physics more
obvious.

The three different cases can therefore be obtained by changing the value of bg: bg � 1
corresponds to the Maxwell–Boltzmann distribution, bg > 1 to the Bose–Einstein distribution,
bg < 1 to the Fermi–Dirac distribution. The case b � 1 is not physical. Setting the survival
probability to zero at x ≥ 1 is also a mathematical trick to produce a finite probability for a total
loss and does not correspond to a physical situation.

It should also be mentioned that there is a special (“Swiss Re”) parameterisation dependent on a
single parameter c formed from a particular configuration: b � b c� � � exp 3:1 � 0:15c 1� c� �� �;
g � g c� � � exp 0:78� 0:12c� �c� �: Based on empirical studies, Bernegger suggests that residential
property fire damage corresponds to c � 1:5, whereas industrial properties may be described by
values up to c � 8:0.

The probability of a total loss (X � 1) is given by Pr X � 1� 	 � F
�
1�� � � 1

g for any value of b,
and for g ≥ 1.

It should be noted that all Swiss Re c curves are solidly within the Bose–Einstein region of
Bernegger’s curves.

As mentioned, Bernegger was careful not to suggest a deeper relationship with statistical
physics. Interestingly, however, if one considers certain possible mechanisms for producing
severity curves for fire one finds the three different regimes (MB, BE and FD) corresponding to
three different ways in which fire propagates. To see why that is the case, we need to see how
property losses can be modelled from first principles using graph theory.
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4.2 Property Losses Using Graph (Network) Theory

4.2.1 The basic theory
Parodi & Watson (2019) presented an approach to modelling property losses from first principles
based on graph theory, a branch of discrete mathematics.

A graph, which can also be a network, is an abstract mathematical object that can be thought of
as a collection of nodes, some of which are connected via edges.

The paper presented two ways in which fire losses can be understood. In both cases, the
approach relies on a representation of a property as a graph whose nodes represent rooms/units,
with edges between two nodes if there is a passageway – that is, if direct fire propagation between
the two corresponding rooms is possible.

In the simplest version, the value of each room/unit is the same, say 1, and each node reached
by the fire is considered fully lost so that the loss for each node is either 0 or 1. In either approach,
the fire is assumed to start at a randomly selected node, that node plus those nodes connected to it
are assumed to have been reached by the fire and the loss is then simply equal to the number of
nodes in that subset.

In this framework, the total insured value (TIV) is the number of nodes in the graph, while the
MPL is taken to be the size of the largest connected component of the graph since a fire starting in
one connected component cannot propagate to a separate connected component due to lack of
passageways. This simple framework can of course be refined at will: the value of different nodes
may vary, and partial losses at nodes allowed.

4.2.1.1 Static approach. The static approach starts from a weighted graph13 G � �V ; E;W�, V
being the (set of) nodes (or vertices), E the edges, and W the edges’ weights. Losses are simulated
by picking a node v at random as the origin of the fire, and then deleting each edge e in the graph
with a given probability �1 � we�. The loss amount is given by the size of the connected
component containing the node v in what remains of the graph G. Dividing by the MPL (the
largest connected component of the graph before edge deletion) gives the damage ratio.
The process is repeated for many simulations until the distribution of the damage ratios emerges.
The algorithm is described in more detail in Parodi & Watson (2019) and a visual representation
of it is shown in Figure 7. The simulation can be run for both a single property and for a portfolio
of properties, in which case one must also pick properties at random.

4.2.1.2 Dynamic approach. An alternative approach is to view the fire as propagating through a
building deterministically with the route defined by the graph connectivity, but for a random
amount of time. In this approach, edge weights are related to the time it takes for fire to spread
through a given passageway and the status of those passageways (e.g., open versus closed doors).

The fire will spread and burn for a time T (“delay”), until it is finally extinguished. In Parodi &
Watson (2019), the delay distribution was assumed to be a simple exponential distribution
FT t� � � 1 � exp �λt� � ; λ being the inverse of the expected time before the fire is put out, for lack
of sufficient data to produce a data-driven or principle-based distribution.

As for the static approach, the simulation to produce a normalised severity curve starts by
choosing a node where the fire starts. However, a random time t for the fire propagation is also
selected. From the moment the fire starts, it traverses the graph deterministically. The time to

13A graph (Trudeau, 2003) is a mathematical structure comprised of a collection of nodes and a set of edges that link pairs of
nodes. When every edge has a specific weight, the graph is known as a weighted graph. Unweighted graphs can be thought of as
weighted graphs with all weights = 1. If there exists a path from node v to node v0 through a sequence of connected edges, the
two nodes are said to be connected. A connected component of a graph is a subset of the graph where every pair of nodes are
connected. A directed graph, or di-graph, is a graph where the edges have a direction, meaning the order of the nodes the edge
connects is crucial. The edges are represented by arrows. Directed graphs can also be weighted. One popular (if uneconomical)
representation of graphs and di-graphs is as matrices where the entry at row j and column k is non-zero if and only if there is
an edge connecting j to k, and the entry value is equal to the weight. The matrix will be symmetric for undirected graphs.
Matrices will be used in Section 6 to represent supply chain networks.
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traverse an edge depends on the nature of the separation between two rooms: nopen, nclosed, nwall
represent the number of time steps it takes to traverse an edge representing an open door, a closed
door, and a wall/floor respectively. For a particular simulation a door is assumed to be open with a
certain probability Pr open

� �
. The traversing progresses until time t is reached. See Parodi &

Watson (2019) for details.
As for the static case, the simulation can be performed for a single property or for a portfolio.

The results of the simulation with a given set of parameters are shown in Figure 8.
The Bernegger model gives a good approximation of the various curves produced by the

simulation for both the individual properties and the portfolio, but the values of the parameters
differ greatly from the Swiss Re c curves. This finding remains true for a wide range of different
choices of the parameters.

Having summarised Parodi & Watson (2019), we next investigate the relationship between the
MBBEFD parameters that approximate the severity curve of given graphs, and the type of
temporal law for the spread of fire.

4.2.2 Bernegger (MBBEFD) curves and an interpretation of MB versus BE versus FD
Let us concentrate on fire damage and treat it as a physical process, using the random time
approach of Section 4.2.1.2. Namely, a fire starts, spreads and is then put out (or at least brought
under control so that no further damage occurs) after some time. If the fire spread is not stopped

Figure 7. In this simulation example, we are assuming that each node represents a unit of worth equal to 1, so the total
insured value (TIV) equals 8. The maximum possible loss (MPL) is equal to 6, the size of the largest connected component.
The origin of the fire is selected at random (node 2 in the example), then the edges are removed with probability equal to 1
minus the weight of that edge. The size of the connected component that includes node 2 is then calculated, and the loss is
divided by the MPL, giving the damage ratio. The process is then repeated for the desired number of scenarios. Figure taken
from Parodi & Watson (2019).

Figure 8. The result of the simulation with the random time approach with the following parameters:
λ � 1

2 ;Pr open
� � � 0:8, nopen � 1, nclosed � 10, nwall � 30. The severity (left) and exposure (centre) curves for different

property structures and for the whole portfolio, obtained simulating 100,000 different scenarios. (Right) The parameters
k � ln b� �, l � ln�g � 1� of Bernegger’s curves for the various property structures and the portfolio and compared with the
values of k and l corresponding to different values of c for the Swiss Re c curves (the black curve).
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within a certain period, there is a total loss. The spread of fire is not modelled as a random physical
process here, but as a deterministic process. What is considered random is the cause of the fire,
and how long it takes for the emergency services to react and stop the fire from doing further
damage.14

Assume that the fractional loss is a deterministic function of a random time and further assume
that the random time is drawn from the exponential distribution with parameter λ. We can write:

X � f T� �;T � Exp λ� �; FT t� � � e�λt; E T� 	 � 1
λ

The as-yet unknown function f is called the evolution function and represents the fractional
amount of damage done. It should be non-decreasing and has the boundary conditions

f 0� � � 0; f T > tmax� � � 1

for some maximum time tmax. Given that the probability of a total loss P X � 1� 	 � 1=g, we can
write:

Pr�T > tmax	 � e�
tmax
E T� 	 � 1

g

such that

g � exp
tmax

E T� 	
� �

� eλtmax

In other words, the MBBEFD parameter g can be described in terms of the time it would take a fire
to spread and destroy the building completely and the mean time taken to respond and stop the
fire from spreading further. This is a simple, intuitive, and natural interpretation15. Further, the
parameter for the exponential distribution has been set (without loss of generality) to 1.

Now let us derive the evolution function f that corresponds to the CDF for the MBBEFD
distribution that obeys the boundary conditions. This can be done by considering the probabilities
(restricting to 0 < x < 1 for now�:

F x� � � P f T� � > x
� � � P T > f �1 x� �� � � e�λf �1 x� �

or

t � f �1 x� � � � ln F x� �� �
λ

Using the definition of F x� �, we can invert the expression above to yield x. Before doing that,
however, we introduce new variables α � bg � 1, β � 1 � b to have an expression that covers all
cases16.

x � f t� � � �
ln βeλt�α

β�α

� �
ln 1 � β� �

14Here, we are considering a single building in isolation. If we were to consider a portfolio of properties, one might also treat
which property is burning as a random variable.

15Moreover, recall that the Swiss Re curves are based on the parameter g being an exponential of parameter c – the typical
scales in the two descriptions are similar.

16The case bg � 1 is equivalent to α � 0 and the case b � 1 corresponds to the limit β ! 0. The denominator is always
well-defined since 1� β � b > 0. Also, α� β � b g � 1

� � ≥ 0.
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We can calculate f tmax� � using eλtmax � g and expanding the definitions of α and β:

f tmax� � � �
ln

βg�α� �
β�α� �

� �
ln 1 � β� � � � ln 1

b

� �
ln b� � � 1

Having considered what happens for 0 < x < 1, we can now apply our boundary conditions and
write down the expression for X � MBBEFD b; g

� �
rewritten in terms of the deterministic

evolution of a process over a random time drawn from an exponential distribution:

X � f T� �;T � Exp λ� �; f t� � � min 1;�
ln

βeλt�α� �
β�α� �

� �
ln 1� β� �

0
@

1
A:

It should be emphasised that the above is formally identical to the MBBEFD distribution, the
difference being in how it is written. The physical picture of a fire spreading over a random time is
simply our motivation for choosing the form of the expression and how to interpret it.

4.2.2.1 Separating the MB, BE, and FD regimes. Using the above definitions, the three regimes
correspond precisely to the sign of α: the MB regime corresponds to α � 0, the BE regime to
α > 0 and the FD regime to α < 0. We will show that the evolution function f t� � exhibits three
distinct behaviours in the three regimes.

By differentiating the evolution function with respect to time (for 0 < t < tmax), we can derive
a differential equation form:

ln b� �
λ

f 0 t� � � α

α� β
eln b� �f t� � � 1

where we recall that f t� � is an increasing function and that α� β ≥ 0. So, the three regimes are:

1. MB (α � 0�. Here we have already seen that f t� � � � λt
ln b� � and the evolution function is

linear in time.
2. FD (α < 0). Here we use that α � bg � 1 < 0, such that 0 < b < 1

g < 1 and ln b� � < 0.
Then (keeping only the signs and ignoring constants) f 0 t� � � e�f t� �and we see that f 0 t� �
decreases with time and that the evolution function is decelerating.

3. BE (α > 0). Now we must consider the values of b (since b= 1 is a special case):
o Case 1

g < b < 1. For this case, ln b� � < 0 and f 0 t� � � constant � e�f t� � is increasing with
time such that the evolution function is accelerating.

o Case b � 1. Now f t� � � eλt�1
g�1 and the evolution function is exponentially increasing. This

can also be written as f 0 t� � � eλtλ=α and again the evolution function is accelerating.
o Case b > 1. For this case, ln b� � > 0 and f 0 t� � � eX t� � so again, the evolution function is

accelerating.

In summary, the three different regimes correspond to whether the evolution function is
decelerating (FD), linear (MB), or accelerating (BE).

4.2.2.2 Some examples. Figure 9 shows a few scenarios for the time evolution of fire, corresponding
to Bernegger curves in different regions of the �b; g� space. The parameter for the exponential
distribution is set to λ � 1 in all cases, without loss of generality because λ is simply a scaling
factor.

4.2.2.3 Connection between the property graph topology and the parameters of the Bernegger
distribution. We have rewritten the Bernegger distribution in terms of a system undergoing a
deterministic evolution over an exponentially distributed random time. There are two parameters
(g and b) and three types of behaviour. The parameter g dictates how long it takes relative to the
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mean time taken to stop the process for there to be complete destruction. The parameter b governs
how the process evolves: a larger value of b is associated with a system where the evolution is
accelerating17. This provides an intuitive and appealing physical picture for the interpretation of
Bernegger curves.

What is still missing is to make explicit the connection between a property’s graph (its
topology) and the type of statistic that best describes the evolution of the fire. Interestingly, all
examples based on real-world topologies for household properties in Parodi & Watson (2019) led
to parameters solidly belonging to the decelerating FD region. However, it is not difficult to
imagine graphs that lead to an accelerating BE distribution. One such example is a graph where
one hallway node is connected to a very large percentage of other nodes, and each node is
separated from the hallway node by at most two degrees. In this case, if the fire originates in a node
separated from another node by two degrees, after one step it will have affected a small number of
other nodes, but one step later it will touch the hallway node and from there it will spread almost
immediately almost everywhere, an obvious case of spread acceleration.

Another way of producing the BE behaviour is by considering a constructive total loss
whenever the number of nodes exceeds a certain percentage of the whole graph. This will remove
the effect of obstinate nodes that only burn after a very long time and provide an alternative
mechanism for acceleration. It is like considering that alongside fire there are other related
phenomena such as smoke that cause damage, so once a good percentage of the property is out of
order the likelihood of salvaging the rest is reduced.

Similar considerations can be made for the static approach. The removal of certain edges with a
given probability is unlikely to disconnect the hallway node from the rest of the graph, and
therefore a total loss (or near-total loss) is more likely.

At the other end of the spectrum, we have graphs with poor connectivity. An example of this is
a Cayley tree18 of degree m. If the depth of this graph is k, the total number of nodes is
1�m�m2 � . . .�mk � mk�1�1

m�1 . If a fire originates at a random point, it is more likely to
originate close to the boundary, where most nodes are, and therefore to propagate slowly (of
course if it originates at the root, it will expand quickly).

Figure 9. Left: example of the BE regime: time evolution for a Swiss Re curve with c � 1:5 (residential property). Increasing
the value of c yields the same type of behaviour but with a lower acceleration/convexity; Centre: example of the MB regime:
evolution for a Bernegger curve with b � 0:1; g � 10; Right: example of the FD regime: evolution for a Bernegger curve with
b � 0:01; g � 10.

17Note that all Swiss Re curves are in the Bose–Einstein region provided the parameter c is between −0.48 and 21.48.
18Some definitions may be helpful here. The degree of a node is the number of edges connected to the node. A tree is a

graph with no loops. A rooted tree is a tree where one of the nodes has been designated as the root. The designation of a root
establishes a hierarchical structure within the tree: every other node in the tree has exactly one path to the root node, and a
parent-child relationship in the tree is created: every node except the root has parent nodes, and nodes may have child nodes
(in which case they are called intermediate nodes) or not (in which case they are called leaf nodes or interface nodes). The
depth of a rooted tree is the number of nodes in the longest path between the root node and any leaf node. A Cayley tree of
degreem is a rooted tree that has a highly regular and symmetric structure: a root node of degreem, leaf nodes of degree 1 and
intermediate nodes of degree m� 1. A tree structure is an idealised topology for a property where the removal of an edge
(a fire route between two units) fully disconnects the property into two, then drastically limiting the spread of the fire.
A Cayley tree has been chosen as an example because it is especially simple to describe mathematically.

British Actuarial Journal 25

https://doi.org/10.1017/S1357321724000163 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321724000163


4.3 Percolation Theory and the Spread of Fires

The spread of fire is akin to an epidemic and can be formalised in terms of percolation theory.
Percolation theory describes how the addition of nodes or edges to a graph changes the behaviour
of the graph. Historically, the motivation for this type of theory is explaining percolation, the
movement of fluids through a porous material, but it has now developed into something much
more general that sheds light on phase transition and critical phenomena.

Percolation theory has been applied to model the spread of forest fires (Rath and Toth, 2009; van
den Berg, and Brouwer, 2006). Those results don’t apply immediately to the types of graphs
considered in Parodi & Watson (2019) and in this paper, because we mainly use small graphs while
most of the interesting results appear when considering the asymptotic behaviour of networks.

Interestingly, the Bose–Einstein statistic and the Fermi–Dirac statistic emerge quite naturally in
the study of percolation (Bianconi, 2001; 2015), suggesting that the Bernegger curves may provide
more than a purely formal connection to the losses caused by the spread of fires.

To summarise, there appear to be two types of networks: power-law networks that give rise to a
BE statistic and Cayley trees that give rise to an FD statistic. According to Bianconi and Barabási
(2001), growing networks self-organise into complex networks in which some nodes have an
outsized number of connections to the rest of the network. These networks can be mapped into an
equilibrium Bose–Einstein gas, with energy levels corresponding to nodes and particles
corresponding to edges. This gas exhibits condensation as well – that is, a single node captures a
macroscopic fraction of edges. How can this be related to a fire? One way is for the nodes to
represent property units already reached by the fire, and new nodes being added out of an existing
network of inactive nodes representing the existing property units with their connections.
However, currently this is only a research suggestion.

Bianconi (2015) showed that if the structure of the graph is a growing Cayley tree, the
distribution of the energies at the interface (i.e., at the leaf nodes) converges to an FD distribution.

In both Bianconi & Barabási (2001) and Bianconi (2015) the key idea is to create a mapping
between the graph model and a condensed state with various energy levels. Each node corresponds to
an energy level, while an edge corresponds to two non-interacting particles at different energy levels.

4.4 Explosion Risk

So far, we have only looked at fire risk. However, property policies traditionally cover insurance
against the so-called FLExA perils of fire, lightning, explosion, aircraft collision, and All Risks
policies also cover natural catastrophes. Explosion risk was dealt with in Parodi & Watson (2019)
using weighted directed graphs and we refer the interested reader to that paper.

4.5 Aviation Hull Losses Arising from Cabin Fires

As an alternative example of how it is possible to model fire losses from first principles, we have
considered Aviation Hull and specifically losses arising from post-crash cabin fires, which result
from ground collisions or high-speed landings. A study by NASA19 in 1982 on a B737 aircraft on
how cabin fires develop showed a slow initial temperature rise, followed by a rapid increase,
reaching flashover (a near-simultaneous ignition of most combustible material in an enclosed
area). Subsequent studies by FAA20 and NIST21 using modern aircraft material suggested the
flashover point would occur on average 325 seconds after ignition. Once flashover is reached, the
hull experiences a total loss.

19Full-scale flammability test data for validation of aircraft fire mathematical models https://ntrs.nasa.gov/citations/
19820013292.

20Background : FAA Fire Safety - https://www.fire.tc.faa.gov/Research/Background.
21Fire Dynamics – NIST - https://www.nist.gov/el/fire-research-division-73300/firegov-fire-service/fire-dynamics.
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An independent analysis of the damage ratio for fire losses using a third-party database,
analysing over 60 fire/explosion losses of wide-body aircraft between 1974 and 2020, reveals a
30-37% probability of total hull loss in the event of the cabin fire.

Combining these two types of analysis, we can assume that (a) the hull damage is a function of time
from ignition, analogous to the approach we outlined in Section 4.2.1.2; (b) the distribution of time
before the fire is extinguished is exponential: FT t� � � 1 � exp��λt�, where λ = 1/325s, putting the
probability of reaching flashover at ∼37%; (c) the distribution of the damage ratio follows a Bernegger
distribution (for example, a Swiss Re c curve) with a probability of total loss of 37%.

This analysis is of course very preliminary, as it is based on several conjectures on the
relationship between hull damage and physical parameters and is affected by both model and
parameter uncertainty, and more research is needed.

5. Modelling the Severity of Natural Catastrophe Losses
Natural catastrophe (cat) modelling relies on geophysical and engineering models rather than
historical loss fitting, although historical losses obviously play a role. It is a clear example of where
modelling from first principles already exists. We will therefore not dwell on this topic for long as
it would mean mostly repeating results already well known in the literature, but will use a single
example, earthquake modelling, for illustration purposes.

5.1 Modelling Losses Arising from Earthquakes

An example is provided by earthquake modelling. Loss data suggest that the severity of losses
broadly follow a Pareto law with exponent α of around 1 (Mitchell-Wallace et al., 2012). This can be
related to the Gutenberg–Richter law, which is an empirical relationship between the magnitudeM
of an earthquake and the total number N of earthquakes in any given region/time period of at least
that magnitude: log10 N � a � bM. The parameter b is typically between 0.8 and 1.5 in seismically
active regions. This relationship needs to be paired up with that which gives the energy E released
during the earthquake: log10 E � c � dM. The combination of the equations for N and E leads to
the following power law for the number of earthquakes releasing an energy larger than E:

N E� �∝ E�d
b

Hence, the probability that an earthquake releases an energy larger than E is:

F
�
E� �∝E�d

b

which is a Pareto distribution with α � d
b. The insured loss will then depend on the energy released

and the vulnerability of the structures exposed to the earthquake.
There is no unique explanation from first principles as to why this empirically observed law

holds, but various possible mechanisms have been put forward. The most interesting explanation
(Bak & Tang, 1988) is perhaps the one based on the concept of self-organised criticality22, which
suggests that the Earth’s crust can be modelled as a dynamical system that is both dissipative
(i.e., it releases energy) and is spatially extended with a number of degrees of freedom that is
approximately infinite. The interactions between various physical, chemical, and mechanical
processes in the Earth’s crust lead to a critical state where earthquakes can occur spontaneously,

22Self-organized criticality (SOC) is a concept in the field of complex systems that refers to the idea that some systems,
without external tuning, can evolve towards a critical state, where small perturbations can cause large-scale effects. The
classical example is that of a heap of sand, to which you slowly add one grain at a time. Eventually it will reach a state where a
small nudge will cause an avalanche, sending many grains tumbling down. This is an example of a system that is self-organized
into a critical state. In this state, the size of the avalanches follows a power-law distribution, meaning that small avalanches are
much more frequent than large ones, but large ones are not impossible.
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analogous to what is often cited as an example of self-organised criticality, the grain of sand that
leads to an avalanche of the heap of sand it falls on. The Gutenberg–Richter relationship reflects
the scaling properties of these interactions and the distribution of energy stored in the Earth’s
crust and leads to a power-law distribution of earthquake sizes and ultimately payouts.

5.2 Modelling other Natural Catastrophes

Note that, as mentioned in Bak and Tang (1988), dynamical phenomena with power-law
correlation function appear to be widespread in nature and are seen in weather, landscapes and
other areas, so the pattern described here is likely to be found for other types of natural
catastrophes (Mandelbrot, 1982); similar to Helmstetter’s approach of fractal scaling (2003).

5.3 Non-Geophysical Explanations

Apart from these geophysical explanations, it should be noted that another plausible mechanism
to explain the distribution of loss amounts in earthquakes and catastrophes in general could be
related to the distribution of city sizes – see Zipf’s law in Section 3.2.1. It makes sense that
earthquakes of the same magnitude will have different impacts depending on the size of the
population affected, and therefore an earthquake in a large city will cause much more damage than
a similar earthquake in a small city.

6. Modelling Contingent Business Interruption (Supply Chain) Losses
The insurance industry has traditionally dealt with business interruption/loss of revenue impacts
in a rather arbitrary manner. The Business Interruption premium rate is often set as a simple
multiple of the Property Damage rate. The loss data available is often expressed in terms of
financial amounts as opposed to physical delay times (numbers of days lost) and so often
combines information on:

• the interruption period
• the financial impact per day (which will differ for partial losses and total losses23)
• the basis of recovery (fixed costs only; full loss of profit etc.).

The risk can become even more complex where third-party revenues are impacted, as in
contingent business interruption (CBI). Underwriters will often try to identify a “network” of
potential loss scenarios where coverage is scheduled and offer a lower limit for any “unscheduled”
losses that fall outside of these scenarios.

With the recent advances in mapping technology and real-time estimates of values at risk it is
possible for underwriters to set up all their exposures and create a dynamic dashboard reflecting
any peak concentrations, such as a terminal through which a significant amount of oil and gas
production may flow or a critical pipeline to transport oil or gas from a producing field to a
terminal or a processing facility/refinery. To truly estimate an expected maximum loss (EML) for
such a network, probability distributions would be required to reflect:

• the chance of a significant loss event (property damage, terrorism/war, cyber, pandemic : : : )
• the likely downtime period
• the recovery period (considering that production may return on a partial basis before full
production is restored)

23See LMA bulletins 5607/5608 that intend to create a standard basic wording for calculation of business interruption losses
and the application of daily (monthly) indemnity caps.
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• any mitigation that may be available, for example, the ability to re-route production (at a
cost) via an alternative pipeline or through use of an alternative processing facility.

The loss of revenue impact from a key distribution centre can be many times the direct value of
the site/building. This revenue impact could also be triggered by other risks such as cyber attack,
terrorist activity either directly at the location or in the immediate vicinity, or the impact of a
pandemic impact on the workforce.

6.1 Modelling Supply Chain Risks using Networks

Most academic research tends to focus on Property Damage modelling and the interpretation of
risk engineering surveys to evaluate the physical risk of loss (estimated maximum loss studies).
There is far less research available on Business Interruption exposures.

Perhaps even more than in the case of property risk, supply chain risk lends itself naturally to
being analysed through a directed graph24 representation. The nodes of the supply chain represent
suppliers/assets and there is a directed edge connecting A to B if A provides materials or services to
B needed (or useful) for the overall functioning of the supply chain. The direction of the edge is of
course essential as the role of supplier/receiver cannot be reversed25. The edge from A to B will in
general have a weight, reflecting the proportion (or absolute amount) of product that B receives
from A. Nodes might belong to different classes: for example, one class of nodes might represent
production sites and another class of nodes might represent warehouses. Edges might also be of
different natures: for example, road routes versus sea routes or even internet routes. All of this
suggests that an appropriate representation of complex supply chains may require a graph with a
very rich structure. We will typically refer to such a complex graph as a “network” as it is a term
more commonly used in the context of supply chains.

A more sophisticated analysis would also consider the time element, for example, to adjust the
exposure for insuring conditions such as waiting periods, indemnity periods and maximum daily
recovery rates etc. As a simple example consider a typical oil and gas exposure where the network
can be described as in Figure 10. The Direct Business Interruption values at risk and the relative
dependency is summarised in Table 1.

The critical dependencies can be summarised as follows:

a. Assets 2 to 5 are routing production via Asset 1 (a gathering platform for the whole field) so
are 50% dependent: for example, if Asset 1 is closed/lost then some routing/mitigation may
be possible but Assets 2 to 5 would have to reduce production by 50%.

b. Terminals 1 and 2 are each taking 50% of the production from Asset 1.
c. Pipeline 1 gets 25% of its throughput from Terminal 1. Pipeline 2 gets 25% of its throughput

from Terminal 2.
d. Refinery 1 gets 25% of its feedstock from Pipeline 1. Refinery 2 gets 25% of its feedstock

from Pipeline 2.

We can then calculate Business Interruption effects as a loss propagates through the network.
For, example a loss of Asset 1 (a platform) would impact the direct BI value ($100M) but also 50%
of the value at platforms 2/3/4/5, that is, 50% of $175M = $87.5M. The total exposure from
platform one could be considered as $187.5M.

When considering insurance some attention may need to be paid to any sub-limits being
applied for contingent business interruption. If, for example, the BI is being declared as $100M at

24A directed graph is a graph where the edges have specified directions and they are called directed edges.
25Naturally, it might be the case that A supplies products/materials to B and B supplies other products/materials to A, in

which case you will have two separate edges, one from A to B and another from B to A.
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Asset 1 with a blanket $50M available for contingent BI then the overall recovery may then be
limited to $150M etc.

As we move through the supply chain there are also lower-order effects to consider (third
order, fourth order etc.). Consider, for example, Refinery 1. The direct BI exposure is declared as
$500M. The loss of Refinery 1 would, however, also trigger:

• a 25% loss at Pipeline 1 ($37.5M – second order effect)
• a loss capacity at pipeline 1 would then trigger a loss at terminal 1 ($75M x 25% x 25% =
$4.69M – third order effect)

• a loss of capacity at Terminal 1 would trigger a loss at Asset 1 ($100M x 50% x 25% x 25% =
$3.13M – fourth order effect)

• a loss of capacity at Asset 1 would trigger a loss at assets 2/3/4/5 – total $2.73M
○ Asset 2 $25M x 50% x 50% x 25% x 25% = 0.391M
○ Asset 3 $25M x 50% x 50% x 25% x 25% = 0.391M
○ Asset 4 $25M x 50% x 50% x 25% x 25% = 0.391M
○ Asset 5 $100M x 50% x 50% x 25% x 25% = 1.563M

The full lower-order effects were calculated as in Table 2.
As a sensitivity check let’s consider the impact if the direct values at risk at the five production

assets were to double (e.g., because of higher oil and gas prices) and, due to supply constraints, we
assume Pipelines 1 and 2 are now receiving 50% of their throughput from Terminals 1 and 2
respectively. The business interruption lower-order effects are now calculated as shown in Table 3.

This can be summarised by considering the relationship between direct, first-order BI and
indirect lower-order BI effects as in Table 4.

When considering an overall business interruption limit, however, it would be unusual for the
buyer (or the broker) to analyse the risk at this level of detail. Using the example above, it may be
more common to declare a simple catch-all additional $100M for CBI based on Table 4 (the
original network), even though the knock-on impact of the factors described in Scenario 2 suggests
this could lead to significant underinsurance.

It is possible to build a simple pricing tool that accounts for these factors and tests the impact of
varying the coverage such as increased waiting periods or sub-limits on indirect losses.

Figure 10. Oil and gas network example.
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7. Modelling the Severity of Cyber Business Interruption Losses
Cyber Business Interruption (Cyber BI) is difficult to model via experience rating because of the
paucity of data. For this reason, a risk engineering approach that focuses on the underlying risk
mechanism and disruption pattern of Cyber BI incidents is both interesting from a theoretical
point of view and practically helpful.

Cyber BI differs from conventional property damage-related BI in some important ways:

• The disruption period (which doesn’t involve restoration of physical assets) is much shorter,
translating into shorter contractual indemnity periods

• Cyber BI is not location-specific: a cyberattack can trigger business interruption losses in
different territories

Table 1. The dependency matrix for Figure 10. As mentioned in Section 4.2.1, such a matrix can be viewed as a
representation of a weighted (directed) graph, with an edge from j to k if the value at �j; k� is > 0

ID Name Type
Direct
BI ($M) 1 2 3 4 5 6 7 8 9 10 11

1 Asset 1 Platform 100 100% 50% 50% 50% 50% 0% 0% 0% 0% 0% 0%

2 Asset 2 Platform 25 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

3 Asset 3 Platform 25 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

4 Asset 4 Platform 25 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%

5 Asset 5 Platform 100 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

6 Terminal 1 Terminal 75 50% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%

7 Terminal 2 Terminal 75 50% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

8 Pipeline 1 Pipeline 150 0% 0% 0% 0% 0% 25% 0% 100% 0% 0% 0%

9 Pipeline 2 Pipeline 150 0% 0% 0% 0% 0% 0% 25% 0% 100% 0% 0%

10 Refinery 1 Refinery 500 0% 0% 0% 0% 0% 0% 0% 25% 0% 100% 0%

11 Refinery 2 Refinery 500 0% 0% 0% 0% 0% 0% 0% 0% 25% 0% 100%

Table 2. Business interruption: Lower order effects

Name Direct 2nd order 3rd order 4th order 5th order Total BI

Asset 1 100 87.50 – – – 187.50

Asset 2 25 – – – – 25.00

Asset 3 25 – – – – 25.00

Asset 4 25 – – – – 25.00

Asset 5 100 – – – – 100.00

Terminal 1 75 50.00 43.75 – – 168.75

Terminal 2 75 50.00 43.75 – – 168.75

Pipeline 1 150 18.75 12.50 10.94 – 192.19

Pipeline 2 150 18.75 12.50 10.94 – 192.19

Refinery 1 500 37.50 4.69 3.13 2.73 548.05

Refinery 2 500 37.50 4.69 3.13 2.73 548.05

British Actuarial Journal 31

https://doi.org/10.1017/S1357321724000163 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321724000163


To derive Cyber BI curves we will adopt a risk engineering approach focusing on the
underlying risk mechanisms. Several loss scenarios are considered such as an IT service provider
(cloud) outage, a local IT service outage, and a supplier’s outage due to Cyber risks.

7.1 Disruption Pattern for a Cyber BI Event

The extent of Cyber BI depends on the disruption pattern: the duration of the outage, the
availability and effectiveness of loss mitigation measures, the repair/replacement of information
technology (IT)/operational technology (OT) services, and eventually the time required to fully
restore operations of the insured.

Table 3. Business interruption: Lower order effects, revised

Name Direct 2nd order 3rd order 4th order 5th order Total BI

Asset 1 200 175.00 – – – 375.00

Asset 2 50 – – – – 50.00

Asset 3 50 – – – – 50.00

Asset 4 50 – – – – 50.00

Asset 5 200 – – – – 200.00

Terminal 1 75 100.00 87.50 – – 262.50

Terminal 2 75 100.00 87.50 – – 262.50

Pipeline 1 150 37.50 50.00 43.75 – 281.25

Pipeline 2 150 37.50 50.00 43.75 – 281.25

Refinery 1 500 37.50 9.38 12.50 10.94 570.31

Refinery 2 500 37.50 9.38 12.50 10.94 570.31

Table 4. Direct BI versus Indirect BI: Original and revised network

Original network Revised network

Name Direct Indirect % Indirect Direct Indirect % Indirect

Asset 1 100.00 87.50 87.5% 200.00 175.00 87.5%

Asset 2 25.00 – 0.0% 50.00 – 0.0%

Asset 3 25.00 – 0.0% 50.00 – 0.0%

Asset 4 25.00 – 0.0% 50.00 – 0.0%

Asset 5 100.00 – 0.0% 200.00 – 0.0%

Terminal 1 75.00 93.75 125.0% 75.00 187.50 250.0%

Terminal 2 75.00 93.75 125.0% 75.00 187.50 250.0%

Pipeline 1 150.00 42.19 28.1% 150.00 131.25 87.5%

Pipeline 2 150.00 42.19 28.1% 150.00 131.25 87.5%

Refinery 1 500.00 48.05 9.6% 500.00 70.31 14.1%

Refinery 2 500.00 48.05 9.6% 500.00 70.31 14.1%
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To model the disruption pattern, we assume the pattern is composed of three phases:

1. Contamination – cyber threats are starting to emerge and impacting the operation of the
insured by up to X% depending on the insured’s cybersecurity posture26 and business
structure/organisation.

2. Containment – once the threat is discovered, the insured will contain the impact and reduce
the adverse impact. The duration of this phase depends on several factors, for example, the
insured’s business continuity plan, their crisis management process and third-party
assistance, and the resources available for incident response.

3. Cure – in this phase, the insured’s IT-related business is restored up to a certain level. The
time required for this will depend on the identification of critical cyber assets, disaster
recovery plan, the recovery time objective (RTO), and the availability of the IT team. The
full recovery of the business would further depend on some non-IT factors and may take
considerably more time.

Figure 11 shows a simplified and linearised representation of the cyber disruption pattern.
Some terminology is needed to explain the graph:

• x is the (estimated) maximum percentage of interruption that can be caused by a cyber-
related issue. This number depends on the type of occupancy, network segmentation, patch
management, and is normally below 100%: for example, if the reservation system is down, a
hotel can still work to some extent without the system.

• f t� � describes the estimated interruption pattern: hence, xf t� � represents the percentage of
interruption at time t, which will typically decline with time as the IT system is brought back
to full functionality. The times t1; t2; t3 can be considered realisations of random variates
T1;T2;T3 describing the onset of the three different phases.

Figure 11. A simplified, linearised version of the cyber disruption pattern.

26Cybersecurity posture refers to the cyber defence measures of the insured, for example, authentication, employee training,
deployed security system/solutions and the collective effectiveness of the combination of individual measures.
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7.2 Calibration of Parameters

More detailed calibration work has been done on how to assess the maximum possible durations
of each period, and the maximum level of interruption (x) of IT-related revenue disruption.
Table 5 is an illustration of such an assessment for a company of a certain size in a given country,
for 3 NACIS codes.

7.3 Simulation of Loss Scenarios

The computation of insured BI losses is sometimes complex and differs significantly depending on
the wording of each policy and local practices, notably loss of gross margin, loss mitigation cost
and increased costs of working. However, our intention is to identify and quantify the main
components and then build a model.

Let Ld denote the average daily loss if the IT-related activity of the insured is completely
interrupted (X � 100%). We could then calculate the insured BI loss using:

LBI�x; f �t�� �
Zt4
0

i t� �L�ddt � L
�
dx

Zt4
0

f t� �dt

Monte-Carlo simulations can then be performed to generate one million Cyber BI scenarios for
each sector. A few random scenarios generated for the finance and insurance sector are shown in
Figure 12.

Using this simulation, we can produce a distribution of the possible losses for a particular sector
and derive from that the corresponding exposure curve. Figure 13 shows both for finance and
insurance.

One advantage of this approach is that the MPL is approximately equal to the maximum
simulated loss if the number of simulations is sufficient. For finance and insurance, this appears to
be close to 48.5 Ldx. This can, however, also be calculated analytically assuming the estimated
maximum time for each interval; the estimated maximum time will depend on the industry sector.

The empirically derived CDF for the damage ratio Y (loss as a percentage of MPL) can be
denoted as F y

� � � P Y ≤ y
� �

. The damage ratio is:

Y � LBI�x; f �t��
MPLBI

�
Ld

R
t4

0
xf t� �dt

M Ld x
�

Rt4
0 f t� �dt
M

where M is 48.47 according to the calculations above for the finance and insurance sector.

Table 5. Example of assessment of the parameters of a cyber disruption pattern.

max(t1) max(t2-t1) max(t3-t2) max(t4-t2) max(x)

NAICS-based
segmentation

Max
contamination

(days)

Max
containment
time (days)

RM process
disruption
(Cyrius)

Max time to
restore 80%
of impacted
IT (days)

Max time to
restore 100%
of impacted
IT (days) Max(x)

Agriculture, forestry,
fishing and
hunting

1 14 1.53 38.45 115.34 0.38

Mining, quarrying,
and oil & gas
extraction

1 14 1.84 43.25 129.76 0.49

Utilities 1 14 2.00 45.66 136.97 0.55
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The exposure curve can then be derived from the corresponding (empirical) severity curve by
the standard relationship G d� � � d

R
0F y
� �

dy=1
R
0F y
� �

dy, where d is the normalised deductible
d � deductible

MPLBI
and F y

� � � 1 � F y
� �

.

8. Conclusions
Given the wide remit of our working party, and the fact that different covers will be modelled
differently in terms of first principles, a variety of techniques and approaches was to be expected.
Despite this, a few significant common threads have emerged.

Graph (network) theory appears to be a natural choice to model losses of properties that can be
broken down into different units/components that are connected to one another. It also finds a
natural use in modelling financial losses arising from failures in actual networks such as a supply
chain, and in contingent business interruption.

Another broad strand is that of stochastic processes, which will be no surprise to actuaries since the
loss generating process is itself a stochastic process. To be more specific, loss count processes are best
viewed as examples of pure-jump processes, stationary or not. As for the severity of losses, especially in
the context of casualty (liability) insurance, the ubiquitous presence of the Pareto behaviour for large
losses can be explained by the presence of underlying random growth processes.

Figure 12. Three random scenarios generated by varying the parameters of the cyber disruption period.

Figure 13. The empirically derived CDF plot for the damage ratio (left) and exposure curve (right) for the finance and
insurance sector.
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8.1 Limitations and Future Research

Each of the topics addressed in this paper is broad enough to merit a separate paper. In each case,
more research is needed to flesh out the theoretical arguments fully and bring further empirical
support.

In Section 2, more research is needed on modelling the causes of non-stationarity, whether
natural or man-made, and the size of the clusters where such clusters are observed.

In Section 3, conjectured mechanisms leading to a Pareto behaviour need to be confirmed and
articulated further.

In Section 4, more research is needed on the relationship between graph structure and
exposure curve and why most curves used in practice appear to be in the Bose–Einstein region
while most curves originating from graphs produce exposure curves that are in the Fermi–Dirac
region. The connection with percolation theory needs to be investigated further. Research on
other types of cover such as extended warranty, machinery breakdown, and satellite insurance
can also be carried out through the lenses of risk engineering and network theory.

Further work would be needed to calibrate the dependency matrix approach in Section 6 by
reviewing actual historical loss events and to consider (from engineering and supply chain data) a
suitable probability distribution for downtime and the time to reinstate facilities.

Since cyber is a relatively new risk and is continually evolving, the details of the approach in
Section 7 may quickly become obsolete and models will need to be updated accordingly to keep
abreast of these changes.
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